Test Bank for Trigonometry 8th Edition by McKeague IBSN 9781305652224

Full Download: http://downloadlink.org/product/test-bank-for-trigonometry-8th-edition-by-mckeague-ibsn-9781305652224/

McKeague/Turner Trigonometry 8e - Chapter 2 Form A

Multiple Choice

Identify the choice that best completes the statement or answers the question.

- 1. Find the complement and supplement of the angle 55°.
 - a. Complement: 45° Supplement: 145°
 - b. Complement: 125° Supplement: 35°
 - c. Complement: 145° Supplement: 235°

c. 13

- d. Complement: 125° Supplement: 305°
 e. Complement: 35° Supplement: 125°
- 2. Let triangle ABC be a right triangle with $C = 90^{\circ}$. If c = 19 and a = 6, find b.
 - a. $\sqrt{13}$ b. $\sqrt{397}$
- d. $5\sqrt{13}$ e. None of the above.
- _____ 3. Solve for *x* in the following right triangle:

a.	3	d.	4
b.	2	e.	5
c.	1		

4. Find the lengths of the shortest two sides of a $30^\circ - 60^\circ - 90^\circ$ triangle, if the length of the longest side is 16.

a.
$$4, \frac{8}{\sqrt{3}}$$

b. $4, 4\sqrt{3}$
c. $8, 8\sqrt{3}$
d. $4, \frac{4}{\sqrt{3}}$
e. $8, \frac{8}{\sqrt{3}}$

5. Find the length of the shorter sides of a $45^{\circ} - 45^{\circ} - 90^{\circ}$ triangle if the length of the hypotenuse is 21.

a.
$$\frac{21\sqrt{2}}{2}$$

b.
$$\frac{21\sqrt{2}}{4}$$

c.
$$\frac{21}{2}$$

d.
$$\frac{21\sqrt{3}}{3}$$

e.
$$\frac{21\sqrt{3}}{2}$$

_____6. Graph the following parabola.

12

e. None of the above.

- ____ 7. Find the distance between the two points (-5, 8) and (19, 53).
 - a. 102
 - b. 51
 - c. 48
 - d. 153
 - e. 99

8. Determine two coterminal angles (one positive and one negative) for $\theta = -503^{\circ}$.

- a. 127°,-233°
- b. 307°,-413°
- c. 127°, 323°
- d. 217°, 143°
 e. 217°, 323°
- 9. Determine which of the following points is located in quadrant 4.
 - a. (-3, 7) d. (-7, -3)

 b. (3, -7) e. (7, 3)

 c. (-7, 3)
 - _ 10. Which of the following points lies on the unit circle?

a.
$$\begin{pmatrix} -7\\11 \end{pmatrix}, \frac{4\sqrt{2}}{11} \end{pmatrix}$$

b.
$$\begin{pmatrix} 5\\9 \end{pmatrix}, \frac{-4\sqrt{2}}{9} \end{pmatrix}$$

c.
$$\begin{pmatrix} -7\\9 \end{pmatrix}, \frac{-4\sqrt{2}}{9} \end{pmatrix}$$

d.
$$\begin{pmatrix} -5\\13 \end{pmatrix}, \frac{-4\sqrt{2}}{13} \end{pmatrix}$$

e. None of the above.

11. Given $\sin 30^\circ = \frac{1}{2}$ and $\cos 30^\circ = \frac{\sqrt{3}}{2}$, determine the following: $\csc 30^\circ$ a. $\csc 30^\circ = \frac{\sqrt{3}}{3}$ b. $\csc 30^\circ = \frac{\sqrt{2}}{2}$ c. $\csc 30^\circ = \sqrt{3}$ d. $\csc 30^\circ = 2$ e. undefined

12. Given the figure below, determine the value of $\sin \theta$.

13. The point (3,4) is on the terminal side of an angle in standard position. Determine the exact value of $\cos\theta$.

a. $\cos\theta = -\frac{5}{3}$ b. $\cos\theta = \frac{4}{3}$ c. $\cos\theta = \frac{3}{4}$ d. $\cos\theta = -\frac{4}{3}$ e. $\cos\theta = \frac{3}{5}$

14. Indicate the two quadrants θ could terminate in if $\tan \theta = -\frac{13}{23}$.

a. Quadrants II and IIIb. Quadrants I and IIIc. Quadrants I and IV

- d. Quadrants II and IV
- e. Quadrants III and IV

_____ 15. Evaluate sin 300°.

a.	$\frac{-1}{2}$	d.	$\frac{-\sqrt{2}}{2}$
b.	$\frac{1}{2}$	e.	$\frac{-\sqrt{3}}{2}$
c.	$\frac{\sqrt{3}}{2}$		2

_____ 16. Find $\sin \theta$ if $\csc \theta = \frac{-23}{19}$.

a.	4	d.	19
	23		23
b.	4	e.	- 19
	19		23
c.	- 4		
	23		

$$--- 17. \text{ Find } \tan \theta \text{ if } \sec \theta = \frac{\sqrt{170}}{7} \text{ and } \csc \theta = \frac{\sqrt{170}}{11}.$$

$$a. \quad -\frac{7}{11} \qquad \qquad d. \quad \frac{77}{170}$$

$$b. \quad \frac{170}{77} \qquad \qquad e. \quad \frac{11}{7}$$

$$c. \quad \frac{7}{11}$$

_____ 18. If $\sin \theta = \frac{-6}{\sqrt{85}}$ and θ terminates in QIII, find $\cos \theta$.

a.
$$\frac{-6}{7}$$

b. $\frac{-7}{\sqrt{85}}$
c. $\frac{7}{\sqrt{85}}$
d. $\frac{-\sqrt{85}}{49}$
e. $\frac{6}{7}$
c. $\frac{7}{\sqrt{85}}$

19. Suppose $\csc \theta = 7$ and θ terminates in QII. Find the remaining trigonometric ratios of θ .

a.	$\sin \theta = \frac{1}{7}$	d.	$\sin\theta = \frac{-4\sqrt{3}}{7}$
	$\cos\theta = \frac{4\sqrt{3}}{7}$		$\cos \theta = \frac{1}{7}$
	$\tan \theta = \frac{1}{4\sqrt{3}}$		$\tan \theta = -4\sqrt{3}$
	$\sec \theta = \frac{7}{4\sqrt{3}}$		$\sec \theta = \frac{-7}{4\sqrt{3}}$
	$\cot \theta = 4\sqrt{3}$		$\cot \theta = \frac{-1}{4\sqrt{3}}$
b.	$\sin \Theta = \frac{1}{7}$	e.	$\sin \theta = \frac{1}{7}$
	$\cos \theta = \frac{-4\sqrt{3}}{7}$		$\cos\theta = \frac{-4\sqrt{3}}{7}$
	$\tan \theta = -4\sqrt{3}$		$\tan \theta = \frac{-1}{4\sqrt{3}}$
	$\sec \theta = \frac{-7}{4\sqrt{3}}$		$\sec \theta = \frac{-7}{4\sqrt{3}}$
	$\cot \theta = \frac{-1}{4\sqrt{3}}$		$\cot \theta = -4\sqrt{3}$
c.	$\sin \theta = \frac{-4\sqrt{3}}{7}$		
	$\cos \theta = \frac{1}{7}$		
	$\tan \theta = \frac{-1}{4\sqrt{3}}$		
	$\sec \theta = \frac{-7}{4\sqrt{3}}$		

 $\cot \theta = -4\sqrt{3}$

- - 21. Use fundamental identities to simplify the expression below and then determine which of the following is *not* equivalent.
 - $\sin \alpha (\csc \alpha \sin \alpha)$ a. $1 \sin^2 \alpha$ b. $\frac{\csc^2 \alpha 1}{\csc^2 \alpha}$ c. $\frac{\csc^2 \alpha \sec^2 \alpha + \tan^2 \alpha}{\csc^2 \alpha}$ d. $1 \cot^2 \alpha$ e. $\cos^2 \alpha$
 - 22. Multiply; then use fundamental identities to simplify the expression below and determine which of the following is *not* equivalent.

$$(\sin x + \cos x)(\sin x - \cos x)$$

a. $2\sin^2 x - \sec^2 x - \tan^2 x$
b. $\sin^2 x - \cos^2 x$
c. $1 - 2\cos^2 x$
d. $\csc^2 x - \cot^2 x - 2\cos^2 x$
e. $1 - 2\sin\left(\frac{\pi}{2} - x\right)\cos x$

23. Which of the following is equivalent to the given expression?

$$\frac{\sin^2 x}{1 - \cos x}$$

a. $\tan x + \sin x$
b. $1 + \cos x$

- c. $\csc x + \cot x$
- d. $tan x \cot x \cos x$
- e. $\cot x \sin x + \tan x$

_____ 24. Simplify the expression $\sqrt{x^2 + 13}$ as much as possible after substituting $\sqrt{13} \tan \theta$ for x.

a. $\sqrt{13} |\csc \theta|$ d. $13 |\csc \theta|$ b. $\sqrt{13} |\sin \theta|$ e. $13 |\sec \theta|$ c. $\sqrt{13} |\sec \theta|$ e. $13 |\sec \theta|$

_____ 25. Simplify the expression $\sqrt{30-6x^2}$ as much as possible after substituting $\sqrt{5}\sin\theta$ for x.

a.	30 csc <i>0</i>	d.	30 cos <i>0</i>
b.	$\sqrt{30}$ csc θ	e.	$\sqrt{30} \cos \theta $

c. $\sqrt{30} |\tan \theta|$

Answer Section

- 1. E
- D
 B
- 4. C
- 5. A
- 6. B
- 7. B
- 8. D
- 9. B
- 10. C
- 11. D
- 12. C 13. E
- 13. D
- 15. E
- 16. E
- 17. E
- 18. B
- 19. E
- 20. E
- 21. D
- 22. A
- 23. B
- 24. C
- 25. E

Multiple Choice

Identify the choice that best completes the statement or answers the question.

- 1. Find the complement and supplement of the angle 59°.
 - a. Complement: 31° Supplement: 121°
 b. Complement: 121° Supplement: 31°
 - c. Complement: 41° Supplement: 141°

- d. Complement: 149° Supplement: 239°
 e. Complement: 121° Supplement: 301°
- 2. Let triangle ABC be a right triangle with $C = 90^{\circ}$. If c = 19 and a = 10, find b.
 - a. 9 b. √9
 - c. $3\sqrt{29}$

b. 4 c. 2

- d. $\sqrt{461}$ e. None of the above.
- 3. Solve for *x* in the following right triangle:

e. 3

4. Find the lengths of the shortest two sides of a $30^{\circ} - 60^{\circ} - 90^{\circ}$ triangle, if the length of the longest side is 24.

a.
$$6, 6\sqrt{3}$$

b. $6, \frac{6}{\sqrt{3}}$
c. $6, \frac{12}{\sqrt{3}}$
d. $12, \frac{12}{\sqrt{3}}$
e. $12, 12\sqrt{3}$
e. $12, 12\sqrt{3}$

5. Find the length of the shorter sides of a $45^{\circ} - 45^{\circ} - 90^{\circ}$ triangle if the length of the hypotenuse is 17.

a.
$$\frac{17\sqrt{2}}{4}$$

b. $\frac{17\sqrt{2}}{2}$
c. $\frac{17\sqrt{3}}{2}$
d. $\frac{17\sqrt{3}}{3}$
e. $\frac{17}{2}$

_____ 6. Graph the following parabola.

e. None of the above.

- ____ 7. Find the distance between the two points (-7, -5) and (5, 11).
 - a. 40
 - b. 20
 - c. 17
 - d. 60
 - e. 37

8. Determine two coterminal angles (one positive and one negative) for $\theta = -506^{\circ}$.

- a. 124°,-236°
- b. 304°,-416°
- c. 124°,-326°
- d. 214°, 146°
 e. 214°, 326°
- 9. Determine which of the following points is located in quadrant 4.
 - a. (-6, -4) d. (4, -6)

 b. (-4, 6) e. (-6, 4)

 c. (6, 4)
 - _ 10. Which of the following points lies on the unit circle?

a.
$$\left(\frac{9}{13}, \frac{-2\sqrt{10}}{13}\right)$$

b. $\left(\frac{-7}{11}, \frac{2\sqrt{10}}{11}\right)$
c. $\left(\frac{9}{11}, \frac{2\sqrt{10}}{11}\right)$
d. $\left(\frac{7}{15}, \frac{2\sqrt{10}}{15}\right)$

e. None of the above.

11. Given
$$\sin 30^\circ = \frac{1}{2}$$
 and $\cos 30^\circ = \frac{\sqrt{3}}{2}$, determine the following:
 $\tan 30^\circ$
a. $\tan 30^\circ = \sqrt{3}$
b. $\tan 30^\circ = 1$
c. $\tan 30^\circ = \frac{\sqrt{2}}{2}$
d. $\tan 30^\circ = \frac{\sqrt{3}}{3}$
e. undefined

12. Given the figure below, determine the value of $\sin \theta$.

13. The point (5, 12) is on the terminal side of an angle in standard position. Determine the exact value of $\sec \theta$.

a. $\sec \theta = -\frac{5}{13}$ b. $\sec \theta = \frac{5}{12}$ c. $\sec \theta = \frac{12}{5}$ d. $\sec \theta = -\frac{5}{12}$ e. $\sec \theta = \frac{13}{5}$

14. Indicate the two quadrants θ could terminate in if $\tan \theta = -\frac{21}{31}$.

a. Quadrants I and III

d. Quadrants II and IV

- b. Quadrants II and IIIc. Quadrants I and IV
- e. Quadrants III and IV

_____ 15. Evaluate sin 150°.

a.
$$\frac{\sqrt{2}}{2}$$

b.
$$\frac{\sqrt{3}}{2}$$

c.
$$\frac{-\sqrt{3}}{2}$$

d.
$$\frac{1}{2}$$

e.
$$-\frac{1}{2}$$

_____ 16. Find $\sin \theta$ if $\csc \theta = \frac{-19}{17}$.

a.	- 17	d.	2
	19		19
b.	- 2	e.	2
	19		17
c.	17		
	19		

$$--- 17. \text{ Find } \tan \theta \text{ if } \sec \theta = \frac{\sqrt{218}}{7} \text{ and } \csc \theta = \frac{\sqrt{218}}{13}.$$

$$a. \quad \frac{218}{91} \qquad \qquad d. \quad -\frac{7}{13}$$

$$b. \quad \frac{13}{7} \qquad \qquad e. \quad \frac{91}{218}$$

$$c. \quad \frac{7}{13}$$

_____ 18. If $\sin \theta = \frac{-6}{\sqrt{85}}$ and θ terminates in QIV, find $\cos \theta$.

a.
$$\frac{-6}{7}$$

b. $\frac{-7}{\sqrt{85}}$
c. $\frac{7}{\sqrt{85}}$
d. $\frac{6}{7}$
e. $\frac{\sqrt{85}}{49}$

19. Suppose $\csc \theta = 15$ and θ terminates in QII. Find the remaining trigonometric ratios of θ .

a.
$$\sin \theta = \frac{-4\sqrt{14}}{15}$$
d.
$$\sin \theta = \frac{-4\sqrt{14}}{15}$$

$$\cos \theta = \frac{1}{15}$$

$$\tan \theta = \frac{-1}{4\sqrt{14}}$$

$$\sec \theta = \frac{-15}{4\sqrt{14}}$$

$$\sec \theta = \frac{-15}{4\sqrt{14}}$$
b.
$$\sin \theta = \frac{1}{15}$$

$$\cos \theta = \frac{4\sqrt{14}}{15}$$

$$\cos \theta = \frac{4\sqrt{14}}{15}$$

$$\tan \theta = \frac{1}{4\sqrt{14}}$$

$$\sec \theta = \frac{-1}{4\sqrt{14}}$$

$$\sec \theta = \frac{-1}{4\sqrt{14}}$$

$$\sec \theta = \frac{-1}{4\sqrt{14}}$$

$$\sec \theta = \frac{-15}{4\sqrt{14}}$$

<u>20.</u> If $\csc \theta = -12$, find $\csc^3 \theta$.

a.	-1	d.	-36
	36		
b.	- 1	e.	1,728
	1,728		
c.	-1,728		

21. Use fundamental identities to simplify the expression below and then determine which of the following is *not* equivalent.

 $\sin \alpha (\csc \alpha - \sin \alpha)$

a.
$$1 - \sin^2 \alpha$$

b. $\frac{\csc^2 \alpha - 1}{\csc^2 \alpha}$
c. $\frac{\csc^2 \alpha - \sec^2 \alpha + \tan^2 \alpha}{\csc^2 \alpha}$
d. $1 - \cot^2 \alpha$
e. $\cos^2 \alpha$

22. Multiply; then use fundamental identities to simplify the expression below and determine which of the following is *not* equivalent.

$$(\tan x + 1)^{2}$$
a. $\tan^{2}x + 1$
b. $\sec^{2}x + 2\tan x$
c. $\frac{1 + 2\sin x \cos x}{\cos^{2}x}$
d. $\tan^{2}x + 2\tan x + 1$
e. $\sec^{2}x(1 + 2\sin x \cos x)$

____ 23. Which of the following is equivalent to the given expression?

$$\frac{\sin^2 x}{1 - \cos x}$$

- a. $\tan x + \sin x$
- b. $1 + \cos x$
- c. $\csc x + \cot x$
- d. tanxcotx-cosx
- e. $\cot x \sin x + \tan x$

24. Simplify the expression $\sqrt{x^2 + 6}$ as much as possible after substituting $\sqrt{6} \tan \theta$ for x.

a.
$$6|\sec \theta|$$
d. $6|\csc \theta|$ b. $\sqrt{6}|\sec \theta|$ e. $\sqrt{6}|\csc \theta|$

c. $\sqrt{6} |\sin \theta|$

© 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website for classroom use.

- 25. Simplify the expression $\sqrt{70-7x^2}$ as much as possible after substituting $\sqrt{10} \sin \theta$ for x.
 - a. $\sqrt{70} |\tan \theta|$ b. $\sqrt{70} |\cos \theta|$ c. $70 |\cos \theta|$ d. $\sqrt{70} |\csc \theta|$ e. $70 |\csc \theta|$

Answer Section

- 1. A
- C
 E
- 4. E
- 5. B
- 6. C
- 7. B
- 8. D
- 9. D
- 10. C
- 11. D 12. C
- 12. C 13. E
- 14. D
- 15. D
- 16. A
- 17. B
- 18. C
- 19. E
- 20. C
- 21. D
- 22. A
- 23. B
- 24. B
- 25. B

Multiple Choice/Short Answer

Identify the choice that best completes the statement or answers the question/Use the space provided to write your answer.

- 1. Find the complement and supplement of the angle 54°.
 - a. Complement: 36° Supplement: 126°
 - b. Complement: 126° Supplement: 36°
 - c. Complement: 46° Supplement: 146°

- d. Complement: 144° Supplement: 234°
 e. Complement: 126° Supplement: 306°
- 2. Determine two coterminal angles (one positive and one negative) for $\theta = -457^{\circ}$.

3. Let triangle ABC be a right triangle with $C = 90^{\circ}$. If c = 19 and a = 6, find b.

a.	$\sqrt{13}$	d.	5\sqrt{13}
b.	√ <u>397</u>	e.	None of the above.
c.	13		

4. Solve for *x* in the following right triangle:

5. Find the lengths of the shortest two sides of a $30^{\circ} - 60^{\circ} - 90^{\circ}$ triangle, if the length of the longest side is 16.

a.
$$4, \frac{8}{\sqrt{3}}$$

b. $4, 4\sqrt{3}$
c. $8, 8\sqrt{3}$
d. $4, \frac{4}{\sqrt{3}}$
e. $8, \frac{8}{\sqrt{3}}$

6. Find the length of the shorter sides of a $45^{\circ} - 45^{\circ} - 90^{\circ}$ triangle if the length of the hypotenuse is 21.

a.
$$\frac{21\sqrt{2}}{2}$$

b. $\frac{21\sqrt{2}}{4}$
c. $\frac{21}{2}$
d. $\frac{21\sqrt{3}}{3}$
e. $\frac{21\sqrt{3}}{2}$
e. $\frac{21\sqrt{3}}{2}$

7. Given the figure below, determine the value of $\sin \theta$.

8. Graph the following parabola.

$$f(x) = -\frac{1}{3}x^2 - 2$$

-10

e. None of the above.

© 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website for classroom use.

- 9. Find the distance between the two points (-5, 8) and (19, 53).
 - a. 102
 - b. 51
 - c. 48
 - d. 153
 - e. 99
 - _ 10. Determine which of the following points is located in quadrant 4.
 - a. (-6, 3) d. (-3, -6)

 b. (-3, 6) e. (6, -3)

 c. (3, 6)
- _____ 11. Which of the following points lies on the unit circle?

e. None of the above.

12. Given $\sin 30^\circ = \frac{1}{2}$ and $\cos 30^\circ = \frac{\sqrt{3}}{2}$, determine the following:

sec 30°

13. Indicate the two quadrants θ could terminate in if $\tan \theta = -\frac{17}{25}$. a. Quadrants III and IV d. Quadrants II and III b. Quadrants I and III e. Quadrants II and IV c. Quadrants I and IV 14. Evaluate sin 300°. $\frac{d.}{\frac{-\sqrt{3}}{2}}$ a. $\frac{1}{2}$ b. $\frac{-\sqrt{2}}{2}$ e. $\frac{\sqrt{3}}{2}$ c. $\frac{-1}{2}$ _____ 15. Find $\sin \theta$ if $\csc \theta = \frac{-19}{17}$. d. $\frac{2}{17}$ e. $\frac{2}{19}$ a. $\frac{-2}{19}$ b. $\frac{-17}{19}$ c. $\frac{17}{19}$ 16. Find $\tan \theta$ if $\sec \theta = \frac{\sqrt{290}}{11}$ and $\csc \theta = \frac{\sqrt{290}}{13}$. a. $-\frac{11}{13}$ b. $\frac{13}{11}$ d. 143 290 e. $\frac{11}{13}$ c. <u>290</u> 143

17. Multiply; then use fundamental identities to simplify the expression below and determine which of the following is *not* equivalent.

$$(2 - 2\cos x)(2 + 2\cos x)$$
a. $4 - \cos^2 x$
b. $4 - 4\cos^2 x$
c. $4\sin^2 x$
d. $\frac{4}{\csc^2 x}$
e. $\frac{4}{1 + \cot^2 x}$

- 18. If $\sin \theta = \frac{-8}{\sqrt{89}}$ and θ terminates in QIV, find $\cos \theta$. a. $\frac{5}{8}$ b. $\frac{-5}{8}$ c. $\frac{-5}{\sqrt{89}}$ c. $\frac{-5}{\sqrt{89}}$
 - 19. The point (7,24) is on the terminal side of an angle in standard position. Determine the exact value of $\sin \theta$.

20. Suppose $\csc \theta = 7$ and θ terminates in QII. Find the remaining trigonometric ratios of θ .

a.	$\sin \theta = \frac{1}{7}$	d.	$\sin \theta = \frac{-4\sqrt{3}}{7}$
	$\cos \theta = \frac{4\sqrt{3}}{7}$		$\cos \theta = \frac{1}{7}$
	$\tan \theta = \frac{1}{4\sqrt{3}}$		$\tan \theta = \frac{-1}{4\sqrt{3}}$
	$\sec \theta = \frac{7}{4\sqrt{3}}$		$\sec\theta = \frac{-7}{4\sqrt{3}}$
	$\cot \theta = 4\sqrt{3}$		$\cot \theta = -4\sqrt{3}$
b.	$\sin \Theta = \frac{1}{7}$	e.	$\sin \theta = \frac{1}{7}$
	$\cos\theta = \frac{-4\sqrt{3}}{7}$		$\cos\theta = \frac{-4\sqrt{3}}{7}$
	$\tan \theta = \frac{-1}{4\sqrt{3}}$		$\tan \theta = -4\sqrt{3}$
	$\sec \theta = \frac{-7}{4\sqrt{2}}$		$\sec \theta = \frac{-7}{4\sqrt{3}}$
	$4\sqrt{3}$ cot $\theta = -4\sqrt{3}$		$\cot \theta = \frac{-1}{4\sqrt{3}}$
c.	$\sin \theta = \frac{-4\sqrt{3}}{7}$		
	$\cos \theta = \frac{1}{7}$		
	$\tan \theta = -4\sqrt{3}$		
	$\sec \theta = \frac{-7}{4\sqrt{3}}$		
	$\cot \Theta = \frac{-1}{4\sqrt{3}}$		

<u>21.</u> If $\csc \theta = -14$, find $\csc^3 \theta$.

a.	<u>-1</u>	d.	-2,744
	42		
b.	<u>-1</u>	e.	-42
	2, 744		
c.	2, 744		

_____ 22. Use fundamental identities to simplify the expression below and then determine which of the following is *not* equivalent.

$$\sec \phi \left(\frac{\sin \phi}{\tan \phi} \right)$$
a. $\sec^2 \phi - \tan^2 \phi$
b. $\sin^2 \phi + \cos^2 \phi$
c. $\csc^2 \phi - \cot^2 \phi$
d. $\cos^2 \phi - \sin^2 \phi$
e. 1

23. Simplify the expression $\sqrt{x^2 + 11}$ as much as possible after substituting $\sqrt{11} \tan \theta$ for x.

_____ 24. Simplify the expression $\sqrt{30 - 10x^2}$ as much as possible after substituting $\sqrt{3} \sin \theta$ for x.

- a. $30|\cos \theta|$ d. $\sqrt{30}|\tan \theta|$ b. $\sqrt{30}|\cos \theta|$ e. $30|\csc \theta|$ c. $\sqrt{30}|\csc \theta|$
- 25. Which of the following is equivalent to the given expression?
 - $\frac{\cot^2 x}{\csc x + 1}$

Answer Section

1.	А
2.	263°,-97°
3.	D
4.	В
5.	С
6.	Α
7.	$\sin\theta = -\frac{4}{5}$
8.	D
9.	В
10.	E
11.	D
12.	$\sec 30^\circ = \frac{2\sqrt{3}}{3}$
13.	E
13. 14.	E D
13. 14. 15.	E D B
13. 14. 15. 16.	E D B B
13. 14. 15. 16. 17.	E D B A
 13. 14. 15. 16. 17. 18. 	E D B B A D
 13. 14. 15. 16. 17. 18. 19. 	E D B A D sin $\theta = \frac{24}{25}$
 13. 14. 15. 16. 17. 18. 19. 20. 	E D B A D sin $\theta = \frac{24}{25}$ B
 13. 14. 15. 16. 17. 18. 19. 20. 21. 	E D B A D sin $\theta = \frac{24}{25}$ B D
 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 	E D B A D sin $\theta = \frac{24}{25}$ B D D
 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 	E D B A D sin $\theta = \frac{24}{25}$ B D D A
 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 	E D B A D sin $\theta = \frac{24}{25}$ B D D A B

Multiple Choice/Short Answer

Identify the choice that best completes the statement or answers the question/Use the space provided to write your answer.

1. Determine two coterminal angles (one positive and one negative) for $\theta = -477^{\circ}$.

- _ 2. Find the complement and supplement of the angle 59°.
 - a. Complement: 121° Supplement: 301°
 - b. Complement: 41° Supplement: 141°
 c. Complement: 149°
 - Supplement: 239°

- d. Complement: 121° Supplement: 31°
 e. Complement: 31° Supplement: 121°
- 3. Let triangle ABC be a right triangle with $C = 90^{\circ}$. If c = 19 and a = 2, find b.
 - a. 17
 - b. √365
 - c. $\sqrt{357}$

- d. $\sqrt{17}$
- e. None of the above.
- 4. Solve for *x* in the following right triangle:

5. Find the lengths of the shortest two sides of a $30^{\circ} - 60^{\circ} - 90^{\circ}$ triangle, if the length of the longest side is 16.

a.
$$4, \frac{4}{\sqrt{3}}$$

b. $4, 4\sqrt{3}$
c. $8, 8\sqrt{3}$
d. $4, \frac{8}{\sqrt{3}}$
e. $8, \frac{8}{\sqrt{3}}$

6. The point (8,15) is on the terminal side of an angle in standard position. Determine the exact value of $\cot \theta$.

7. Find the length of the shorter sides of a $45^{\circ} - 45^{\circ} - 90^{\circ}$ triangle if the length of the hypotenuse is 17.

a.
$$\frac{17\sqrt{3}}{3}$$

b. $\frac{17\sqrt{3}}{2}$
c. $\frac{17}{2}$
d. $\frac{17\sqrt{2}}{4}$
e. $\frac{17\sqrt{2}}{2}$

8. Given the figure below, determine the value of $\sin \theta$.

9. Graph the following parabola.

$$f(x) = -\frac{1}{3}x^2 - 2$$

e. None of the above.

© 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website for classroom use.

10. Determine which of the following points is located in quadrant 4.

a.
$$(6, 4)$$

b. $(-6, -4)$
c. $(4, -6)$
d. $(-6, 4)$
e. $(-4, 6)$
e. $(-4, 6)$
11. Find $\tan \theta$ if $\sec \theta = \frac{\sqrt{530}}{13}$ and $\csc \theta = \frac{\sqrt{530}}{19}$.
a. $\frac{530}{247}$
b. $\frac{13}{19}$
c. $\frac{19}{13}$

_____ 12. Which of the following points lies on the unit circle?

a.
$$\begin{pmatrix} -7\\ 11 \end{pmatrix}, \quad \frac{2\sqrt{10}}{11} \end{pmatrix}$$

b.
$$\begin{pmatrix} 7\\ 15 \end{pmatrix}, \quad \frac{2\sqrt{10}}{15} \end{pmatrix}$$

c.
$$\begin{pmatrix} 9\\ 11 \end{pmatrix}, \quad \frac{2\sqrt{10}}{11} \end{pmatrix}$$

d.
$$\begin{pmatrix} 9\\ 13 \end{pmatrix}, \quad \frac{-2\sqrt{10}}{13} \end{pmatrix}$$

e. None of the above.

13. Given
$$\sin 30^\circ = \frac{1}{2}$$
 and $\cos 30^\circ = \frac{\sqrt{3}}{2}$, determine the following:
 $\csc 30^\circ$

- 14. Which of the following is equivalent to the given expression?
 - a. tan x + cos xb. $1 - \sin x$ c. $\csc x + \cot x$ d. $\tan x \cot x - \sin x$ e. $\cot x \cos x + \tan x$ 15. Evaluate sin 240°. $\begin{array}{c} \text{d.} \quad \frac{-\sqrt{3}}{2} \\ \text{e.} \quad \frac{\sqrt{3}}{2} \end{array}$ a. $\frac{-\sqrt{2}}{2}$ b. $\frac{1}{2}$ c. $\frac{-1}{2}$

16. Indicate the two quadrants θ could terminate in if $\tan \theta = -\frac{21}{31}$.

- a. Quadrants I and III d. Quadrants II and III
- b. Quadrants II and IV

Quadrants III and IV e.

- c. Quadrants I and IV
- ____ 17. Find $\sin \theta$ if $\csc \theta = \frac{-17}{13}$.

 $\cos^2 x$ $1 + \sin x$

- $\frac{4}{13}$ a. $\frac{13}{17}$ b. $\frac{-4}{17}$ d. $\frac{4}{17}$ e. c. $\frac{-13}{17}$
- 18. Multiply; then use fundamental identities to simplify the expression below and determine which of the following is not equivalent.

 $(\tan x + 1)^2$ a. $\tan^2 x + 1$ b. $\sec^2 x + 2\tan x$ c. $\frac{1+2\sin x \cos x}{\cos^2 x}$ d. $\tan^2 x + 2\tan x + 1$ e. $\sec^2 x(1+2\sin x\cos x)$

- 19. If $\sin \theta = \frac{-6}{\sqrt{85}}$ and θ terminates in QIV, find $\cos \theta$. a. $\frac{7}{\sqrt{85}}$ b. $\frac{6}{7}$ c. $\frac{\sqrt{85}}{49}$ d. $\frac{-7}{\sqrt{85}}$ e. $\frac{-6}{7}$
- _____ 20. Find the distance between the two points (-7, -4) and (41, 16).
 - a. 104
 - b. 52
 - c. 49
 - d. 156
 - e. 101

_____ 21. Suppose $\csc \theta = 9$ and θ terminates in QII. Find the remaining trigonometric ratios of θ .

a.	$\sin \theta = \frac{1}{9}$	d.	$\sin\theta = \frac{-4\sqrt{5}}{9}$
	$\cos \theta = \frac{4\sqrt{5}}{9}$		$\cos \theta = \frac{1}{9}$
	$\tan \theta = \frac{1}{4\sqrt{5}}$		$\tan \theta = \frac{-1}{4\sqrt{5}}$
	$\sec \theta = \frac{9}{4\sqrt{5}}$		$\sec \theta = \frac{-9}{4\sqrt{5}}$
	$\cot \theta = 4\sqrt{5}$		$\cot \theta = -4\sqrt{5}$
b.	$\sin \theta = \frac{1}{9}$	e.	$\sin \theta = \frac{1}{9}$
	$\cos \theta = \frac{-4\sqrt{5}}{9}$		$\cos\theta = \frac{-4\sqrt{5}}{9}$
	$\tan \theta = \frac{-1}{4\sqrt{5}}$		$\tan \theta = -4\sqrt{5}$
	$\sec \theta = \frac{-9}{4\sqrt{5}}$		$\sec \theta = \frac{-9}{4\sqrt{5}}$
	$\cot \theta = -4\sqrt{5}$		$\cot \theta = \frac{-1}{4\sqrt{5}}$
c.	$\sin \theta = \frac{-4\sqrt{5}}{9}$		
	$\cos \theta = \frac{1}{9}$		
	$\tan \theta = -4\sqrt{5}$		
	$\sec \theta = \frac{-9}{4\sqrt{5}}$		
	$\cot \theta = \frac{-1}{4\sqrt{5}}$		

- - 23. Use fundamental identities to simplify the expression below and then determine which of the following is *not* equivalent.
 - $\sin \alpha (\csc \alpha \sin \alpha)$
 - a. $1 \sin^{2} \alpha$ b. $\frac{\csc^{2} \alpha - 1}{\csc^{2} \alpha}$ c. $\frac{\csc^{2} \alpha - \sec^{2} \alpha + \tan^{2} \alpha}{\csc^{2} \alpha}$ d. $1 - \cot^{2} \alpha$ e. $\cos^{2} \alpha$
 - 24. Simplify the expression $\sqrt{x^2 + 10}$ as much as possible after substituting $\sqrt{10} \tan \theta$ for x.
 - a. $\sqrt{10} |\csc \theta|$ d. $10 |\csc \theta|$ b. $\sqrt{10} |\sec \theta|$ e. $\sqrt{10} |\sin \theta|$ c. $10 |\sec \theta|$

25. Simplify the expression $\sqrt{66-11x^2}$ as much as possible after substituting $\sqrt{6}\sin\theta$ for x.

- a. $66|\csc \theta|$ d. $\sqrt{66}|\csc \theta|$ b. $66|\cos \theta|$ e. $\sqrt{66}|\cos \theta|$
- c. $\sqrt{66} |\tan \theta|$

Answer Section

1.	243°,-117°
2.	Е
3.	С
4.	Е
5.	С
6.	$\cot\theta = \frac{8}{15}$
7.	E
8.	$\sin\theta = -\frac{4}{5}$
9.	А
10.	С
11.	С
12.	С
13.	csc 30° = 2
14.	В
15.	D
16.	В
17.	С
18.	А
19.	А
20.	В
21.	В
22.	D
23.	D
24.	В
25.	Е

© 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website for classroom use.

Multiple Choice/Short Answer

Identify the choice that best completes the statement or answers the question/Use the space provided to write your answer.

1. Use fundamental identities to simplify the expression below and then determine which of the following is not equivalent.

 $\csc \rho \tan \rho + \sec \rho$

2 tan ρ a.

 $\sin \rho$

- b. $\csc \rho \sin \rho + \sec \rho \cos \rho$ cos p
- c. $\tan \rho \cos \rho + \sin \rho$ sin pcos p

d.
$$2\sin\rho$$

- e. _2 cos p
- 2. Find the complement and supplement of the angle 59°.
 - a. Complement: 121° Supplement: 31°
 - b. Complement: 31° Supplement: 121° c. Complement: 121°
 - Supplement: 301°

- d. Complement: 41° Supplement: 141°
- e. Complement: 149° Supplement: 239°
- 3. Determine which of the following points is located in quadrant 4.
 - a. (-3, -6)b. (-6, 3)c. (3, 6)d. (-3, 6) e. (6, -3)

© 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website for classroom use.

4. Which of the following points lies on the unit circle?

a.
$$\begin{pmatrix} -7\\11, & -4\sqrt{2}\\11 \end{pmatrix}$$

b.
$$\begin{pmatrix} -7\\9, & 4\sqrt{2}\\9 \end{pmatrix}$$

c.
$$\begin{pmatrix} 5\\9, & 4\sqrt{2}\\9 \end{pmatrix}$$

d.
$$\begin{pmatrix} -5\\13, & 4\sqrt{2}\\13 \end{pmatrix}$$

- e. None of the above.
- 5. Let triangle ABC be a right triangle with $C = 90^{\circ}$. If c = 19 and a = 2, find b.
 - a. $\sqrt{357}$ b. $\sqrt{365}$ c. $\sqrt{17}$ d. 17 e. None of the above.
 - 6. Determine two coterminal angles (one positive and one negative) for $\theta = -453^{\circ}$.

_____ 7. Solve for *x* in the following right triangle:

a.	6	d.	3
b.	7	e.	4
c.	5		

8. Find the lengths of the shortest two sides of a $30^{\circ} - 60^{\circ} - 90^{\circ}$ triangle, if the length of the longest side is 20.

a. 10,
$$10\sqrt{3}$$

b. 10, $\frac{10}{\sqrt{3}}$
c. 5, $\frac{10}{\sqrt{3}}$
d. 5, $5\sqrt{3}$
e. 5, $\frac{5}{\sqrt{3}}$

9. Given the figure below, determine the value of $\sin \theta$.

10. Indicate the two quadrants θ could terminate in if $\tan \theta = -\frac{17}{25}$.

- a. Quadrants III and IV d. Quadrants I and IV
- b. Quadrants II and IV

e. Quadrants I and III

- c. Quadrants I and III
- e. Quadrants II an

- _____ 11. Evaluate sin 300°.
 - a. $\frac{-\sqrt{3}}{2}$ b. $\frac{-1}{2}$ c. $\frac{1}{2}$ d. $\frac{\sqrt{3}}{2}$ e. $\frac{-\sqrt{2}}{2}$
 - 12. The point (8,15) is on the terminal side of an angle in standard position. Determine the exact value of $\cot \theta$.

15. Multiply; then use fundamental identities to simplify the expression below and determine which of the following is *not* equivalent.

 $(2 - 2\cos x)(2 + 2\cos x)$ a. $4 - \cos^2 x$ b. $4 - 4\cos^2 x$ c. $4\sin^2 x$ d. $\frac{4}{\csc^2 x}$ e. $\frac{4}{1 + \cot^2 x}$

_____ 16. If $\sin \theta = \frac{-8}{\sqrt{113}}$ and θ terminates in QIII, find $\cos \theta$.

a.
$$\frac{-7}{\sqrt{113}}$$

b. $\frac{-7}{8}$
c. $\frac{7}{8}$
d. $\frac{7}{\sqrt{113}}$
e. $\frac{-\sqrt{113}}{49}$

© 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website for classroom use.

17. Suppose $\csc \theta = 9$ and θ terminates in QII. Find the remaining trigonometric ratios of θ .

a.	$\sin \theta = \frac{1}{9}$	d.	$\sin \theta = \frac{1}{9}$
	$\cos\theta = \frac{-4\sqrt{5}}{9}$		$\cos\theta = \frac{4\sqrt{5}}{9}$
	$\tan \theta = -4\sqrt{5}$		$\tan \theta = \frac{1}{4\sqrt{5}}$
	$\sec \theta = \frac{-9}{4\sqrt{5}}$		$\sec \theta = \frac{9}{4\sqrt{5}}$
	$\cot \theta = \frac{-1}{4\sqrt{5}}$		$4\sqrt{5}$ cot $\theta = 4\sqrt{5}$
b.	$\sin \theta = \frac{-4\sqrt{5}}{9}$	e.	$\sin \theta = \frac{1}{9}$
	$\cos \theta = \frac{1}{9}$		$\cos\theta = \frac{-4\sqrt{5}}{9}$
	$\tan \theta = \frac{-1}{4\sqrt{5}}$		$\tan\theta = \frac{-1}{4\sqrt{5}}$
	$\sec \theta = \frac{-9}{4\sqrt{5}}$		$\sec \theta = \frac{-9}{4\sqrt{5}}$
	$\cot \theta = -4\sqrt{5}$		$\cot \theta = -4\sqrt{5}$
c.	$\sin \theta = \frac{-4\sqrt{5}}{9}$		
	$\cos \theta = \frac{1}{9}$		
	$\tan \theta = -4\sqrt{5}$		
	$\sec \theta = \frac{-9}{4\sqrt{5}}$		
	$\cot \theta = \frac{-1}{4\sqrt{5}}$		

 $\underline{\qquad } 18. \quad \text{If } \csc \theta = -11, \text{ find } \csc^3 \theta.$

a.	-33	d.	-1,331
b.	- 1	e.	1,331
	33		
c.	- 1		
	1, 331		

19. Find the length of the shorter sides of a $45^\circ - 45^\circ - 90^\circ$ triangle if the length of the hypotenuse is 19.

a.
$$\frac{19\sqrt{3}}{2}$$

b. $\frac{19\sqrt{3}}{3}$
c. $\frac{19\sqrt{2}}{2}$
d. $\frac{19}{2}$
e. $\frac{19\sqrt{2}}{4}$

_____ 20. Graph the following parabola.

. None of the above.

21. Given
$$\sin 30^\circ = \frac{1}{2}$$
 and $\cos 30^\circ = \frac{\sqrt{3}}{2}$, determine the following:
tan 30°

_____ 22. Find the distance between the two points (9, 4) and (49, 79).

- a. 170
- b. 85
- c. 82
- d. 255
- e. 167

_____ 23. Simplify the expression $\sqrt{x^2 + 10}$ as much as possible after substituting $\sqrt{10} \tan \theta$ for x.

a. $\sqrt{10} |\sec \theta|$ d. $10 |\csc \theta|$ b. $\sqrt{10} |\sin \theta|$ e. $10 |\sec \theta|$ c. $\sqrt{10} |\csc \theta|$

24. Simplify the expression $\sqrt{30-6x^2}$ as much as possible after substituting $\sqrt{5}\sin\theta$ for x.

- a. $30|\csc \theta|$ d. $30|\cos \theta|$ b. $\sqrt{30}|\csc \theta|$ e. $\sqrt{30}|\cos \theta|$ c. $\sqrt{30}|\tan \theta|$
- _____ 25. Which of the following is equivalent to the given expression?

$$\frac{\sin^2 x}{1 - \cos x}$$

a. $\tan x + \tan x$

- b. $1 + \cos x$
- c. $\csc x + \cot x$
- d. tanxcotx-cosx

 $\sin x$

e. $\cot x \sin x + \tan x$

Answer Section

1. 2. 3. 4.	D B E B
5. 6	267° - 93°
0. 7	E, , , , , , , , , , , , , , , , , , ,
<i>8</i> .	A
9.	$\sin\theta = -\frac{4}{5}$
10.	В
11.	А
12.	$\cot\theta = \frac{8}{15}$
13.	С
14.	D
15.	А
16.	А
17.	E
18.	D
19.	С
20.	В
21.	$\tan 30^\circ = \frac{\sqrt{3}}{3}$
22.	В
23.	А
24.	Е
25.	В

Multiple Choice

Identify the choice that best completes the statement or answers the question.

- 1. Use fundamental identities to simplify the expression below and then determine which of the following is *not* equivalent.
 - $\cot eta \sec eta$
 - a. $\frac{1}{\sin \beta}$ b. $\frac{\sec \beta}{\tan \beta}$ c. $\frac{1}{\cos \beta \tan \beta}$ d. $\sec \beta$ e. $\csc \beta$
- 2. Find the complement and supplement of the angle 55°.
 - a. Complement: 45° Supplement: 145°
 b. Complement: 125°
 - Supplement: 35° c. Complement: 145° Supplement: 235°

- d. Complement: 35°
- Supplement: 125° e. Complement: 125°
- Supplement: 305°
- _ 3. Determine which of the following points is located in quadrant 4.
 - a. (-5, -6) d. (-6, 5)

 b. (6, -5) e. (-5, 6)

 c. (5, 6)
- 4. Which of the following points lies on the unit circle?

e. None of the above.

5. Determine two coterminal angles (one positive and one negative) for $\theta = -526^{\circ}$.

6. Let triangle ABC be a right triangle with $C = 90^{\circ}$. If c = 19 and a = 6, find b.

- a. $\sqrt{13}$ b. $\sqrt{397}$ d. $5\sqrt{13}$ e. None of the above.
- c. 13
- 7. Solve for *x* in the following right triangle:

- a. 8 d. 7 b. 9 e. 10
- c. 6

 $_$ 8. Find the lengths of the shortest two sides of a $30^\circ - 60^\circ - 90^\circ$ triangle, if the length of the longest side is 16.

a.
$$4, \frac{8}{\sqrt{3}}$$

b. $4, 4\sqrt{3}$
c. $8, \frac{8}{\sqrt{3}}$
d. $4, \frac{4}{\sqrt{3}}$
e. $8, 8\sqrt{3}$

9. Indicate the two quadrants θ could terminate in if $\tan \theta = -\frac{13}{23}$.

- a. Quadrants I and IIId. Quadrants I and IVb. Quadrants III and IVe. Quadrants II and IVc. Quadrants II and III10. Evaluate $\sin 240^\circ$.a. $-\frac{1}{2}$ d. $-\sqrt{2}$
 - b. $\frac{1}{2}$ c. $\frac{\sqrt{3}}{2}$ e. $\frac{-\sqrt{3}}{2}$
 - 11. The point (7,24) is on the terminal side of an angle in standard position. Determine the exact value of $\csc \theta$.

- _____ 14. Multiply; then use fundamental identities to simplify the expression below and determine which of the following is *not* equivalent.
 - $(\tan x + 1)^{2}$ a. $\tan^{2}x + 1$ b. $\sec^{2}x + 2\tan x$ c. $\frac{1 + 2\sin x \cos x}{\cos^{2}x}$ d. $\tan^{2}x + 2\tan x + 1$ e. $\sec^{2}x(1 + 2\sin x \cos x)$

15. If
$$\sin \theta = \frac{-6}{\sqrt{157}}$$
 and θ terminates in QIII, find $\cos \theta$.

a.
$$\frac{11}{\sqrt{157}}$$

b. $\frac{-\sqrt{157}}{121}$
c. $\frac{-11}{\sqrt{157}}$
d. $\frac{-6}{11}$
e. $\frac{6}{11}$

16. Suppose $\csc \theta = 7$ and θ terminates in QII. Find the remaining trigonometric ratios of θ .

a.	$\sin \Theta = \frac{1}{7}$	d.	$\sin \theta = \frac{1}{7}$
	$\cos\theta = \frac{-4\sqrt{3}}{7}$		$\cos\theta = \frac{-4\sqrt{3}}{7}$
	$\tan \theta = -4\sqrt{3}$		$\tan \theta = \frac{-1}{4\sqrt{3}}$
	$\sec \theta = \frac{-7}{4\sqrt{3}}$		$\sec \theta = \frac{-7}{4\sqrt{3}}$
	$\cot \theta = \frac{-1}{4\sqrt{3}}$		$\cot \theta = -4\sqrt{3}$
b.	$\sin \theta = \frac{-4\sqrt{3}}{7}$	e.	$\sin \theta = \frac{-4\sqrt{3}}{7}$
	$\cos \theta = \frac{1}{7}$		$\cos \theta = \frac{1}{7}$
	$\tan \theta = -4\sqrt{3}$		$\tan \theta = \frac{-1}{4\sqrt{3}}$
	$\sec \theta = \frac{-7}{4\sqrt{3}}$		$\sec \theta = \frac{-7}{4\sqrt{2}}$
	$\cot \Theta = \frac{-1}{4\sqrt{3}}$		$4\sqrt{3}$ cot $\theta = -4\sqrt{3}$
c.	$\sin \Theta = \frac{1}{7}$		
	$\cos \theta = \frac{4\sqrt{3}}{7}$		
	$\tan \theta = \frac{1}{4\sqrt{3}}$		
	$\sec \theta = \frac{7}{4\sqrt{3}}$		
	$\cot \theta = 4\sqrt{3}$		
Gi	ven $\sin 30^\circ = \frac{1}{2}$ and $\cos 30^\circ = \frac{\sqrt{3}}{2}$, determine	ermi	ne the following:
sec	: 30°		

17.

19. Find the length of the shorter sides of a $45^{\circ} - 45^{\circ} - 90^{\circ}$ triangle if the length of the hypotenuse is 17.

a.
$$\frac{17}{2}$$

b. $\frac{17\sqrt{3}}{3}$
c. $\frac{17\sqrt{2}}{4}$
d. $\frac{17\sqrt{3}}{2}$
e. $\frac{17\sqrt{2}}{2}$

20. Given the figure below, determine the value of $\sin \theta$.

_ 21. Graph the following parabola.

$$f(x) = -\frac{1}{2}x^2 - 2$$

1

-10

e. None of the above.

© 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website for classroom use.

- _____ 22. Find the distance between the two points (4, 2) and (10, 10).
 - a. 20
 - b. 10
 - c. 7
 - d. 30
 - e. 17
 - _ 23. Which of the following is equivalent to the given expression?
 - $\frac{\cos^2 x}{1+\sin x}$
 - a. $\tan x + \cos x$
 - b. $1 \sin x$
 - c. $\csc x + \cot x$
 - d. $\tan x \cot x \sin x$
 - e. $\cot x \cos x + \tan x$

24. Simplify the expression $\sqrt{x^2 + 13}$ as much as possible after substituting $\sqrt{13} \tan \theta$ for x.

a. $\sqrt{13} |\csc \theta|$ d. $13 |\csc \theta|$ b. $\sqrt{13} |\sin \theta|$ e. $13 |\sec \theta|$ c. $\sqrt{13} |\sec \theta|$

25. Simplify the expression $\sqrt{30-6x^2}$ as much as possible after substituting $\sqrt{5}\sin\theta$ for x.

a. $\sqrt{30} |\tan \theta|$ b. $30 |\csc \theta|$ c. $\sqrt{30} |\cos \theta|$

d. $\sqrt{30} |\csc \theta|$ e. $30 |\cos \theta|$

Test Bank for Trigonometry 8th Edition by McKeague IBSN 9781305652224

Full Download:http://downloadlink.org/product/test-bank-for-trigonometry-8th-edition-by-mckeague-ibsn-9781305652224/

McKeague/Turner Trigonometry Chapter 2 Form F

McKeague/Turner Trigonometry Chapter 2 Form F Answer Section

1.	D
2.	D
3.	В
4.	А
5.	194°,-166°
6.	D
7.	D
8.	E
9.	E
10.	E
11.	$\csc \theta = \frac{25}{24}$
12.	А
13.	В
14.	А
15.	С
16.	D
17	$\sec 30^\circ = \frac{2\sqrt{3}}{2\sqrt{3}}$
17.	3
18.	С
19.	E
20.	$\sin\theta = -\frac{4}{5}$
21.	В
22.	В
23.	В
24.	С
25.	С