MULTIPLE CHOICE

1. Graph the function by hand, not by plotting points, but by starting with the graph of one of the standard functions and then applying the appropriate transformations.

$$y = 4 + 2x - x^2$$

c.

b.

d.

ANS: C

PTS: 1

DIF: Medium REF: 1.3.12

MSC: Bimodal

NOT: Section 1.3

2. If f(x) = x + 5 and h(x) = 4x - 10, find a function g such that $g \circ f = h$.

a.
$$g(x) = 4x + 30$$

b.
$$g(x) = 4x$$

c.
$$g(x) = x - 30$$

d.
$$g(x) = 4x - 30$$

e.
$$g(x) = x + 30$$

ANS: D PTS: 1 DIF: Medium REF: 1.3.61b

MSC: Bimodal NOT: Section 1.3

3. Use the table to evaluate the expression $(f \circ g)(6)$.

х	1	2	3	4	5	6
f(x)	3	2	1	0	1	2
g(x)	6	5	2	3	4	6

- a. 5
- b. 2
- c. 3
- d. 4
- e. 6

ANS: B PTS: 1 DIF: Medium REF: 1.3.50f

MSC: Bimodal NOT: Section 1.3

4. What is $\sqrt[10]{x}$, given that $H = f \circ g \circ h$ and $H(x) = \sqrt[10]{\sqrt{x} - 3}$?

- a. h(x)
- b. g(x)
- c. f(x)

ANS: C PTS: 1 DIF: Medium REF: 1.3.47

MSC: Bimodal NOT: Section 1.3

5. The graph of the function f follows. Choose the graph of $y = f\left(\frac{x}{2}\right) + 1$.

a. c.

b.

d.

ANS: A

PTS:

1

DIF:

Medium

REF: 1.3.5b

MSC: Bimodal

NOT: Section 1.3

6. The graph of the function f follows. Choose the graph of y = f(|x|).

b.

d.

ANS: A

PTS: 1

DIF: Medium

REF: 1.3.5c

MSC: Bimodal NOT:

NOT: Section 1.3

- 7. Suppose that the graph of is given f is given. Describe how the graph of the function y = f(x-5) 5 can be obtained from the graph of f.
 - a. Shift the graph 5 units to the left and 5 units down.
 - b. Shift the graph 5 units to the left and 5 units up.
 - c. Shift the graph 5 units to the right and 5 units up.
 - d. Shift the graph 5 units to the right and 5 units down.
 - e. None of these

ANS: D

PTS: 1

DIF: Medium

REF: 1.3.1bc

MSC: Bimodal NOT: Section 1.3

8. Which of the following graphs is the graph of the function?

$$f(x) = \sin|2x|$$

Graph 2

- a. Graph 2
- b. Graph 1
- c. Graph 3

ANS: A PTS: 1 DIF: Medium REF: 1.3.24

MSC: Bimodal NOT: Section 1.3

9. Which of the following is the equation for the function g(x)?

a.
$$g(x) = -f(x) + 6$$

b.
$$g(x) = 6f(x)$$

b.
$$g(x) = 6f(x)$$

c. $g(x) = f(x) - 6$

d.
$$g(x) = \frac{f(x)}{6}$$

e.
$$g(x) = -f(x+6)$$

NUMERIC RESPONSE

1. Express the function in the form of $f \circ g \circ h$.

$$H(x) = 2 - 4^{x^3}$$

ANS:
$$h(x) = x^3$$
, $g(x) = 4^x$, $f(x) = 2 - x$

2. A spherical balloon with radius r inches has volume

$$4\frac{\pi r^3}{3}$$
.

Find a function that represents the amount of air required to inflate the balloon from a radius of r inches to a radius of r+3 inches.

ANS:
$$12\pi(r^2+3r+3)$$

3. Express the function in the form of $f \circ g$.

$$v(t) = \sec(t^4) \tan(t^4)$$

ANS:
$$f(t) = \sec(t)\tan(t)$$

 $g(t) = t^4$

Test Bank for Single Variable Calculus Early Transcendentals 7th Edition by Stewart

Full Download: https://downloadlink.org/p/test-bank-for-single-variable-calculus-early-transcendentals-7th-edition-by-stewart/

MSC: Numerical Response

4. A stone is dropped into a lake, creating a circular ripple that travels outward at a speed of 45 cm/s. Express the radius *r* of this circle as a function of the time *t* (in seconds) and find $A \circ r$, if A is the area of this circle as a function of the radius.

NOT: Section 1.3

ANS:
$$r(t) = 45t$$
, $2025\pi t^2$

PTS: 1 DIF: Medium REF: 1.3.53a MSC: Numerical Response NOT: Section 1.3

SHORT ANSWER

1. Let
$$f(x) = x^2 - 6x + 5$$
 and $g(x) = \sqrt{x+5}$. Find $(g \circ g)(20)$.

ANS:
$$\sqrt{10}$$

PTS: 1 DIF: Easy REF: 1.3.36 MSC: Short Answer

NOT: Section 1.3

2. Find $f \circ g \circ h$ if

$$f(x) = \frac{1}{x}$$
, $g(x) = 2x^2 + 7$, and $h(x) = \cos x$

ANS:
$$\frac{1}{2\cos^2 x + 7}$$

PTS: 1 DIF: Medium REF: 1.3.37 MSC: Short Answer

NOT: Section 1.3