Test Bank for Programmable Logic Controllers 5th Edition by Petruzella IBSN 0073373842

Full Download: http://downloadlink@rappeduct/test03kTesto3Bamake_Kgr-yntrollers-5th-edition-by-petruzella-ibs

1. The decimal system uses the number 9 as its base.

FALSE

Accessibility: Keyboard Navigation Bloom's: Object 1. Factual Bloom's: Verb 1. Remember Chapter: 03 Number Systems and Codes Difficulty: Easy Gradable: automatic Learning Objective: Know the characteristics of the numbering system codes Section: 03.01 Decimal System Subtopic: Number System Characteristics Topic: Number Systems and Codes Units: Imperial

2. All digital computing devices perform operations in binary.

<u>TRUE</u>

Accessibility: Keyboard Navigation Bloom's: Object 1. Factual Bloom's: Verb 1. Remember Chapter: 03 Number Systems and Codes Difficulty: Easy Gradable: automatic Learning Objective: Know the characteristics of the numbering system codes Section: 03.02 Binary System Subtopic: Number System Characteristics Units: Imperial

3. The base of a number system determines the total number of unique symbols used by that system.

TRUE

Accessibility: Keyboard Navigation Bloom's: Object 1. Factual Bloom's: Verb 1. Remember Chapter: 03 Number Systems and Codes Difficulty: Easy Gradable: automatic Learning Objective: Know the characteristics of the numbering system codes Section: 03.01 Decimal System Subtopic: Number System Characteristics Topic: Number Systems and Codes Units: Imperial

Copyright © 2016 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of **Full all chapters instant download please go to Softrayonal Plantation**, Test Bank site: downloadlink.org

4. In any number system, the position of a digit that represents part of the number has a weighted value associated with it.

<u>TRUE</u>

Accessibility: Keyboard Navigation Bloom's: Object 1. Factual Bloom's: Verb 1. Remember Chapter: 03 Number Systems and Codes Difficulty: Easy Gradable: automatic Learning Objective: Know the characteristics of the numbering system codes Section: 03.01 Decimal System Subtopic: Number System Characteristics Topic: Number Systems and Codes Units: Imperial

5. Usually a group of 8 bits is a byte, and a group of one or more bytes is a word.

<u>TRUE</u>

Accessibility: Keyboard Navigation Bloom's: Object 1. Factual Bloom's: Verb 1. Remember Chapter: 03 Number Systems and Codes Difficulty: Easy Gradable: automatic Learning Objective: Know the characteristics of the numbering system codes Section: 03.02 Binary System Subtopic: Number System Characteristics Topic: Number Systems and Codes Units: Imperial

6. To express a number in binary requires fewer digits than in the decimal system.

FALSE

Accessibility: Keyboard Navigation Bloom's: Object 1. Factual Bloom's: Verb 1. Remember Chapter: 03 Number Systems and Codes Difficulty: Easy Gradable: automatic Learning Objective: Know the characteristics of the numbering system codes Section: 03.02 Binary System Subtopic: Number System Characteristics Topic: Number Systems and Codes Units: Imperial 7. The octal number system consists of digits 0, 1, 2, 3, 4, 5, 6, and 7. There are no 8s or 9s.

TRUE

Accessibility: Keyboard Navigation Bloom's: Object 1. Factual Bloom's: Verb 1. Remember Difficulty: Easy Gradable: automatic Learning Objective: Know the characteristics of the numbering system codes Section: 03.04 Octal System Subtopic: Number System Characteristics Topic: Number Systems and Codes Units: Imperial

8.

8. The hexadecimal number system consists of 16 digits including the numbers 0 through 9 and letters A through F.

TRUE

Accessibility: Keyboard Navigation Bloom's: Object 1. Factual Bloom's: Verb 1. Remember Difficulty: Easy Gradable: automatic Learning Objective: Know the characteristics of the numbering system codes Subtopic: Number System Characteristics Topic: Number Systems and Codes Units: Imperial

9. In the Gray code there is a maximum of one bit change between two consecutive numbers.

<u>TRUE</u>

Accessibility: Keyboard Navigation Bloom's: Object 1. Factual Bloom's: Verb 1. Remember Chapter: 03 Number Systems and Codes Difficulty: Medium Gradable: automatic Learning Objective: Know the characteristics of the numbering system codes Section: 03.07 Gray Code Subtopic: Number System Characteristics Topic: Number Systems and Codes Units: Imperial 10. The radix of a number system is the same as the base.

TRUE

Accessibility: Keyboard Navigation Bloom's: Object 1. Factual Bloom's: Verb 1. Remember Chapter: 03 Number Systems and Codes Difficulty: Easy Gradable: automatic Learning Objective: Know the characteristics of the numbering system codes Section: 03.01 Decimal System Subtopic: Number System Characteristics Topic: Number Systems and Codes Units: Imperial

11. Binary number systems use positive and negative symbols to represent the polarity of a number.

FALSE

Accessibility: Keyboard Navigation Bloom's: Object 1. Factual Bloom's: Verb 1. Remember Chapter: 03 Number Systems and Codes Difficulty: Medium Gradable: automatic Learning Objective: Know the characteristics of the numbering system codes Section: 03.03 Negative Numbers Subtopic: Number System Characteristics Topic: Number Systems and Codes Units: Imperial 12. The decimal system has as its base:

A. 2. B. 5. C. 8.

<u>D.</u> 10.

> Accessibility: Keyboard Navigation Bloom's: Object 1. Factual Bloom's: Verb 1. Remember Chapter: 03 Number Systems and Codes Difficulty: Easy Gradable: automatic Learning Objective: Know the characteristics of the numbering system codes Section: 03.01 Decimal System Subtopic: Number System Characteristics Topic: Number Systems and Codes Units: Imperial

13. Which of the following number systems has a base of 16?

<u>A.</u>

Hexadecimal

Β.

Octal

C.

Binary-coded decimal

D.

Gray code

Accessibility: Keyboard Navigation Bloom's: Object 1. Factual Bloom's: Verb 1. Remember Chapter: 03 Number Systems and Codes Difficulty: Easy Gradable: automatic Learning Objective: Know the characteristics of the numbering system codes Section: 03.05 Hexadecimal System Subtopic: Number System Characteristics Topic: Number Systems and Codes Units: Imperial 14. In any number system, the position of a digit that represents part of the number has a "weight" associated with its value. The place weights for binary:

<u>A.</u>

start with 1 and are successive powers of 2.

Β.

increase by adding 2 for each place, starting with 0.

C.

increase by adding 2 for each place, starting with 2.

D.

start with 2 and double for each successive place.

Accessibility: Keyboard Navigation Bloom's: Object 1. Factual Bloom's: Verb 1. Remember Chapter: 03 Number Systems and Codes Difficulty: Easy Gradable: automatic Learning Objective: Know the characteristics of the numbering system codes Section: 03.01 Decimal System Subtopic: Number System Characteristics Topic: Number Systems and Codes Units: Imperial

15. The number 12 is:

A.

12 in any number system.

<u>B.</u>

12 in decimal.

C.

12 in binary.

D.

All of these choices are correct

Accessibility: Keyboard Navigation Bloom's: Object 1. Factual Bloom's: Verb 1. Remember Chapter: 03 Number Systems and Codes Difficulty: Easy Gradable: automatic Learning Objective: Know the characteristics of the numbering system codes Section: 03.01 Decimal System Subtopic: Number System Characteristics Topic: Number Systems and Codes Units: Imperial 16. The decimal number 15 would be written in binary as:

<u>A.</u>

1111.

В.

1000.

C.

4C.

D.

00011001.

Accessibility: Keyboard Navigation Bloom's: Object 3. Procedural Bloom's: Verb 3. Apply Chapter: 03 Number Systems and Codes Difficulty: Medium Gradable: automatic Learning Objective: Convert from one numbering or coding system to another Subtopic: Number Conversions Topic: Number Systems and Codes Units: Imperial

17. The binary number 101 has the decimal equivalent of:

Α.

3.

В.

101.

C.

41.

<u>D.</u> 5.

Accessibility: Keyboard Navigation Bloom's: Object 3. Procedural Bloom's: Verb 3. Apply Chapter: 03 Number Systems and Codes Difficulty: Easy Gradable: automatic Learning Objective: Convert from one numbering or coding system to another Section: 03.02 Binary System Subtopic: Number Conversions Topic: Number Systems and Codes Units: Imperial

18. The number 127 could not be:

Α.

decimal.

В.

hexadecimal.

C.

octal.

<u>D.</u>

binary.

Accessibility: Keyboard Navigation Bloom's: Object 3. Procedural Bloom's: Verb 3. Apply Chapter: 03 Number Systems and Codes Difficulty: Medium Gradable: automatic Learning Objective: Convert from one numbering or coding system to another Section: 03.02 Binary System Subtopic: Number Conversions Topic: Number Systems and Codes Units: Imperial

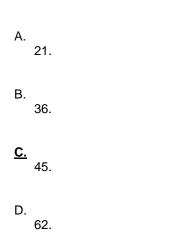
19. The octal number 153 would be written in binary as:

A.

011 101 001.

<u>B.</u>

001 101 011.


C.

011 111 101.

D.

010 100 011.

Accessibility: Keyboard Navigation Bloom's: Object 3. Procedural Bloom's: Verb 3. Apply Chapter: 03 Number Systems and Codes Difficulty: Medium Gradable: automatic Learning Objective: Convert from one numbering or coding system to another Section: 03.04 Octal System Subtopic: Number Conversions Topic: Number Systems and Codes Units: Imperial 20. The binary number 101101 would be written in decimal as:

Accessibility: Keyboard Navigation Bloom's: Object 3. Procedural Bloom's: Verb 3. Apply Chapter: 03 Number Systems and Codes Difficulty: Medium Gradable: automatic Learning Objective: Convert from one numbering or coding system to another Section: 03.02 Binary System Subtopic: Number Conversions Topic: Number Systems and Codes Units: Imperial

21. The decimal number 28 would be written in binary as:

<u>A.</u>

11100.

Β.

00111.

C.

10110.

D.

01011.

Accessibility: Keyboard Navigation Bloom's: Object 3. Procedural Bloom's: Verb 3. Apply Chapter: 03 Number Systems and Codes Difficulty: Medium Gradable: automatic Learning Objective: Convert from one numbering or coding system to another Section: 03.02 Binary System Subtopic: Number Conversions Topic: Number Systems and Codes Units: Imperial 22. The octal number 62 would be written in decimal as:

A. A12.

B. F35.

<u>C.</u> 50.

D. 98.

> Accessibility: Keyboard Navigation Bloom's: Object 3. Procedural Bloom's: Verb 3. Apply Chapter: 03 Number Systems and Codes Difficulty: Medium Gradable: automatic Learning Objective: Convert from one numbering or coding system to another Section: 03.02 Binary System Section: 03.04 Octal System Subtopic: Number Conversions Topic: Number Systems and Codes Units: Imperial

23. The hexadecimal number C4 would be written in decimal as:

Α.

21.

В.

48.

C.

182.

196.

<u>D.</u>

Accessibility: Keyboard Navigation Bloom's: Object 3. Procedural Bloom's: Verb 3. Apply Chapter: 03 Number Systems and Codes Difficulty: Medium Gradable: automatic Learning Objective: Convert from one numbering or coding system to another Section: 03.04 Octal System Subtopic: Number Conversions Topic: Number Systems and Codes Units: Imperial 24. The hexadecimal number 2D9 would be written in binary as:

<u>A.</u>

0010 1101 1001.

В.

1001 1011 0010.

C.

1100 1111 0010.

D.

0010 1011 1001.

Accessibility: Keyboard Navigation Bloom's: Object 3. Procedural Bloom's: Verb 3. Apply Chapter: 03 Number Systems and Codes Difficulty: Medium Gradable: automatic Learning Objective: Convert from one numbering or coding system to another Section: 03.04 Octal System Subtopic: Number Conversions Topic: Number Systems and Codes Units: Imperial

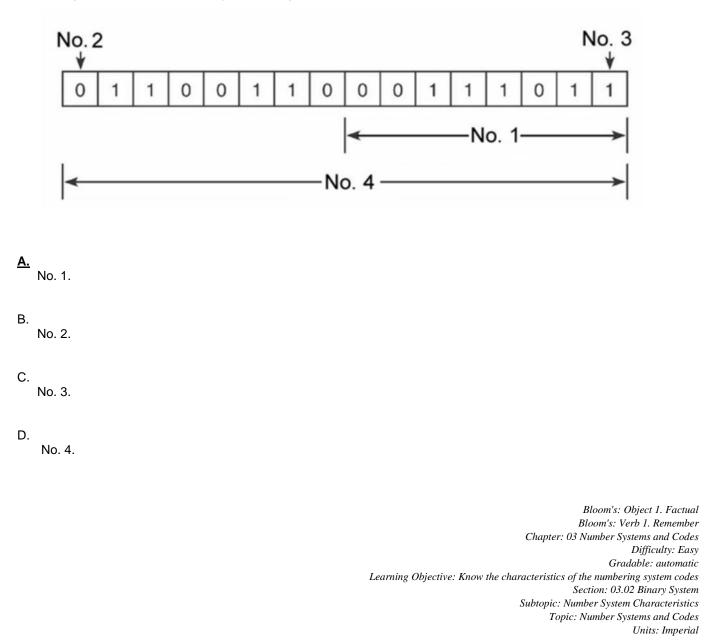
25. The decimal number 213 would be written in BCD as:

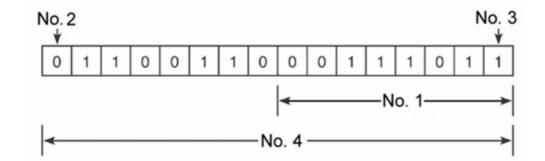
<u>A.</u>

0010 0001 0011.

В.

1101 1000 1100.


C.


0111 1001 0011.

D.

1011 1101 0101.

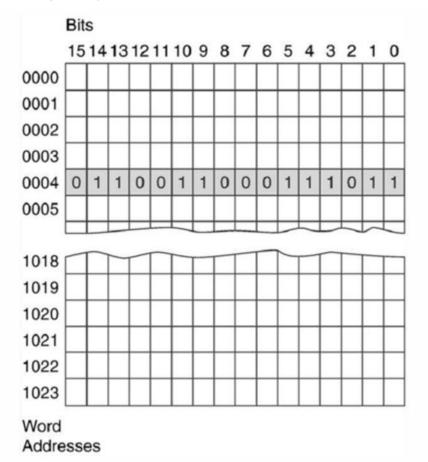
Accessibility: Keyboard Navigation Bloom's: Object 3. Procedural Bloom's: Verb 3. Apply Chapter: 03 Number Systems and Codes Difficulty: Medium Gradable: automatic Learning Objective: Convert from one numbering or coding system to another Section: 03.06 Binary Coded Decimal (BCD) System Subtopic: Number Conversions Topic: Number Systems and Codes Units: Imperial

Α.

No. 1.

<u>B.</u>

No. 2.


C.

No. 3.

D.

No. 4.

Bloom's: Object 1. Factual Bloom's: Verb 1. Remember Chapter: 03 Number Systems and Codes Difficulty: Easy Gradable: automatic Learning Objective: Know the characteristics of the numbering system codes Section: 03.02 Binary System Subtopic: Number System Characteristics Topic: Number Systems and Codes Units: Imperial

Α.

1023 K.

В.

1000 K.

C.

500 K.

<u>D.</u>

1 K.

Bloom's: Object 1. Factual Bloom's: Verb 1. Remember Chapter: 03 Number Systems and Codes Difficulty: Easy Gradable: automatic Learning Objective: Know the characteristics of the numbering system codes Section: 03.02 Binary System Subtopic: Number System Characteristics Topic: Number Systems and Codes Units: Imperial 29. The main advantage of using the Gray code is:

<u>A.</u>

only one digit changes as the number increases.

Β.

it can be easily converted to decimal numbers.

C.

large decimal numbers can be written using fewer digits.

D.

it uses the number 2 as its base.

Accessibility: Keyboard Navigation Bloom's: Object 2. Conceptual Bloom's: Verb 2. Understand Chapter: 03 Number Systems and Codes Difficulty: Easy Gradable: automatic Learning Objective: Know the characteristics of the numbering system codes Section: 03.07 Gray Code Subtopic: Number System Characteristics Topic: Number Systems and Codes Units: Imperial

30. The acronym BCD stands for:

<u>A.</u>

binary-coded decimal.

В.

binary code decoder.

C.

base code decoder.

D.

base-coded decimal.

Accessibility: Keyboard Navigation Bloom's: Object 1. Factual Bloom's: Verb 1. Remember Chapter: 03 Number Systems and Codes Difficulty: Easy Gradable: automatic Learning Objective: Know the characteristics of the numbering system codes Section: 03.06 Binary Coded Decimal (BCD) System Subtopic: Number System Characteristics Topic: Number Systems and Codes Units: Imperial 31. For a base 8 number system, the weight value associated with the third digit would be:

A. 16.

B. 32.

<u>C.</u> 64.

D. 512.

> Accessibility: Keyboard Navigation Bloom's: Object 1. Factual Bloom's: Verb 1. Remember Chapter: 03 Number Systems and Codes Difficulty: Easy Gradable: automatic Learning Objective: Know the characteristics of the numbering system codes Section: 03.04 Octal System Subtopic: Number System Characteristics Topic: Number Systems and Codes Units: Imperial

32. All digital computing devices operate using the binary number system because:

A.

most people are familiar with it.

В.

large decimal numbers can be represented in a shorter form.

<u>C.</u>

digital circuits can be easily distinguished between two voltage levels.

D.

All of these choices are correct

Accessibility: Keyboard Navigation Bloom's: Object 1. Factual Bloom's: Verb 1. Remember Chapter: 03 Number Systems and Codes Difficulty: Easy Gradable: automatic Learning Objective: Know the characteristics of the numbering system codes Section: 03.02 Binary System Subtopic: Number System Characteristics Topic: Number Systems and Codes Units: Imperial 33. If a given memory unit consists of 1250 16-bit words, the memory capacity would be rated:

Α.

1250 bits.

<u>B.</u>

20,000 bits.

C.

3260 bits.

D.

156 bits.

Accessibility: Keyboard Navigation Bloom's: Object 1. Factual Bloom's: Verb 1. Remember Chapter: 03 Number Systems and Codes Difficulty: Easy Gradable: automatic Learning Objective: Know the characteristics of the numbering system codes Section: 03.02 Binary System Subtopic: Number System Characteristics Topic: Number Systems and Codes Units: Imperial

34. In the sign bit position, a 1 indicates a(n):

<u>A.</u>

negative number.

В.

positive number.

C.

octal code.

D.

hexadecimal code.

Accessibility: Keyboard Navigation Bloom's: Object 1. Factual Bloom's: Verb 1. Remember Chapter: 03 Number Systems and Codes Difficulty: Easy Gradable: automatic Learning Objective: Know the characteristics of the numbering system codes Section: 03.03 Negative Numbers Subtopic: Number System Characteristics Topic: Number Systems and Codes Units: Imperial 35. The 2's complement form of a binary number is the binary number that results when:

Α.

all the 1s are changed to 0s.

В.

all the 0s are changed to 1s.

<u>C.</u>

1 is added to 1s complement.

D.

both all the 1s are changed to 0s and all the 0s are changed to 1s.

Accessibility: Keyboard Navigation Bloom's: Object 1. Factual Bloom's: Verb 1. Remember Chapter: 03 Number Systems and Codes Difficulty: Medium Gradable: automatic Learning Objective: Know the characteristics of the numbering system codes Section: 03.03 Negative Numbers Subtopic: Number System Characteristics Topic: Number Systems and Codes Units: Imperial

36. The ASCII code:

A.

is used with absolute encoders.

Β.

is considered to be an error-minimizing code.

<u>C.</u>

includes letters as well as numbers.

D.

All of these choices are correct

Accessibility: Keyboard Navigation Bloom's: Object 1. Factual Bloom's: Verb 1. Remember Chapter: 03 Number Systems and Codes Difficulty: Easy Gradable: automatic Learning Objective: Know the characteristics of the numbering system codes Section: 03.08 ASCII Code Subtopic: Number System Characteristics Topic: Number Systems and Codes Units: Imperial

<u>A.</u>

parity

В.

negative

C.

positive

D.

overflow

Accessibility: Keyboard Navigation Bloom's: Object 1. Factual Bloom's: Verb 1. Remember Chapter: 03 Number Systems and Codes Difficulty: Easy Gradable: automatic Learning Objective: Know the characteristics of the numbering system codes Section: 03.09 Parity Bit Subtopic: Number System Characteristics Topic: Number Systems and Codes Units: Imperial

38. All number systems use position weighting to represent the significance of an individual digit in a group of numbers.

<u>TRUE</u>

Accessibility: Keyboard Navigation Bloom's: Object 1. Factual Bloom's: Verb 1. Remember Chapter: 03 Number Systems and Codes Difficulty: Easy Gradable: automatic Learning Objective: Know the characteristics of the numbering system codes Section: 03.01 Decimal System Subtopic: Number System Characteristics Topic: Number Systems and Codes Units: Imperial 39. The base of a number system is the total number of individual symbols in that system.

TRUE

Accessibility: Keyboard Navigation Bloom's: Object 1. Factual Bloom's: Verb 1. Remember Chapter: 03 Number Systems and Codes Difficulty: Easy Gradable: automatic Learning Objective: Know the characteristics of the numbering system codes Section: 03.01 Decimal System Subtopic: Number System Characteristics Topic: Number Systems and Codes Units: Imperial

40. The binary number system is based on two bytes.

FALSE

Accessibility: Keyboard Navigation Bloom's: Object 1. Factual Bloom's: Verb 1. Remember Chapter: 03 Number Systems and Codes Difficulty: Easy Gradable: automatic Learning Objective: Know the characteristics of the numbering system codes Section: 03.02 Binary System Subtopic: Number System Characteristics Topic: Number Systems and Codes Units: Imperial

41. The digit of a binary number that has the lowest weight is called the Least Significant Bit.

<u>TRUE</u>

Accessibility: Keyboard Navigation Bloom's: Object 1. Factual Bloom's: Verb 1. Remember Chapter: 03 Number Systems and Codes Difficulty: Easy Gradable: automatic Learning Objective: Know the characteristics of the numbering system codes Section: 03.02 Binary System Subtopic: Number System Characteristics Topic: Number Systems and Codes Units: Imperial 42. A negative number in a digital system can be expressed by using the complement of a binary number.

TRUE

Accessibility: Keyboard Navigation Bloom's: Object 1. Factual Bloom's: Verb 1. Remember Chapter: 03 Number Systems and Codes Difficulty: Easy Gradable: automatic Learning Objective: Know the characteristics of the numbering system codes Section: 03.03 Negative Numbers Subtopic: Number System Characteristics Topic: Number Systems and Codes Units: Imperial

43. PLCs use the 1's complement method for performing subtraction.

FALSE

Accessibility: Keyboard Navigation Bloom's: Object 3. Procedural Bloom's: Verb 3. Apply Chapter: 03 Number Systems and Codes Difficulty: Medium Gradable: automatic Learning Objective: Add, subtract, multiply, and divide binary numbers Topic: Number Systems and Codes Units: Imperial

44. Decimal values entered into a digital machine must be converted into binary form.

TRUE

Accessibility: Keyboard Navigation Bloom's: Object 1. Factual Bloom's: Verb 1. Remember Chapter: 03 Number Systems and Codes Difficulty: Easy Gradable: automatic Learning Objective: Know the characteristics of the numbering system codes Section: 03.02 Binary System Subtopic: Number System Characteristics Topic: Number Systems and Codes Units: Imperial

FALSE

Accessibility: Keyboard Navigation Bloom's: Object 1. Factual Bloom's: Verb 1. Remember Chapter: 03 Number Systems and Codes Difficulty: Medium Gradable: automatic Learning Objective: Know the characteristics of the numbering system codes Section: 03.06 Binary Coded Decimal (BCD) System Subtopic: Number System Characteristics Topic: Number Systems and Codes Units: Imperial

46. Even parity is a method of adding a binary digit to a word to make the total number of 1s in the word even.

<u>TRUE</u>

Accessibility: Keyboard Navigation Bloom's: Object 1. Factual Bloom's: Verb 1. Remember Chapter: 03 Number Systems and Codes Difficulty: Medium Gradable: automatic Learning Objective: Know the characteristics of the numbering system codes Section: 03.09 Parity Bit Subtopic: Number System Characteristics Topic: Number Systems and Codes Units: Imperial

47. Decimal floating-point numbers usually take the form of scientific notation.

<u>TRUE</u>

Accessibility: Keyboard Navigation Bloom's: Object 1. Factual Bloom's: Verb 1. Remember Chapter: 03 Number Systems and Codes Difficulty: Medium Gradable: automatic Learning Objective: Add, subtract, multiply, and divide binary numbers Section: 03.11 Floating Point Arithmetic Subtopic: Addition and Subtraction, Multiplication and Division of Binary Numbers Topic: Number Systems and Codes Units: Imperial

Test Bank for Programmable Logic Controllers 5th Edition by Petruzella IBSN 0073373842

Full Download: http://downloadlink.org/product/test-bank-for-programmable-logic-controllers-5th-edition-by-petruzella-ibs

48. Double precision of floating point numbers requires 32-bits.

FALSE

Accessibility: Keyboard Navigation Bloom's: Object 1. Factual Bloom's: Verb 1. Remember Chapter: 03 Number Systems and Codes Difficulty: Medium Gradable: automatic Learning Objective: Add, subtract, multiply, and divide binary numbers Section: 03.11 Floating Point Arithmetic Subtopic: Addition and Subtraction, Multiplication and Division of Binary Numbers Topic: Number Systems and Codes Units: Imperial

Copyright © 2016 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of **Full all chapters instant download please go to Source-Hill Education**. Test Bank site: downloadlink.org