#### Test Bank for Graphical Approach to College Algebra 6th Edition by Hornsby IBSN 9780321909817

Full Download: http://downloadlink.org/product/test-bank-for-graphical-approach-to-college-algebra-6th-edition-by-hornsby-ibsn-MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Determine the intervals of the domain over which the function is continuous.

10 y
10 y
10 x
-10 10 x

A)  $[1, \infty)$ Answer: B B) (-∞, ∞)

C) (-∞, 1]

 $D) [0, \infty)$ 

2)



A) (0, ∞) Answer: B

B)  $(-\infty, \infty)$ 

C) (-∞, 0]

 $D)[0,\infty)$ 

3)



A)  $(-\infty, \infty)$ Answer: A B)  $(-\infty, 0)$ ;  $(0, \infty)$ 

C)  $(-\infty, 0)$ 

D)  $(0, \infty)$ 



A) (-∞, ∞)

Answer: B

B) (-∞, 2]

C)  $(-\infty, 2)$ ;  $(2, \infty)$  D)  $(2, \infty)$ 

5)



A)  $(-\infty, 3)$ ;  $(3, \infty)$ 

Answer: A

B) (-∞, ∞)

C) (0, ∞)

D) (-∞, -3); (-3, ∞)

6)



Answer: C

C)  $(-\infty, 3)$ ;  $(3, \infty)$  D)  $(-\infty, 6)$ ;  $(6, \infty)$ 



A)  $[0, \infty)$ Answer: A B) [0, 2)

C) [-2, ∞)

D) [2, ∞)

8)



A)  $(1, \infty)$ Answer: D B) (0, 1)

C) (0, ∞)

D) (-∞, ∞)

Determine the intervals on which the function is increasing, decreasing, and constant.

9



A) Increasing on  $(-\infty, -1)$ ; Decreasing on  $(-1, \infty)$ 

C) Increasing on  $(-\infty, 1)$ ; Decreasing on  $(1, \infty)$ 

B) Increasing on  $(-1, \infty)$ ; Decreasing on  $(-\infty, -1)$ 

D) Increasing on  $(1, \infty)$ ; Decreasing on  $(-\infty, 1)$ 

Answer: B



- A) Increasing on  $(-\infty, 0)$ ; Decreasing on  $(0, \infty)$
- C) Increasing on  $(-\infty, 0)$ ; Decreasing on  $(-\infty, 0)$

Answer: B

B) Increasing on  $(0, \infty)$ ; Decreasing on  $(-\infty, 0)$ 

D) Increasing on  $(\infty, 0)$ ; Decreasing on  $(0, -\infty)$ 

11)



- A) Increasing on  $(-\infty, 0)$ ; Decreasing on  $(-\infty, 0)$
- C) Increasing on  $(-\infty, 0)$ ; Decreasing on  $(0, \infty)$

Answer: C

- B) Increasing on  $(\infty, 0)$ ; Decreasing on  $(0, -\infty)$
- D) Increasing on  $(0, \infty)$ ; Decreasing on  $(-\infty, 0)$

12)



- A) Increasing on  $(-\infty, 4)$ ; Decreasing on  $(4, \infty)$
- C) Increasing on  $(4, \infty)$ ; Decreasing on  $(-\infty, 4)$

Answer: A

- B) Increasing on  $(-\infty, 4)$ ; Decreasing on  $(-\infty, 4)$
- D) Increasing on  $(4, \infty)$ ; Decreasing on  $(4, \infty)$



- A) Decreasing on (-∞, ∞)
- C) Increasing on  $(0, \infty)$ ; Decreasing on  $(-\infty, 0)$
- B) Increasing on  $(-\infty, 0)$ ; Decreasing on  $(0, \infty)$
- D) Increasing on  $(-\infty, \infty)$

14)

Answer: D



- A) Increasing on  $(-\infty, 4)$ ; Decreasing on  $(-4, \infty)$ ; Constant on  $(4, \infty)$
- B) Increasing on  $(4, \infty)$ ; Decreasing on  $(-4, \infty)$ ; Constant on (-4, 4)
- C) Increasing on  $(-\infty, 4)$ ; Decreasing on  $(-\infty, -4)$ ; Constant on  $(4, \infty)$
- D) Increasing on  $(4, \infty)$ ; Decreasing on  $(-\infty, -4)$ ; Constant on (-4, 4)

Answer: D



- A) Increasing on (-2, 0) and (3, 4); Decreasing on (-5, -2) and (1, 3)
- B) Increasing on (1, 3); Decreasing on (-2, 0) and (3, 5); Constant on (2, 5)
- C) Increasing on (-1, 0) and (3, 5); Decreasing on (0, 3); Constant on (-5, -3)
- D) Increasing on (-2, 0) and (3, 5); Decreasing on (1, 3); Constant on (-5, -2)

Answer: D

16)



- A) Increasing on (-3, 1); Decreasing on (-5, -3) and (0, 5); Constant on (1, 2)
- B) Increasing on (-3, 0); Decreasing on (-5, -3) and (2, 5); Constant on (0, 2)
- C) Increasing on (-3, -1); Decreasing on (-5, -2) and (2, 4); Constant on (-1, 2)
- D) Increasing on (-5, -3) and (2, 5); Decreasing on (-3, 0); Constant on (0, 2)

Answer: B

Find the domain and the range for the function.

17)



A) D: 
$$(-\infty, \infty)$$
, R:  $(-\infty, \infty)$ 

C) D: 
$$\left[\frac{3}{2}, \infty\right)$$
, R:  $\left[0, \infty\right)$ 

Answer: A

B) D: 
$$\left[\frac{3}{2}, \infty\right]$$
, R:  $(-\infty, 0]$ 

B) D: 
$$\left[\frac{3}{2}, \infty\right]$$
, R:  $(-\infty, 0]$   
D) D:  $[0, \infty)$ , R:  $\left[-\frac{9}{5}, \infty\right]$ 

18)



A) D:  $(-\infty, 0]$ , R:  $(-\infty, 0]$ 

C) D:  $(0, \infty)$ , R:  $(0, \infty)$ 

Answer: D

D) D: 
$$(-\infty, \infty)$$
, R:  $(-\infty, \infty)$ 



A) D:  $[0, \infty)$ , R:  $(-\infty, 0]$ 

B) D:  $(0, \infty)$ , R:  $(-\infty, 0)$  C) D:  $[4, \infty)$ , R:  $[0, \infty)$  D) D:  $(4, \infty)$ , R:  $[0, \infty)$ 

Answer: C

20)



A) D:  $(-\infty, 0)$ , R:  $(-\infty, 0)$ 

C) D:  $(-\infty, \infty)$ , R:  $[4, \infty)$ 

B) D:  $(-\infty, \infty)$ , R:  $(-\infty, \infty)$ 

D) D:  $(0, \infty)$ , R:  $(-\infty, 0]$ 

Answer: C

21)



B) D:  $[0, \infty)$ , R:  $(-\infty, 1]$  C) D:  $(-\infty, 1]$ , R:  $[0, \infty)$  D) D:  $(-\infty, 1]$ , R:  $[1, \infty)$ 

Answer: C



A) D: 
$$(-\infty, -2) \cup (-2, \infty)$$
, R:  $(-\infty, \infty)$ 

C) D:  $(-\infty, \infty)$ , R:  $(-\infty, \infty)$ 

Answer: D

D) D:  $(-\infty, 2) \cup (2, \infty)$ , R:  $(-\infty, 1) \cup (1, \infty)$ 

23)



A) D: 
$$(-\infty, -3) \cup (-3, \infty)$$
, R:  $(-\infty, -6) \cup (-6, \infty)$ 

C) D:  $(-\infty, 6) \cup (6, \infty)$ , R:  $(-\infty, 3) \cup (3, \infty)$ 

Answer: D

B) D: 
$$(-\infty, \infty)$$
, R:  $(-\infty, \infty)$ 

D) D:  $(-\infty, 3) \cup (3, \infty)$ , R:  $(-\infty, 6) \cup (6, \infty)$ 

24)



A) D: 
$$[0, \infty)$$
, R:  $[0, \infty)$ 

C) D: 
$$[0, \infty)$$
, R:  $[3, \infty)$ 

Answer: C

B) D: 
$$[3, \infty)$$
, R:  $[0, \infty)$ 

D) D: 
$$[-3, \infty)$$
, R:  $(-\infty, 0]$ 



- A) D:  $(-\infty, \infty)$ , R:  $(-\infty, \infty)$
- C) D:  $(0, \infty)$ , R:  $[0, \infty)$

- B) D:  $(4, \infty)$ , R:  $[0, \infty)$
- D) D:  $(5, \infty)$ , R:  $(-\infty, 0]$

Answer: A

Determine if the function is increasing or decreasing over the interval indicated.

26) 
$$f(x) = 7x - 5; (-\infty, \infty)$$

A) Increasing

B) Decreasing

Answer: A

27) 
$$f(x) = \frac{1}{4}x^2 - \frac{1}{2}x$$
; (1,  $\infty$ )

A) Increasing

B) Decreasing

Answer: A

28) 
$$f(x) = x^2 - 2x + 1$$
;  $(1, \infty)$ 

A) Increasing

B) Decreasing

Answer: A

29) 
$$f(x) = (x^2 - 9)^2$$
; (3,  $\infty$ )

A) Increasing

B) Decreasing

Answer: A

30) 
$$f(x) = \frac{1}{x^2 + 1}$$
;  $(-\infty, 0)$ 

A) Increasing

B) Decreasing

Answer: A

31) 
$$f(x) = \sqrt{4 - x}$$
;  $(-\infty, 4)$ 

A) Increasing

B) Decreasing

Answer: B

32) 
$$f(x) = |x - 8|$$
;  $(-\infty, 8)$ 

A) Increasing

B) Decreasing

Answer: B

33) 
$$f(x) = \frac{1}{x^2} + 7$$
;  $(0, \infty)$ 

A) Increasing

B) Decreasing

- Answer: B
- 34)  $f(x) = -\sqrt{x + 3}$ ; (-3, ∞) A) Increasing

B) Decreasing

Answer: B

Determine if the graph is symmetric with respect to the x-axis, y-axis, or origin.

35)



A) Origin

B) y-axis

- C) y-axis, origin
- D) x-axis, origin

Answer: B

36)



A) x-axis

- B) x-axis, origin
- C) y-axis, origin
- D) y-axis

Answer: D



- A) x-axis
- C) x-axis, y-axis, origin

Answer: C

B) Origin

D) x-axis, origin

38)



A) Origin Answer: A B) x-axis, origin

C) x-axis

D) y-axis

39)



A) y-axis Answer: B B) Origin

C) x-axis

D) No symmetry

Based on the ordered pairs seen in the pair of tables, make a conjecture as to whether the function defined in  $Y_1$  is even, odd, or neither even nor odd.

40)

| Х      | Y <sub>1</sub>    |   |
|--------|-------------------|---|
| 0      | 0                 |   |
| 1      | -3                |   |
| 2      | -3<br>-6<br>-9    |   |
| 3      | <b>-</b> 9        |   |
| 4      | -12               |   |
| 5      | -12<br>-15<br>-18 |   |
| 5<br>6 | -18               |   |
| X = 0  | •                 | • |

| X                                | Y <sub>1</sub> |  |
|----------------------------------|----------------|--|
| -6                               | 18             |  |
| <b>-</b> 5                       | 15             |  |
| -4                               | 12             |  |
| -3                               | 9              |  |
| -6<br>-5<br>-4<br>-3<br>-2<br>-1 | 6              |  |
| -1                               | 3              |  |
| 0                                | 0              |  |
| X = -6                           | •              |  |

A) Neither even nor odd

Answer: B

B) Odd

C) Even

41)

| X      | Y <sub>1</sub> |  |
|--------|----------------|--|
| 0      | 0              |  |
| 1      | 1              |  |
| 2      | 16             |  |
| 2 3    | 81             |  |
| 4      | 256            |  |
| 5<br>6 | 625            |  |
| 6      | 1296           |  |
| X = 0  |                |  |

| X                                | Y <sub>1</sub> |  |
|----------------------------------|----------------|--|
| -6                               | 1296           |  |
| <b>-</b> 5                       | 625            |  |
| -6<br>-5<br>-4<br>-3<br>-2<br>-1 | 256            |  |
| -3                               | 81             |  |
| -2                               | 16             |  |
| -1                               | 1              |  |
| 0                                | 0              |  |
| X = -6                           | •              |  |

A) Odd

Answer: B

B) Even

C) Neither even nor odd

42)

| Х      | Y <sub>1</sub> |  |
|--------|----------------|--|
| 0      | 0              |  |
| 1      | -1             |  |
| 2      | 12             |  |
| 3      | 75             |  |
| 4      | 248            |  |
| 5<br>6 | 615            |  |
| 6      | 1284           |  |
| X = 0  |                |  |

| X                                | Y <sub>1</sub> |  |
|----------------------------------|----------------|--|
| -6                               | 1308           |  |
| <b>-</b> 5                       | 635            |  |
| -4                               | 264            |  |
| -3                               | 87             |  |
| -6<br>-5<br>-4<br>-3<br>-2<br>-1 | 20             |  |
| -1                               | 3              |  |
| 0                                | 0              |  |
| X = -6                           |                |  |

A) Even

Answer: C

B) Odd

C) Neither even nor odd

| X      | Y <sub>1</sub> |  |
|--------|----------------|--|
| 0      | 0              |  |
| 1      | 1              |  |
| 2      | 4              |  |
| 2 3    | 9              |  |
| 4      | 16             |  |
| 5<br>6 | 25<br>36       |  |
| 6      | 36             |  |
| X = 0  |                |  |

| Х                                | Y <sub>1</sub> |  |
|----------------------------------|----------------|--|
| -6                               | 36             |  |
| <b>-</b> 5                       | 25             |  |
| -4                               | 16             |  |
| -3                               | 9              |  |
| -6<br>-5<br>-4<br>-3<br>-2<br>-1 | 4              |  |
| -1                               | 1              |  |
| 0                                | 0              |  |
| X = -6                           |                |  |

A) Neither even nor odd

B) Odd

C) Even

Answer: C

44)

| X      | Y <sub>1</sub> |  |
|--------|----------------|--|
| 0      | -3<br>-2       |  |
| 1      | -2             |  |
| 2      | 1              |  |
| 3      | 6              |  |
| 4      | 13             |  |
| 5<br>6 | 22             |  |
| 6      | 33             |  |
| X = 0  |                |  |

Y<sub>1</sub> Χ 33 -6 -5 22 13 -4 -3 6 -2 1 -1 -2 -3 0 X = -6

A) Odd

B) Even

C) Neither even nor odd

Answer: B

45)

| X           | Y <sub>1</sub> |   |
|-------------|----------------|---|
| 0           | -4             |   |
| 1           | -4<br>-3       |   |
| 2           | 4              |   |
| 2 3         | 23<br>60       |   |
| 4           | 60             |   |
| 4<br>5<br>6 | 121            |   |
| 6           | 212            |   |
| X = 0       |                | ' |

| X                                | Y <sub>1</sub> |  |
|----------------------------------|----------------|--|
| -6                               | -220           |  |
| <b>-</b> 5                       | -129           |  |
| -4                               | -68            |  |
| -3                               | -31            |  |
| -6<br>-5<br>-4<br>-3<br>-2<br>-1 | -12            |  |
| -1                               | -5<br>-4       |  |
| 0                                | -4             |  |
| X = -6                           |                |  |

A) Odd

B) Neither even nor odd

C) Even

Answer: B

| Х      | Y <sub>1</sub> |   |
|--------|----------------|---|
| 0      | 2              |   |
| 1      | 2              |   |
| 2<br>3 | 4              |   |
| 3      | 8              |   |
| 4      | 14             |   |
| 5<br>6 | 22             |   |
| 6      | 32             |   |
| X = 0  | •              | • |

| X                                | Y <sub>1</sub> |  |
|----------------------------------|----------------|--|
| -6                               | 44             |  |
| <b>-</b> 5                       | 32             |  |
| -4                               | 22             |  |
| -6<br>-5<br>-4<br>-3<br>-2<br>-1 | 14             |  |
| -2                               | 8              |  |
| -1                               | 4              |  |
| 0                                | 2              |  |
| X = -6                           |                |  |

A) Odd

Answer: C

B) Even

C) Neither even nor odd

47)

| X      | Y <sub>1</sub> |  |
|--------|----------------|--|
| 0      | 0              |  |
| 1      | 4              |  |
| 2      | 8              |  |
| 3      | 12             |  |
| 4      | 16             |  |
| 5      | 20             |  |
| 5<br>6 | 24             |  |
| X = 0  |                |  |

| X                                | Y <sub>1</sub> |  |
|----------------------------------|----------------|--|
| -6                               | -24            |  |
| <b>-</b> 5                       | -20            |  |
| -4                               | -16            |  |
| -3                               | -12            |  |
| -6<br>-5<br>-4<br>-3<br>-2<br>-1 | -8             |  |
| -1                               | -4             |  |
| 0                                | 0              |  |
| X = -6                           |                |  |

A) Neither even nor odd

Answer: B

B) Odd

C) Even

48)

| X     | Y <sub>1</sub>    |  |
|-------|-------------------|--|
| 0     | 0                 |  |
| 1     | -2                |  |
| 2 3   | -8                |  |
| 3     | -2<br>-8<br>-18   |  |
| 4     | -32               |  |
| 5     | -32<br>-50<br>-72 |  |
| 6     | -72               |  |
| X = 0 |                   |  |

| X                                | Y <sub>1</sub>    |  |
|----------------------------------|-------------------|--|
| -6                               | -72               |  |
| <b>-</b> 5                       | -50               |  |
| -4                               | -50<br>-32<br>-18 |  |
| -3                               | -18               |  |
| -6<br>-5<br>-4<br>-3<br>-2<br>-1 | -8                |  |
| -1                               | -2                |  |
| 0                                | 0                 |  |
| X = -6                           |                   |  |

A) Odd

Answer: B

B) Even

C) Neither even nor odd

| X      | Y <sub>1</sub> |          |
|--------|----------------|----------|
| 0      | 0              |          |
| 1      | 2              |          |
| 2      | 6              |          |
| 3      | 12             |          |
| 4      | 20             |          |
| 5      | 30             |          |
| 5<br>6 | 40             |          |
| X = 0  |                | <b>'</b> |

| X                                | Y <sub>1</sub> |   |
|----------------------------------|----------------|---|
| -6                               | 30             |   |
| <b>-</b> 5                       | 20             |   |
| -4                               | 12             |   |
| -6<br>-5<br>-4<br>-3<br>-2<br>-1 | 6              |   |
| -2                               | 2              |   |
| -1                               | 0              |   |
| 0                                | 0              |   |
| X = -6                           | •              | • |

A) Odd

B) Even

C) Neither even nor odd

Answer: C

#### Determine whether the function is even, odd, or neither.

50)  $f(x) = 5x^2 - 2$ A) Even

B) Odd

C) Neither

Answer: A

51) f(x) = (x + 5)(x + 2)

A) Even

B) Odd

C) Neither

Answer: C

52)  $f(x) = -6x^3 + 6x$ 

A) Even

B) Odd

C) Neither

Answer: B

53)  $f(x) = 3x^5 + 3x^3$ 

A) Even

B) Odd

C) Neither

Answer: B

54)  $f(x) = 0.94x^2 + |x| + 6$ 

A) Even

B) Odd

C) Neither

Answer: A 55)  $f(x) = 8x^4 - 2x + 9$ 

A) Even

B) Odd

C) Neither

Answer: C

56)  $f(x) = |x^2 + x|$ 

A) Even

B) Odd

C) Neither

Answer: C

57)  $f(x) = x^3 - \frac{1}{x}$ 

A) Even

B) Odd

C) Neither

Answer: B

Determine whether the graph of the given function is symmetric with respect to the y-axis, symmetric with respect to the origin, or neither.

58) 
$$f(x) = -4x^2 + 1$$

A) y-axis

B) Origin

C) Neither

Answer: A

#### 59) f(x) = |2x| + 4

A) y-axis

B) Origin

C) Neither

Answer: A

60) 
$$f(x) = 5x^3$$

A) y-axis

B) Origin

C) Neither

Answer: B

61) 
$$f(x) = 2x^2 + 4$$

A) y-axis

B) Origin

C) Neither

Answer: A

62) 
$$f(x) = -6x^3 + 2x$$

A) y-axis

B) Origin

C) Neither

Answer: B

63) 
$$f(x) = -5x^5 - 2x^3$$

A) y-axis

B) Origin

C) Neither

Answer: B

64) 
$$f(x) = -0.03x^2 + |x| + 3$$

A) y-axis

B) Origin

C) Neither

Answer: A

## 65) $f(x) = 9x^4 + 6x + 4$

A) y-axis

B) Origin

C) Neither

Answer: C

# 66) $f(x) = x + \frac{1}{x^6}$

A) y-axis

B) Origin

C) Neither

Answer: C

#### Provide an appropriate response.

67) True or False: The function  $y = \frac{x^2 - 7^2}{x - 7}$  is not continuous at x = 7.

A) True

B) False

Answer: A

- 68) Sketch the graph of  $f(x) = -x^2$ . At which of these points is the function increasing?
  - A) 4

B) 0

C) -2

D) 2

Answer: C

- 69) True or False: A continuous function may be drawn without lifting the pencil from the paper.
  - A) True

B) False

Answer: A

70) What symmetry does the graph of y = f(x) exhibit?



B) x-axis

- C) y-axis
- D) No symmetry

Answer: C

71) What symmetry does the graph of y = f(x) exhibit?



A) x-axis Answer: C

B) y-axis

C) Origin

D) No symmetry

72) Complete the table if f is an even function.

Answer: A

#### SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

- 73) Complete the right half of the graph of y = f(x) for each of the following conditions:
  - (i) f is odd.



(ii) f is even.



Answer: (i) f is odd.



(ii) f is even.



MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Write an equation that results in the indicated translation.

74) The squaring function, shifted 8 units downward

A) 
$$y = \frac{x^2}{8}$$

B) 
$$y = 8x^2$$

C) 
$$y = x^2 + 8$$

D) 
$$y = x^2 - 8$$

Answer: D

75) The absolute value function, shifted 7 units to the right

A) 
$$y = |x| - 7$$

B) 
$$y = |x - 7|$$

C) 
$$y = |x| + 7$$

D) 
$$y = |x + 7|$$

Answer: B

76) The absolute value function, shifted 7 units upward

A) 
$$y = |x - 7|$$

B) 
$$y = |x| - 7$$

C) 
$$y = |x| + 7$$

D) 
$$y = |x + 7|$$

Answer: C

77) The square root function, shifted 9 units to the right

A) 
$$y = \sqrt{x} + 9$$

B) 
$$y = \sqrt{x + 9}$$

C) 
$$y = \sqrt{x} - 9$$

D) 
$$y = \sqrt{x - 9}$$

Answer: D

78) The square root function, shifted 7 units to the left

A) 
$$y = \sqrt{x+7}$$

B) 
$$y = \sqrt{x - 7}$$

C) 
$$y = \sqrt{x} - 7$$

D) 
$$y = \sqrt{x} + 7$$

Answer: A

Answer: D

79) The square root function, shifted 6 units upward

A) 
$$y = \sqrt{x} - 6$$

B) 
$$y = \sqrt{x - 6}$$

C) 
$$y = \sqrt{x + 6}$$

D) 
$$y = \sqrt{x} + 6$$

80) The square root function, shifted 7 units downward

A) 
$$y = \sqrt{x-7}$$

B) 
$$y = \sqrt{x} - 7$$

C) 
$$y = \sqrt{x} + 7$$

D) 
$$y = \sqrt{x+7}$$

Answer: B

Use translations of one of the basic functions to sketch a graph of y = f(x) by hand.

81) 
$$y = x^2 - 4$$





C)



Answer: D













C)



Answer: D

B)







83) 
$$y = x^3 - 4$$



A)



C)



Answer: A









84) 
$$y = (x + 3)^3$$







#### Answer: A















Answer: A













C)



Answer: C









87) 
$$y = (x - 4)^2 - 2$$





C)



Answer: C







The function  $Y_2$  is defined as  $Y_1 + k$  for some real number k. Based upon the given information about  $Y_1$  and  $Y_2$ , find k.

88)

| X      | Y <sub>1</sub> | Y <sub>2</sub> |
|--------|----------------|----------------|
| 0      | -1             | 3              |
| 1      | 0              | 4              |
| 2      | 3              | 7              |
| 2 3    | 8              | 12             |
| 4      | 15             | 19             |
| 5<br>6 | 24             | 28             |
| 6      | 35             | 39             |
| X = 0  | •              | •              |

A) 4

B) 5

C) 1

D) 2

Answer: A

89)

| Х     | Y <sub>1</sub> | Y <sub>2</sub> |
|-------|----------------|----------------|
| 0     | -3             | -8             |
| 1     | -2             | -7             |
| 2     | 5              | 0              |
| 3     | 24             | 19             |
| 4     | 61             | 56             |
| 5     | 122            | 117            |
| 6     | 213            | 208            |
| X = 0 |                |                |

A) 4

B) -4

C) -5

D) 5

Answer: C

90)

| Х      | Y <sub>1</sub> | Y <sub>2</sub> |
|--------|----------------|----------------|
| 0      | -2             | 8              |
| 1      | -1             | 9              |
| 2      | 6              | 16             |
| 3      | 25             | 35             |
| 4      | 62             | 72             |
| 5<br>6 | 123            | 133            |
| 6      | 214            | 224            |
| X = 0  |                |                |

A) -6

B) -10

C) 6

D) 10

Answer: D

| X     | Y <sub>1</sub> | Y <sub>2</sub> |
|-------|----------------|----------------|
| 0     | -3             | <b>-</b> 5     |
| 1     | -2             | -4             |
| 2     | 1              | -1             |
| 3     | 6              | 4              |
| 4     | 13             | 11             |
| 5     | 22             | 20             |
| 6     | 33             | 31             |
| X = 0 |                |                |

A) -2

B) -1

C) 1

D) 2

Answer: A

92)

| X     | Y <sub>1</sub> | Y <sub>2</sub> |
|-------|----------------|----------------|
| 0     | -3<br>-2       | -18            |
| 1     | -2             | -17            |
| 2     | 13             | -2             |
| 3     | 78             | 63             |
| 4     | 253            | 238            |
| 5     | 622            | 607            |
| 6     | 1293           | 1278           |
| X = 0 |                |                |

A) -25

B) 28

C) 12

D) -15

Answer: D

93)



A) 4

B) -2

10

C) 5

D) -3

Answer: D





Answer: D





A) 7 B) 9

Answer: D 96)

10





A) -5 B) 4 Answer: A

C) 3 D) -4

D) -5

D) -8

10 -10 10

ľγ=3

-10

X=10

97)



C) -5 A) -4 B) 5 D) 4 Determine the domain and range of the function from the graph.

98)



A) 
$$(-\infty, \infty)$$
;  $[-2, \infty)$ 

C) 
$$(-\infty, 0) \cup (0, \infty)$$
;  $(-\infty, 0) \cup (0, \infty)$ 

Answer: A

B) 
$$(0, \infty)$$
;  $[3, \infty)$ 

D) 
$$(-\infty, 0)$$
;  $(-\infty, 0)$ 

99)



A) 
$$(-\infty, 4]$$
;  $[0, \infty)$ 

Answer: A

B) 
$$(-\infty, 4) \cup (4, \infty)$$
;  $(-\infty, 0) \cup (0, \infty)$   
D)  $(\sqrt{4}, \infty)$ ;  $(-\infty, 0]$ 

100)



A)  $[1, \infty)$ ;  $[0, \infty)$ 

B) [0, ∞); [0, ∞)

C)  $[-1, \infty)$ ;  $(-\infty, 0]$  D)  $[0, \infty)$ ;  $[1, \infty)$ 

Answer: D



A)  $(-\infty, \infty)$ ;  $[-4, \infty)$ 

Answer: A

B)  $(-\infty, \infty)$ ;  $(-\infty, \infty)$  C)  $(-\infty, \infty)$ ;  $[0, \infty)$  D)  $[-4, \infty)$ ;  $(-\infty, \infty)$ 

102)



A)  $(-\infty, \infty)$ ;  $[4, \infty)$ 

Answer: B

B)  $(-\infty, \infty)$ ;  $(-\infty, \infty)$  C)  $[4, \infty)$ ;  $(-\infty, \infty)$  D)  $[0, \infty)$ ;  $[0, \infty)$ 

Use translations of one of the basic functions defined by  $y = x^2$ ,  $y = x^3$ ,  $y = \sqrt{x}$ , or y = |x| to sketch a graph of y = f(x) by hand. Do not use a calculator.

103) 
$$y = x^2 - 5$$







# C)



## Answer: B

## 104) y = |x - 2|



# B)









# C)



## Answer: B

105) 
$$y = (x + 5)^3$$



# B)









# C)



## Answer: B

# 106) $y = x^3 + 4$



# B)







C)



Answer: D

107) 
$$y = \sqrt{x + 3}$$



B)









# B)



C)



D)



Answer: B

108) 
$$y = -2 + |x|$$









#### Answer: D

109) 
$$y = (x - 2)^2 - 6$$



# B)











#### Answer: A

110) 
$$y = (x + 2)^3 - 6$$



# B)











#### Answer: A

# 111) $y = (x - 6)^2 - 1$



# B)











#### Answer: B

#### 112) y = |x - 3| + 2



# B)











#### Answer: A

# 113) $y = \sqrt{x-7} + 4$



# B)







B)



C)



D)



Answer: A

The graph is a translation of one of the basic functions defined by  $y = x^2$ ,  $y = x^3$ ,  $y = \sqrt{x}$ , or y = |x|. Find the equation that defines the function.

114)



A)  $y = x^2 - 2$ 

Answer: A

115)



A) 
$$y = (x - 2)^2$$

Answer: A

B) 
$$y = x^2 - 2$$

D) 
$$y = (x + 2)^2$$

116)



A) 
$$y = |x + 1|$$
 Answer: C

B) 
$$y = |x - 1| + 3$$
 C)  $y = |x - 1|$  D)  $y = |x| - 1$ 

C) 
$$y = |x - 1|$$

D) 
$$y = |x| - 1$$

117)



A) 
$$y = (x + 2)^3$$
  
Answer: B

B) 
$$y = (x - 2)^{x}$$

B) 
$$y = (x-2)^3$$
 C)  $y = (x-2)^3 + 1$  D)  $y = x^3 - 2$ 

D) 
$$y = x^3 - 2$$

118)



Answer: B



D)  $y = \sqrt{x} - 4$ 

119)



A)  $y = (x - 5)^2 - 6$ 

B) 
$$y = (x - 6)^2 - 6$$
 C)  $y = -5(x - 6)^2$  D)  $y = 5(x + 6)^2$ 

Answer: B

#### Find the linear equation that meets the stated criteria.

120) The linear equation y = 226x + 6320 provides an approximation of the annual cost (in dollars) to rent an apartment at the Leisure Village Retirement Community, where x = 1 represents 1989, x = 2 represents 1990, and so on. Write an equation that yields the same y-values when the exact year number is entered.

A) y = 226(1988 - x) + 6320

B) y = 226(x - 1989) + 6320

C) y = 226(1989 - x) + 6320

D) y = 226(x - 1988) + 6320

Answer: D

121) The linear equation y = 466x + 3420 provides an approximation of the annual cost (in dollars) of health insurance for a family of three, where x = 1 represents 1981, x = 2 represents 1982, and so on. Write an equation that yields the same y-values when the exact year number is entered.

A) y = 466(x - 1980) + 3420

B) y = 466(1981 - x) + 3420

C) y = 466(x - 1981) + 3420

D) y = 466(1980 - x) + 3420

Answer: A

122) The linear equation y = 81.2x + 1160 provides an approximation of the value (in dollars) of an account opened on January 1, 1997, in the amount of \$1160 and earning 7% simple interest, where x = 0 represents January 1, 1997, x = 1 represents January 1, 1998, x = 2 represents January 1, 1999, and so on. Write an equation that yields the same y-values when the exact year number is entered.

A) y = 81.2(x - 1998) + 1160

B) y = 81.2(x - 1997) + 1160

C) y = 81.2(1998 - x) + 1160

D) y = 81.2(1997 - x) + 1160

Answer: B

123) The table shows the number of members in the Windy City Edsel Owners Club during the years 1980-1984.

| Year | Number of Members |
|------|-------------------|
| 1980 | 64                |
| 1981 | 71                |
| 1982 | 75                |
| 1983 | 86                |
| 1984 | 99                |

Use a calculator to find the least squares regression line for this data, where x = 0 represents 1980, x = 1represents 1981, and so on.

A) 
$$y = 7.9x + 63$$

B) 
$$y = 8.1x + 59$$

B) 
$$y = 8.1x + 59$$
 C)  $y = 8.3x + 61$ 

D) 
$$y = 8.5x + 62$$

Answer: D

124) The table shows the number of members in the Windy City Edsel Owners Club during the years 1986-1990.

| Year | Number of Members |
|------|-------------------|
| 1986 | 111               |
| 1987 | 132               |
| 1988 | 167               |
| 1989 | 197               |
| 1990 | 219               |

Use a calculator to find the least squares regression line for this data, where x = 0 represents 1986, x = 1represents 1987, and so on.

A) 
$$y = 28.4x + 105$$

B) 
$$y = 28.1x + 109$$
 C)  $y = 28.3x + 106$ 

C) 
$$y = 28.3x + 106$$

D) 
$$y = 27.6x + 111$$

Answer: B

#### Provide an appropriate response.

- 125) Explain how the graph of g(x) = f(x) 2 is obtained from the graph of y = f(x).
  - A) Shift the graph of f downward 2 units.
- B) Shift the graph of f upward 2 units.
- C) Shift the graph of f to the right 2 units.
- D) Shift the graph of f to the left 2 units.

Answer: A

- 126) Explain how the graph of g(x) = f(x 8) is obtained from the graph of y = f(x).
  - A) Shift the graph of f to the right 8 units.
- B) Shift the graph of f downward 8 units.
- C) Shift the graph of f to the left 8 units.
- D) Shift the graph of f upward 8 units.

Answer: A

127) Which function represents a vertical translation of the parabola  $y = (x - 3)^2 + 5$ ?

A) 
$$y = -(x - 3)^2 + 5$$

B) 
$$y = (x + 3)^2 + 5$$

C) 
$$y = (x - 3)^2 + 8$$

D) 
$$y = x^2 + 5$$

Answer: C

128) The graph shown is a translation of the function y = |x|. The graph shown is of the form y = |x - h| + k. What are the values of h and k?



- A) h = -3, k = -5
- B) h = 3, k = 5
- C) h = -3, k = 5
- D) h = 3 k = -5

Answer: C

129) Sketch the graph of y = f(x - 3) for the given graph of y = f(x).



(2, 5)(0, -3)







Answer: B

130) Sketch the graph of y = f(x + 2) for the given graph of y = f(x).











D)



Answer: D

131) Use the graph of y = f(x) to find the x-intercepts of the graph of y = f(x + 2).



A) 0, 2, 6 Answer: D B) -2, 0, 4

C) -3, 0

D) -4, -2, 2

Write the equation that results in the desired transformation.

132) The square root function, reflected across the x-axis

A) 
$$y = \sqrt{x}$$

B) 
$$y = \sqrt{x} - 1$$

C) 
$$y = \sqrt{-x}$$

D)  $y = -\sqrt{x}$ 

Answer: D

Answer: D

133) The squaring function, vertically stretched by a factor of 5

A) 
$$y = (x - 5)^2$$

B) 
$$y = 5(x - 5)x^2$$

C) 
$$y = -5x^2$$

D) 
$$y = 5x^2$$

134) The cubing function, vertically shrunk by a factor of 0.2

A) 
$$y = 0.2x^3$$

B) 
$$y = (x + 0.2)^3$$

C) 
$$y = 0.2 \sqrt[3]{x}$$

D) 
$$y = (x - 0.2)^3$$

Answer: A

135) The squaring function, vertically stretched by a factor of 9 and reflected across the x-axis

A) 
$$y = -9x^2$$

B) 
$$y = (x - 9)^2$$

C) 
$$y = 9(x - 9)x^2$$

D) 
$$y = 9x^2$$

Answer: A

136) The absolute value function, vertically stretched by a factor of 3.3 and reflected across the x-axis

A) 
$$y = -|x + 3.3|$$

B) 
$$y = 3.3 |x|$$

C) 
$$y = 3.3 - x$$

D) 
$$y = -3.3 |x|$$

Answer: D

137) The absolute value function, vertically stretched by a factor of 1.9 and reflected across the y-axis

A) 
$$y = |-x + 1.9|$$

B) 
$$y = |-x - 1.9|$$

C) 
$$y = -1.9 |x|$$

D) 
$$y = 1.9 - x$$

Answer: D

Use transformations of graphs to sketch the graphs of y<sub>1</sub> and y<sub>2</sub>. Graph y<sub>2</sub> as a dashed curve.

138) 
$$y_1 = x^2$$
;  $y_2 = x^2 - 6$ 



A)



C)



Answer: A







139)  $y_1 = |x|$ ;  $y_2 = |x - 6|$ 



A)



C)



Answer: B

B)









A)



C)



Answer: C





D)









C)



Answer: D







142) 
$$y_1 = x^2$$
;  $y_2 = (x - 5)^2 - 3$ 



A)



C)



Answer: D

B)



D)



143) 
$$y_1 = x^2$$
,  $y_2 = -\frac{1}{4}(x+4)^2 + 3$ 





B)



C)



D)



Answer: D

144) 
$$y_1 = \sqrt[3]{x}, y_2 = \sqrt[3]{x} + 3$$





B)



C)



D)



Answer: B

145) 
$$y_1 = |x|, y_2 = \frac{1}{2}|x + 3| - 4$$







C)



Answer: D









146)  $y_1 = \sqrt[3]{x}, y_2 = \sqrt[3]{-x} + 2$ 



A)



B)



C)



D)



Answer: C

Fill in each blank with the appropriate response.

147) The graph of y = -4|x| can be obtained from the graph of y = |x| by vertically stretching by a factor of \_\_\_ and reflecting across the \_\_-axis.

Answer: A

148) The graph of  $y = -6x^2$  can be obtained from the graph of  $y = x^2$  by vertically stretching by a factor of \_\_\_ and reflecting across the \_\_-axis.

Answer: A

- 149) The graph of  $y = -5(x 3)^2 + 7$  can be obtained from the graph of  $y = x^2$  by shifting horizontally \_\_\_ units to the \_\_\_\_, vertically stretching by a factor of \_\_\_\_, reflecting across the \_\_-axis, and shifting vertically \_\_\_ units in the \_\_\_\_\_ direction.
  - A) 3; right; 7; y; 5; downward

B) 3; right; 5; x; 7; upward

C) 3; right; 7; x; 5; upward

D) 3; left; 5; x; 7; upward

Answer: B

- 150) The graph of  $y = -6(x + 2)^2 8$  can be obtained from the graph of  $y = x^2$  by shifting horizontally \_\_\_ units to the \_\_\_\_\_, vertically stretching by a factor of \_\_\_\_, reflecting across the \_\_-axis, and shifting vertically \_\_\_ units in the \_\_\_\_\_ direction.
  - A) 2; left; 6; x; 8; downward

B) 2; right; 6; x; 8; upward

C) 2; left; 8; x; 6; downward

D) 2; right; 6; x; 8; downward

Answer: A

- 151) The graph of  $y = -\frac{1}{6}(x+3)^2 8$  can be obtained from the graph of  $y = x^2$  by shifting horizontally \_\_\_ units to the \_\_\_\_\_, vertically shrinking by a factor of \_\_\_, reflecting across the \_\_-axis, and shifting vertically \_\_\_ units
  - A) 3; left;  $\frac{1}{6}$ ; x; 8; downward

B) 3; right;  $\frac{1}{6}$ ; x; 8; upward

C) 3; left; 8; x;  $\frac{1}{6}$ ; downward

D) 3; right;  $\frac{1}{6}$ ; x; 8; downward

Answer: A

- 152) The graph of  $y = -\frac{1}{3}|-x| + 2$  can be obtained from the graph of y = |x| by reflecting across the \_\_-axis, vertically shrinking by a factor of \_\_\_\_, reflecting across the \_\_-axis, and shifting vertically \_\_\_ units in the \_\_\_\_\_ direction.
  - A) y;  $\frac{1}{3}$ ; x; 2; upward

B) x; 2; y;  $\frac{1}{3}$ ; upward

C) x;  $\frac{1}{3}$ ; x; 2; upward

D) y;  $\frac{1}{3}$ ; x; 2; downward

Answer: A

#### Give the equation of the function whose graph is described.

- 153) The graph of y = |x| is vertically stretched by a factor of 3, and the resulting graph is reflected across the x-axis.
  - A) y = -3|-x|
- B) y = -3|x|
- C) y = 3 | -x |
- D) y = -|x + 3|

Answer: B

- 154) The graph of  $y = x^2$  is shifted 2 units to the right. This graph is then vertically stretched by a factor of 5 and reflected across the x-axis. Finally, the graph is shifted 8 units upward.
  - A)  $y = -5(x 2)^2 + 8$
- B)  $y = -5(x + 8)^2 + 2$
- C)  $y = -5(x-2)^2 8$  D)  $y = -5(x+2)^2 + 8$

Answer: A

- 155) The graph of  $y = x^2$  is shifted 4 units to the left. This graph is then vertically stretched by a factor of 6 and reflected across the x-axis. Finally, the graph is shifted 7 units downward.
  - A)  $y = -6(x 4)^2 + 7$

- B)  $y = -6(x-4)^2 7$  C)  $y = -6(x+4)^2 7$  D)  $y = -6(x+7)^2 4$

Answer: C

156) The graph of  $y = x^2$  is shifted 3 units to the left. This graph is then vertically shrunk by a factor of  $\frac{1}{5}$  and reflected across the x-axis. Finally, the graph is shifted 7 units downward.

A) 
$$y = \frac{1}{5}(x-3)^2 - 7$$

B) 
$$y = -\frac{1}{5}(x-3)^2 + 7$$

C) 
$$y = -\frac{1}{5}(x+3)^2 - 7$$

A) 
$$y = \frac{1}{5}(x-3)^2 - 7$$
 B)  $y = -\frac{1}{5}(x-3)^2 + 7$  C)  $y = -\frac{1}{5}(x+3)^2 - 7$  D)  $y = -\frac{1}{5}(x-3)^2 - 7$ 

Answer: C

157) The graph of y = |x| is reflected across the y-axis and vertically shrunk by a factor of  $\frac{2}{3}$ . This graph is then reflected across the x-axis. Finally, the graph is shifted 2 units upward.

A) 
$$y = -\left|-x - \frac{2}{3}\right| + 2$$
 B)  $y = \frac{2}{3}|x| + 2$  C)  $y = -\frac{2}{3}|-x| + 2$  D)  $y = \frac{2}{3}|x + 2|$ 

B) 
$$y = \frac{2}{3}|x| + 2$$

C) 
$$y = -\frac{2}{3}|-x| + 2$$

D) 
$$y = \frac{2}{3}|x+2|$$

Answer: C

158) The graph of  $y = x^3$  is shifted 4.9 units to the right and then vertically shrunk by a factor of 0.2.

A) 
$$y = 0.2(x + 4.9)^3$$

B) 
$$y = 0.2x^3 + 4.9$$

B) 
$$y = 0.2x^3 + 4.9$$
 C)  $y = 4.9(x - 0.2)^3$ 

D) 
$$y = 0.2(x - 4.9)^3$$

Answer: D

159) The graph of y = |x| is vertically stretched by a factor of 4.9. This graph is then reflected across the x-axis. Finally, the graph is shifted 0.63 units downward.

A) 
$$y = -4.9|x| - 0.63$$

B) 
$$y = 4.9|-x| - 0.63$$
 C)  $y = 4.9|x| - 0.63$ 

C) 
$$y = 4.9|x| - 0.63$$

D) 
$$y = 4.9 | x - 0.63 |$$

Answer: A

160) The graph of y = |x| is reflected across the y-axis. This graph is then vertically stretched by a factor of 6.2. Finally, the graph is shifted 4 units downward.

A) 
$$y = -6.2|x| - 4$$

B) 
$$y = 6.2|-x| + 4$$
 C)  $y = 6.2|-x| - 4$  D)  $y = 4|-x| - 6.2$ 

C) 
$$y = 6.2 |-x| - 4$$

D) 
$$v = 4|-x| - 6.2$$

Answer: C

161) The graph of  $y = \sqrt[3]{x}$  is shifted 5.6 units to the left. This graph is then vertically stretched by a factor of 6.5. Finally, the graph is reflected across the x-axis.

A) 
$$y = -6.5\sqrt[3]{x + 5.6}$$
 B)  $y = -6.5\sqrt[3]{x - 5.6}$  C)  $y = 6.5\sqrt[3]{x + 5.6}$  D)  $y = -5.6\sqrt[3]{x + 6.5}$ 

B) 
$$y = -6.5\sqrt[3]{x - 5.6}$$

C) 
$$y = 6.5\sqrt[3]{x + 5.6}$$

D) 
$$y = -5.6\sqrt[3]{x + 6.5}$$

Answer: A

The graph of the given function is drawn with a solid line. The graph of a function, g(x), transformed from this one is drawn with a dashed line. Find a formula for g(x).

162) 
$$f(x) = |x|$$



A) 
$$g(x) = |x| - 4$$

B) 
$$g(x) = -4|x|$$

D) 
$$g(x) = |x + 4|$$





A) 
$$g(x) = 6(x + 4)^2$$

Answer: C

B) 
$$g(x) = -6(x - 4)^2$$

C) 
$$g(x) = (x - 4)^2 - 4$$

B) 
$$g(x) = -6(x-4)^2$$
 C)  $g(x) = (x-4)^2 - 4$  D)  $g(x) = (x-6)^2 - 4$ 

164) 
$$f(x) = x^2$$



A) 
$$g(x) = -\frac{1}{3}(x+3)^2 + 2$$

C) 
$$g(x) = -\frac{1}{3}(x+3)^2$$

Answer: A

165) 
$$f(x) = |x|$$



A) g(x) = 3 |x - 4| + 0.5

C) g(x) = 3 |x + 4| - 0.5

Answer: D

B)  $g(x) = \frac{1}{3}(x-3)^2 - 2$ 

D)  $g(x) = (x + 3)^2 + 2$ 

B) 
$$g(x) = 0.5 |x - 4| + 3$$
  
D)  $g(x) = 0.5 |x + 4| - 3$ 

#### Use transformations to graph the function.

166) 
$$f(x) = -2|x|$$









#### Answer: A

167) 
$$f(x) = 3x^2 + 3$$



# B)











#### Answer: C

# 168) f(x) = |9 - x|



# B)











#### Answer: A

# 169) f(x) = 5|x| - 6



# B)











#### Answer: C

# 170) f(x) = |x - 8| - 6



# B)











#### Answer: C

171) 
$$f(x) = 4|x-4|-8$$



# B)











#### Answer: B

172) 
$$f(x) = -\sqrt{x+2} + 1$$



# B)











#### Answer: D

# 173) $f(x) = (x - 2)^2 - 4$



# B)











#### Answer: A

174) 
$$f(x) = -3(x+2)^2 + 4$$



# B)









#### B)



C)



D)



Answer: C

Use the accompanying graph of y = f(x) to sketch the graph of the indicated function.

$$175) y = -f(x)$$











Answer: B













Answer: B

177) 
$$y = f(-x)$$







B)





D)



Answer: D

178) y = -f(x)







# B)





D)



Answer: B

179) y = 2f(x)







B)





D)



Answer: D

180) 
$$y = -\frac{1}{2}f(x)$$







B)



C)



D)



Answer: C

181) y = -f(2x)











Answer: A

182) 
$$y = f(x - 3)$$











Answer: C

183) 
$$y = -\frac{1}{3}f(x+3) + 2$$



A)



B)



C)



D)



Answer: A

Let f be a function with the given domain and range. Find the domain and range of the indicated function.

184) Domain of f(x): [5, 10]; Range of f(x): [0, 1]

-f(x)

D) D: [5, 10]; R: [-1, 0]

Answer: D

185) Domain of f(x): [2, 7]; Range of f(x): [0, 3]

f(-x)

D) D: [-7, -2]; R: [0, 3]

Answer: D

186) Domain of f(x): [4, 6]; Range of f(x): [0, 5]

f(x-2)

D) D: [6, 8]; R: [0, 5]

Answer: D

187) Domain of f(x): [-5, 6]; Range of f(x): [0, 6]

f(x+3)+2

D) D: [-2, 9]; R: [-2, 4]

Answer: C

188) Domain of f(x): [-6, 7]; Range of f(x): [0, 1]

3f(x + 1)

Answer: A

189) Domain of f(x): [-7, 0]; Range of f(x): [0, 3] f(-2x)

C) D: 
$$[-7, 0]$$
; R:  $\left[-\frac{3}{2}, 0\right]$ 

B) D: 
$$\left[0, \frac{7}{2}\right]$$
; R:  $\left[0, 3\right]$ 

Answer: B

190) Domain of f(x): [-3, 0]; Range of f(x): [0, 5]

$$2f\left(\frac{1}{4}x\right)$$

C) D: 
$$\left[ -\frac{3}{4}, 0 \right]$$
; R:  $[0, 10]$ 

B) D: 
$$\left[ -\frac{3}{4}, 0 \right]$$
; R:  $\left[ 0, \frac{5}{2} \right]$ 

Answer: D

Determine the intervals on which the function is increasing, decreasing, and constant.

191)



- A) Increasing on  $(-1, \infty)$ ; Decreasing on  $(-\infty, -1)$
- C) Increasing on  $(1, \infty)$ ; Decreasing on  $(-\infty, 1)$
- B) Increasing on  $(-\infty, 1)$ ; Decreasing on  $(1, \infty)$
- D) Increasing on  $(-\infty, -1)$ ; Decreasing on  $(-1, \infty)$

Answer: A



- A) Increasing on  $(-\infty, 0)$ ; Decreasing on  $(0, \infty)$
- C) Increasing on  $(-\infty, 0)$ ; Decreasing on  $(-\infty, 0)$

Answer: B

- B) Increasing on  $(0, \infty)$ ; Decreasing on  $(-\infty, 0)$
- D) Increasing on  $(\infty, 0)$ ; Decreasing on  $(0, -\infty)$

193)



- A) Increasing on  $(-\infty, 0)$ ; Decreasing on  $(-\infty, 0)$
- C) Increasing on  $(0, \infty)$ ; Decreasing on  $(-\infty, 0)$

Answer: B

- B) Increasing on  $(-\infty, 0)$ ; Decreasing on  $(0, \infty)$
- D) Increasing on  $(\infty, 0)$ ; Decreasing on  $(0, -\infty)$

194)



- A) Increasing on  $(4, \infty)$ ; Decreasing on  $(4, \infty)$
- C) Increasing on  $(-\infty, 4)$ ; Decreasing on  $(-\infty, 4)$

Answer: D

- B) Increasing on  $(4, \infty)$ ; Decreasing on  $(-\infty, 4)$
- D) Increasing on  $(-\infty, 4)$ ; Decreasing on  $(4, \infty)$



- A) Decreasing on  $(-\infty, \infty)$
- C) Increasing on  $(-\infty, 0)$ ; Decreasing on  $(0, \infty)$
- B) Increasing on  $(0, \infty)$ ; Decreasing on  $(-\infty, 0)$
- D) Increasing on  $(-\infty, \infty)$

196)

Answer: D



- A) Increasing on  $(4, \infty)$ ; Decreasing on  $(-4, \infty)$ ; Constant on (-4, 4)
- B) Increasing on  $(-\infty, 4)$ ; Decreasing on  $(-\infty, -4)$ ; Constant on  $(4, \infty)$
- C) Increasing on  $(4, \infty)$ ; Decreasing on  $(-\infty, -4)$ ; Constant on (-4, 4)
- D) Increasing on  $(-\infty, 4)$ ; Decreasing on  $(-4, \infty)$ ; Constant on  $(4, \infty)$

Answer: C



- A) Increasing on (-1, 0) and (3, 5); Decreasing on (0, 3); Constant on (-5, -3)
- B) Increasing on (-2, 0) and (3, 4); Decreasing on (-5, -2) and (1, 3)
- C) Increasing on (1, 3); Decreasing on (-2, 0) and (3, 5); Constant on (2, 5)
- D) Increasing on (-2, 0) and (3, 5); Decreasing on (1, 3); Constant on (-5, -2)

Answer: D

198)



- A) Increasing on (-3, -1); Decreasing on (-5, -2) and (2, 4); Constant on (-1, 2)
- B) Increasing on (-5, -3) and (2, 5); Decreasing on (-3, 0); Constant on (0, 2)
- C) Increasing on (-3, 0); Decreasing on (-5, -3) and (2, 5); Constant on (0, 2)
- D) Increasing on (-3, 1); Decreasing on (-5, -3) and (0, 5); Constant on (1, 2)

Answer: C

Shown here are graphs of y<sub>1</sub> and y<sub>2</sub>. The point whose coordinates are given at the bottom of the screen lies on the graph of y<sub>1</sub>. Use this graph, and not your own calculator, to find the value of y<sub>2</sub> for the same value of x shown.

199)



C) -2

D) -8

Answer: D

200)



A) 21

Answer: A

C) 27

D) -2.3333333

201)



A) 7.3986363

Answer: A

B) 0.8220707

C) -7.3986363

D) 14.797273

202)



B) -6

C) 6

D) -1.5

Answer: B



Answer: C

204)



Answer: C

The figure shows a transformation of the graph of  $y = x^2$ . Write the equation for the graph.



A)  $g(x) = (x + 1)^2$ Answer: C

B)  $g(x) = (x-1)^2$  C)  $g(x) = x^2 - 1$  D)  $g(x) = (x-1)^2 + 1$ 

D) 27



A) 
$$g(x) = (x + 4)^2$$

Answer: D

B) 
$$g(x) = -x^2 - 4$$

C) 
$$g(x) = -x^2 + 4$$

B) 
$$g(x) = -x^2 - 4$$
 C)  $g(x) = -x^2 + 4$  D)  $g(x) = -(x - 4)^2$ 

207)



A) 
$$g(x) = -x^2 + 2$$

Answer: C

B) 
$$g(x) = (-x - 2)^2$$

B) 
$$g(x) = (-x - 2)^2$$
 C)  $g(x) = (-x + 2)^2$ 

D) 
$$g(x) = -x^2 - 2$$

208)



A) 
$$g(x) = \frac{1}{3}(x+2)^2$$

B) 
$$g(x) = (x - 2)^2$$

C) 
$$g(x) = \frac{1}{3}x^2 - 2$$

B) 
$$g(x) = (x-2)^2$$
 C)  $g(x) = \frac{1}{3}x^2 - 2$  D)  $g(x) = \frac{1}{3}x^2 + 2$ 

Answer: A



A) 
$$g(x) = -x^2 + 3$$

B) 
$$g(x) = \frac{1}{3}(x-3)^2$$

B) 
$$g(x) = \frac{1}{3}(x-3)^2$$
 C)  $g(x) = \frac{1}{3}(x^2-3)$  D)  $g(x) = \frac{1}{3}(x+3)^2$ 

D) 
$$g(x) = \frac{1}{3}(x+3)^2$$

Answer: C

210)



A)  $g(x) = -x^2$ 

B)  $g(x) = -(x+2)^2$  C)  $g(x) = -x^2 + 2$  D)  $g(x) = -x^2 - 2$ 

Answer: B

Provide an appropriate response.

211) True or false? If r is an x-intercept of the graph of y = f(x), then y = f(-x) has an x-intercept at x = r.

A) True

B) False

Answer: B

212) True or false? If b is a y-intercept of the graph of y = f(x), then y = f(-x) has a y-intercept at x = b.

A) True

B) False

Answer: A

213) True or false? If the function y = f(x) increases on the interval (a, b) of its domain, then y = f(-x) increases on the interval (a, b).

A) False

B) True

Answer: A

214) If b is a y-intercept of the graph of y = f(x), then y = -5f(x) has a y-intercept of which of these points?

A) b

B) 5b

C) -5b

D) -b

Answer: C

- 215) True or false? If the function y = f(x) increases on the interval (a, b) of its domain, and we are given that c < 0, then the graph of y = cf(x) decreases on the interval (a, b).
  - A) True

B) False

Answer: A

- 216) True or False. If the graph of y = f(x) is symmetric with respect to the y-axis, then the graph of y = -f(x) is not symmetric with respect to the y-axis.
  - A) False

B) True

Answer: A

- 217) True or False. If the graph of y = f(x) is symmetric with respect to the origin, then the graph of y = f(-x) is symmetric with respect to the origin.
  - A) True

B) False

Answer: A

The graph of the function y = f(x) is given below. Sketch the graph of y = |f(x)|.

218)



A)



B)







Answer: B

219)



A)



B)







Answer: D

220)











Answer: D









Answer: A

222)











Answer: C

223)



A)



B)







Answer: A













Answer: D

225)









Answer: C

A)

226)





B)







Answer: B

227)











D)



Answer: B

# Provide an appropriate response.

228) If the range of y = f(x) is  $(-\infty, \infty)$ , what is the range of y = |f(x)|?

D) 
$$(-\infty, 0]$$

Answer: A

229) If the range of y = f(x) is  $(-\infty, 0]$ , what is the range of y = |f(x)|?

B) 
$$(-\infty, 0]$$

Answer: A

230) If the range of y = f(x) is  $[7.1, \infty)$ , what is the range of y = |f(x)|?

A) 
$$[7.1, \infty)$$

D) 
$$(-\infty, 7.1]$$

Answer: A

231) If the range of y = f(x) is  $[-3.3, \infty)$ , what is the range of y = |f(x)|?

A) 
$$[0, \infty)$$

C) 
$$(-\infty, 0]$$

D) 
$$(-\infty, -3.3]$$

Answer: A

232) If the range of y = f(x) is  $(-\infty, 14.3)$ , what is the range of y = |f(x)|?

B) 
$$[0, \infty)$$

Answer: B

233) If the range of y = f(x) is  $(-\infty, -6.9]$ , what is the range of y = |f(x)|?

A) 
$$[-6.9, \infty)$$

$$C) [0, \infty)$$

D) 
$$(-\infty, 6.9]$$

Answer: B

Use the graph, along with the indicated points, to give the solution set of the equation or inequality.

234) y<sub>1</sub> > y<sub>2</sub>



A) (0, 4) Answer: D

B)  $(-\infty, 0] \cup [4, \infty)$ 

C) [0, 4]

D)  $(-\infty, 0) \cup (4, \infty)$ 



A) {-4} Answer: D

Answer: C

B) (1, 5)

C) [1, 5]

D) {1, 5}

236) y<sub>1</sub> > y<sub>2</sub>



B) Ø

C)  $(-\infty, -5) \cup (-5, \infty)$  D)  $[-5, \infty)$ 

237) y1 ≥ y2



Answer: A

C) (-∞, ∞)

D)  $(2, \infty)$ 

238) y<sub>1</sub> ≤ y<sub>2</sub>



A)  $(-\infty, -2]$ Answer: C B) (-∞, **-**2)

C) Ø

D) (-∞, ∞)

239) y<sub>1</sub> = y<sub>2</sub>



A) {-1, 5} Answer: A B) (-1, 5)

C) {1, 5}

D) {3}

## Solve the equation.

240) 
$$|x - 8| = 0$$
  
A)  $(-8, \infty)$ 

Answer: D

B) {-8,8}

C) (-∞, 8)

D) {8}

241) |9x + 2| = 7

B)  $\left\{ \frac{5}{9}, -1 \right\}$ 

C)  $\left\{ 1, -\frac{5}{9} \right\}$ 

D)  $\left\{-1, -\frac{5}{9}\right\}$ 

Answer: B

242)  $\left| -6x - 5 \right| = 8$ A)  $\left\{ \frac{13}{6}, -\frac{13}{6} \right\}$ 

B)  $\left\{ -\frac{13}{6} \right\}$ 

C)  $\left\{-\frac{13}{6}, \frac{1}{2}\right\}$ 

 $D)\left\{-\frac{1}{2},\frac{13}{6}\right\}$ 

Answer: C

243) |x - 6.1| = 9A)  $\{-15.1\}$ 

B) {15.1, -2.9}

C) {15.1, 2.9}

D) Ø

Answer: B

244) |x - 8| - 5 = 2A)  $\{15\}$ 

B) {15, 1}

C) {-15, -1}

D) Ø

Answer: B

245) |8x + 4| + 6 = 11A)  $\left\{ \frac{1}{4}, -\frac{9}{4} \right\}$ 

 $B) \left\{ -\frac{1}{8}, \frac{9}{8} \right\}$ 

 $C)\left\{\frac{1}{8}, -\frac{9}{8}\right\}$ 

D) Ø

Answer: C

246) |2x + 4| + 4 = 8A)  $\{0, -2\}$ Answer: B

B)  $\{0, -4\}$ 

C)  $\{0,4\}$ 

D) Ø

247) |7x + 3| + 1 = -5A)  $\left\{-\frac{3}{7}, -\frac{9}{7}\right\}$ 

 $B) \left\{ \frac{3}{7}, \frac{9}{7} \right\}$ 

C)  $\left\{-\frac{9}{7}\right\}$ 

D) Ø

Answer: D

248) 5|x + 10| - 2 = 3A)  $\left\{-9, \frac{49}{5}\right\}$ 

B) {- 9}

C) {- 9, - 11}

D) {- 11}

Answer: C

249) |2(x-1) + 3| + 5 = 6A)  $\left\{-\frac{3}{2}, -\frac{1}{2}\right\}$ 

B)  $\left\{-\frac{3}{2}\right\}$ 

C) {- 1, 0}

D) Ø

Answer: C

#### Solve the inequality.

250) 
$$|x + 3| > 9$$
  
A)  $(-12, 6)$ 

Answer: B

B) 
$$(-\infty, -12) \cup (6, \infty)$$

251) 
$$|1 + 7x| > 4$$
  
A)  $\left[-\infty, -\frac{5}{7}\right] \cup \left[\frac{3}{7}, \infty\right]$  B)  $\left[\frac{3}{7}, \frac{5}{7}\right]$ 

$$B)\left(\frac{3}{7}, \frac{5}{7}\right)$$

$$C)\left(-\frac{5}{7},\frac{3}{7}\right)$$

$$D)\left(-\infty,-\frac{1}{7}\right)\cup\left(1,\infty\right)$$

Answer: A

252) 
$$\left| -7 - 6x \right| > 2$$
  
A)  $\left( \frac{3}{2}, \frac{5}{6} \right)$ 

$$B)\left(-\infty,\frac{7}{6}\right)\cup\left(\frac{1}{2},\infty\right)$$

$$C)\left(\frac{5}{6}, -\frac{3}{2}\right)$$

$$D)\left(-\infty, -\frac{3}{2}\right) \cup \left(-\frac{5}{6}, \infty\right)$$

253) 
$$|2 - 3x| \le 11$$
  
A)  $\left[ -\frac{13}{3}, 3 \right]$ 

Answer: D

B) 
$$\left[ -3, \frac{13}{3} \right]$$

C) 
$$(-\infty, -3] \cup \left[\frac{13}{3}, \infty\right]$$
 D)  $(-\infty, 3] \cup \left[\frac{13}{3}, \infty\right]$ 

D) 
$$(-\infty, 3] \cup \left[\frac{13}{3}, \infty\right]$$

Answer: B

254) 
$$|8 - x| \le 1$$
  
A) [7, 9]

B) [9, ∞)

Answer: A

255) 
$$|4x + 5| - 4 < 3$$
  
A)  $\left(-\infty, -3\right) \cup \left(\frac{1}{2}, \infty\right)$ 

$$C)\left[-3,\frac{1}{2}\right]$$

Answer: C

256) 
$$|x - 5| - 9 > 9$$
  
A)  $(-\infty, -13) \cup (5, \infty)$ 

$$A) (-\infty, -13) \circ (5, \infty)$$

B) 
$$(-\infty, -5) \cup (13, \infty)$$

D) 
$$(-\infty, -13) \circ (23, \infty)$$

257) |-3x - 1| > -3

Answer: D

$$C)\left(-\frac{4}{3},\frac{2}{3}\right)$$

Answer: B

Answer: C

Answer: D

258) 
$$|x - 8| \le 0$$
  
A)  $(-\infty, 8)$ 

A)  $(-\infty, 8)$ 

B) {-8}

C)  $\{8\}$ 

D) Ø

259) |x - 9| < 0A) {9}

B)  $(-\infty, 9)$ 

C)  $\{-9\}$ 

D) Ø

Solve the equation.

260) 
$$|9x + 2| = |6x + 9|$$
  
A)  $\left\{ \frac{7}{15}, -\frac{11}{3} \right\}$ 

B) 
$$\left\{-\frac{11}{3}, 1\right\}$$

C) 
$$\left\{ \frac{7}{3}, -\frac{11}{15} \right\}$$

$$D)\left\{\frac{11}{3},1\right\}$$

Answer: C

261) 
$$|9x - 2| = |2x - 7|$$
  
A)  $\left\{-\frac{5}{11}, \frac{9}{7}\right\}$ 

B)  $\left\{-\frac{9}{7}, 1\right\}$ 

C)  $\left\{ -\frac{5}{7}, \frac{9}{11} \right\}$ 

$$D)\left\{\frac{9}{7},1\right\}$$

Answer: C

262) 
$$|5x + 8| = |9 - 4x|$$
  
A)  $\left\{\frac{1}{9}, -17\right\}$ 

B)  $\left\{1, -\frac{17}{9}\right\}$ 

C)  $\left\{-\frac{17}{9}, 1\right\}$ 

D) 
$$\left\{ \frac{17}{9}, 1 \right\}$$

Answer: A

263) 
$$\left| -10 + 7x \right| = \left| 7 - 2x \right|$$
  
A)  $\left\{ \frac{1}{3}, 1 \right\}$ 

B)  $\left\{ \frac{17}{9}, \frac{3}{5} \right\}$ 

C) 
$$\left\{-\frac{1}{3}, 1\right\}$$

D) 
$$\left\{ \frac{17}{5}, \frac{1}{3} \right\}$$

Answer: B

264) 
$$|5x - 7| = |x + 6|$$
  
A)  $\frac{13}{4}$ 

B)  $\left\{ \frac{13}{4}, \frac{1}{6} \right\}$ 

C) 
$$\left\{-\frac{13}{4}, -\frac{1}{6}\right\}$$

Answer: B

265) 
$$|3x + 3| = |x - 7|$$
  
A)  $\{-5\}$ 

B) {- 5, 1}

C) 
$$\{5, -1\}$$

Answer: B

266) 
$$|4x + 3| = |x - 4|$$
  
A)  $\left\{ \frac{7}{3}, -\frac{1}{3} \right\}$ 

 $B) \left\{-\frac{7}{3}, \frac{1}{5}\right\}$ 

$$C)\left\{-\frac{7}{3},\frac{10}{3}\right\}$$

Answer: B

267) 
$$\left| \frac{1}{2} x + 2 \right| = \left| \frac{3}{4} x - 2 \right|$$
  
A)  $\{10, 10\}$ 

B) {16, 0}

C) {16, 12}

268) |3x + 6| = |3x - 5|

Answer: B

Answer: B

 $A) \left\{ 0, -\frac{11}{6} \right\}$ 

B)  $\left\{-\frac{1}{6}\right\}$ 

 $C)\left\{0, -\frac{1}{6}\right\}$ 

D) Ø

Solve the inequality graphically.

269) 
$$|3x + 9| > |x - 1|$$
  
A)  $(-5, -2)$ 

B) 
$$(-\infty, -5) \cup (-2, \infty)$$

Answer: B

270) 
$$|3x + 9| < |x - 1|$$
  
A) (2, 5)

C) 
$$(-\infty, -5) \cup (-2, \infty)$$

Answer: B

271) 
$$\left| \frac{1}{2} x + 2 \right| > \left| \frac{3}{4} x - 2 \right|$$
A) (16,  $\infty$ )

D) 
$$(-\infty, 0) \cup (16, \infty)$$

Answer: C

$$272) \left| \frac{1}{2} x + 2 \right| < \left| \frac{3}{4} x - 2 \right|$$

$$A) (16, \infty)$$

B) 
$$(-\infty, 0) \cup (16, \infty)$$

Answer: B

Solve the equation or inequality graphically. Express solutions or endpoints of intervals rounded to the nearest hundredth, if necessary.

273) 
$$|3x - 11| = \sqrt{x + 5}$$
  
A)  $\{-4.71, -2.74\}$ 

Answer: C

274) 
$$|3x - 5| = 6x - 2$$
  
A)  $\{-0.78\}$ 

Answer: C

275) 
$$-|7x - 9| \ge -x - 6$$
  
A)  $[-0.38, -2.5]$   
C)  $(-\infty, 0.38] \cup [2.5, \infty)$ 

D) 
$$(-\infty, -2.5] \cup [-0.38, \infty)$$

Answer: B

276) 
$$|x + 3| < .2x - 5$$
  
A)  $(-\infty, -3] \cup [2.5, \infty)$ 

D) 
$$[-3, 2.5]$$

Answer: C

277) 
$$|3x + 5| > - |4x - 4|$$
  
A) [1.67, 0.8]

D) 
$$(-\infty, 1.67] \cup [0.8, \infty)$$

Answer: C

278) 
$$|x + \sqrt{7}| + \sqrt{5} \ge -x - \sqrt{11}$$
 (Provide exact answer.)

A) 
$$(-\infty, -\sqrt{11}] \cup [\sqrt{11}, \infty)$$

D) 
$$(-\infty, -\sqrt{5}] \cup [\sqrt{5}, \infty)$$

Answer: C

279) |x| + |x - 8| = 16

A) {-4}

B) {4, 12}

C) {-4, 12}

D) Ø

Answer: C

280) |x + 2| + |x - 8| = 16

A) {11}

B) {-11, 5}

C) {11, -5}

D) Ø

Answer: C

#### Solve the problem.

281) The formula to find Fahrenheit temperature, F, given Celsius temperature, C, is  $F = \frac{9}{5}C + 32$ . Find the range, in

Fahrenheit, when the temperature in Celsius is between 3°C and 6°C, inclusive. Round to the nearest tenth.

A)  $33.7^{\circ}F \leq Temperature \leq 42.8^{\circ}F$ 

B) 37.4°F ≤ Temperature ≤ 42.8°F

C) 21.4°F ≤ Temperature ≤ 26.8°F

D)  $5.4^{\circ}F \leq Temperature \leq 10.8^{\circ}F$ 

Answer: B

282) The formula to find Celsius temperature, C, given Fahrenheit temperature, F, is  $C = \frac{5}{9}(F - 32)$ . If the processing

temperature of a chemical ranges from 302°F to 347°F, inclusive, then what is the range of its temperature in degrees Celsius?

A) 270°C  $\leq$  Temperature  $\leq 315$ °C

B) 32°C ≤ Temperature ≤ 45°C

C) 100°C ≤ Temperature ≤ 175°C

D) 150°C ≤ Temperature ≤ 175°C

Answer: D

283) The temperature on the surface of the planet Krypton in degrees Celsius satisfies the inequality  $|C + 75| \le 52$ . What range of temperatures corresponds to this inequality? (Use interval notation.)

A) [-127, 23]

B) [-127, -23]

C) [23, 127]

D) [-23, 127]

Answer: B

284) Dr. Hughes found that the weight, w, of 98% of his students at Cantanople University satisfied the inequality |w - 152| < 57. What range of weights corresponds to this inequality? (Use interval notation.)

A) (95, 209)

B)  $(-\infty, 95) \cup (209, \infty)$ 

C)  $(-\infty, 95] \cup [209, \infty)$ 

D) [95, 209]

Answer: A

285) The Fahrenheit temperature, F, in Siber City in October ranges from 71°F to 39°F. Write an absolute value inequality whose solution is this range.

A) |F| > 39

B) |F| < 71

C) |F - 55| < 16

D) |F - 16| < 55

Answer: C

286) In a milling operation, the thickness of the metal bars that can be produced satisfies the inequality  $|x - 1.88| \le 1.27$ . What range of thicknesses corresponds to this inequality?

A) [0.61, 6.3]

B) [0.31, 3.15]

C) [1.27, 1.88]

D) [0.61, 3.15]

Answer: D

287) The average annual growth rate of Cyprus trees in inches satisfies the inequality  $|x - 4.72| \le 3.27$ . What range of growth corresponds to this inequality?

A) [1.45, 7.99]

B) [3.27, 4.72]

C) [0.73, 7.99]

D) [1.45, 15.98]

Answer: A

288) The number of non-text books read by college students ranges from 10 to 62. Using B as the variable, write an absolute value inequality that corresponds to this range.

A) 
$$|B - 26| \le 36$$

B) 
$$|B - 52| \le 10$$

C) 
$$|B - 36| \le 26$$

D) 
$$|B - 10| \le 52$$

Answer: C

289) A real estate development consists of home sites that range in width from 60 to 94 feet and in depth from 121 to 183 feet. Using x as the variable in both cases, write absolute value inequalities that correspond to these ranges.

A) 
$$|x - 60| \le 34$$
,  $|x - 121| \le 62$ 

B) 
$$|x - 17| \le 77$$
,  $|x - 31| \le 152$ 

C) 
$$|x - 34| \le 60$$
,  $|x - 62| \le 121$ 

D) 
$$|x - 77| \le 17$$
,  $|x - 152| \le 31$ 

Answer: D

- 290) The inequality |T − 35| ≤ 14 describes the range of monthly average temperatures T in degrees Fahrenheit at a City X. (i) Solve the inequality. (ii) If the high and low monthly average temperatures satisfy equality, interpret the inequality.
  - A) T  $\leq$  49; The monthly averages are always less than or equal to 49°F.
  - B)  $12 \le T \le 58$ ; The monthly averages are always within  $23^{\circ}$  of  $35^{\circ}$ F.
  - C) 12 ≤ T; The monthly averages are always greater than or equal to 12°F.
  - D)  $21 \le T \le 49$ ; The monthly averages are always within  $14^{\circ}$  of  $35^{\circ}$ F.

Answer: D

## Provide an appropriate response.

291) True or false? The graph of y = |f(x)| is the same as that of y = f(x) for values of f(x) that are nonnegative; and for values of y = f(x) that are negative, the graph is reflected across the x-axis.

A) False

B) True

Answer: B

292) One of the graphs below is that of y = f(x), and the other is that of y = |f(x)|. State which is the graph of y = |f(x)|.



2π -2π



B) i

A) ii

Answer: B

293) One of the graphs below is that of y = f(x) and the other is that of y = |f(x)|. State which is the graph of y = |f(x)|.



Answer: A

294) Given a = 15, b = -23, which of the following statements is false?

A) 
$$|a/b| = a/b$$

B) 
$$|ab| = -ab$$

C) 
$$|a| + |b| \ge -(a+b)$$

Answer: A

295) Given a = -1, b = -13, which of the following statements is false?

A) 
$$|a/b| = a/b$$

B) 
$$|a| + |b| = -(a+b)$$

C) 
$$|ab| = -ab$$

Answer: C

296) The graph shown is a translation of the function y = |x| of the form y = |x - h| + k. What are the values of h and



A) h = 3, k = 3

B) 
$$h = -3$$
,  $k = -3$ 

C) h = -3, k = 3

D) 
$$h = 3, k = -3$$

Answer: A

297) Use graphing to determine the domain and range of y = |f(x)| for  $f(x) = -(x - 5)^2 - 3$ .

A) D: 
$$[0, \infty)$$
; R:  $(-\infty, 3]$ 

B) D: 
$$[0, \infty)$$
; R:  $(-\infty, -3]$ 

C) D: 
$$(-\infty, \infty)$$
; R:  $[-3, \infty)$ 

D) D: 
$$(-\infty, \infty)$$
; R:  $[3, \infty)$ 

Answer: D

298) Use graphing to determine the domain and range of y = |f(x)| for f(x) = |x - 3| - 6.

A) D: 
$$(-\infty, \infty)$$
; R:  $[0, \infty)$ 

B) D: 
$$(-\infty, \infty)$$
; R:  $[6, \infty)$ 

C) D: 
$$[0, \infty)$$
; R:  $(-\infty, \infty)$ 

D) D: 
$$[0, \infty)$$
; R:  $[-6, \infty)$ 

Answer: A

### Find the requested value.

299)

$$f(-7) \text{ for } f(x) = \begin{cases} 2x & \text{if } x \le -1 \\ x - 8 & \text{if } x > -1 \end{cases}$$

$$A) -14 \qquad B) 14$$

Answer: A

300)

f(0) for f(x) = 
$$\begin{cases} x - 2 & \text{if } x < 5 \\ 9 - x & \text{if } x \ge 5 \end{cases}$$
A) 3 B) 9

Answer: D

301)

f(6) for f(x) = 
$$\begin{cases} 4x + 6 & \text{if } x \le 0 \\ 2 - 5x & \text{if } 0 < x < 5 \\ x & \text{if } x \ge 5 \end{cases}$$
A) 5

Answer: B

302)

f(6) for f(x) = 
$$\begin{cases} 5x + 1 & \text{if } x < 6 \\ 6x & \text{if } 6 \le x \le 9 \\ 6 - 9x & \text{if } x > 9 \end{cases}$$
A) 36
B) -48

Answer: A

303)

$$f(-7) \text{ for } f(x) = \begin{cases} 5x + 1 & \text{if } x < 7 \\ 7x & \text{if } 7 \le x \le 11 \\ 7 - 5x & \text{if } x > 11 \end{cases}$$
A) 42
B) -49

Answer: D

# Graph the function.

304)

$$f(x) = \begin{cases} -4 & \text{if } x \ge 1 \\ -1 - x & \text{if } x < 1 \end{cases}$$



C) -15

D) -1

D) -28

D) 82

D) -34

C) 4

C) 30

C) 6

C) 36

4 D) -2



C)



Answer: C

305)

$$f(x) = \begin{cases} x - 1 & \text{if } x > 0\\ 4 & \text{if } x \le 0 \end{cases}$$



B)





A)





Answer: D

$$f(x) = \begin{cases} 9x + 6 & \text{if } x < 0 \\ 2x^2 - 2 & \text{if } x \ge 0 \end{cases}$$



B)







C)



Answer: C

307)

$$f(x) = \begin{cases} x^2 - 4 & \text{if } x < -1 \\ 0 & \text{if } -1 \le x \le 1 \\ x^2 + 4 & \text{if } 1 < x \end{cases}$$



B)







C)



Answer: A

308)

$$f(x) = \begin{cases} |x| + 5 & \text{if } x < 0\\ 5 & \text{if } x \ge 0 \end{cases}$$



B)







C)



Answer: D

309)

$$f(x) = \begin{cases} 5x + 2 & \text{if } x < -2 \\ x & \text{if } -2 \le x \le 3 \\ 4x - 1 & \text{if } x > 3 \end{cases}$$



B)















Use a graphing calculator to graph the piecewise-defined function, using the window indicated.

310) 
$$f(x) = \begin{cases} x + 2 & \text{if } x \le 3 \\ 5 & \text{if } x > 3 \end{cases}$$
; window [-4, 6] by [-2, 8]



A)



C)



Answer: C

B)





311) 
$$f(x) = \begin{cases} 4 - x & \text{if } x \le 3 \\ 2x - 5 & \text{if } x > 3 \end{cases}$$
; window [-2, 5] by [-1, 6]





C)



Answer: D

B)





312) 
$$f(x) = \begin{cases} 2 - x & \text{if } x < -2 \\ 2x - 1 & \text{if } x \ge -2 \end{cases}$$
; window [-10, 6] by [-6, 10]







Answer: D

B)





313) 
$$f(x) = \begin{cases} 3x + 1 & \text{if } x < 0 \\ 2x - 1 & \text{if } x \ge 0 \end{cases}$$
; window [-4, 4] by [-4, 4]





C)



Answer: D

B)





314) 
$$f(x) = \begin{cases} x - 1 & \text{if } x < -2 \\ x + 1 & \text{if } -2 \le x < 3 \text{ ; window [-6, 12] by [-12, 6]} \\ -2x & \text{if } x \ge 3 \end{cases}$$







C)



Answer: A







315) 
$$f(x) = \begin{cases} x - 1 & \text{if } x < -2 \\ -0.6x - 4.2 & \text{if } -2 \le x < 3 \text{ ; window } [-6, 6] \text{ by } [-12, 6] \\ -2x & \text{if } x \ge 3 \end{cases}$$







Answer: C





316) 
$$f(x) = \begin{cases} x+3 & \text{if } x < -2 \\ x^2 - 3 & \text{if } x \ge -2 \end{cases}$$
; window [-10, 5] by [-10, 10]





C)



Answer: A







317) 
$$f(x) = \begin{cases} x^3 & \text{if } x < 0 \\ -x^2 - 3 & \text{if } x \ge 0 \end{cases}$$
; window [-5, 5] by [-10, 2]







Answer: A





318) 
$$f(x) = \begin{cases} x^3 - 1 & \text{if } x < 2 \\ -x^2 + 1 & \text{if } x \ge 2 \end{cases}$$
; window [-5, 5] by [-10, 10]





C)



Answer: A



5

D)



-10

319) 
$$f(x) = \begin{cases} 3\sqrt{x} & \text{if } x < 0 \text{; window } [-6, 5] \text{ by } [-10, 6] \\ -x^2 + 5 & \text{if } x \ge 0 \end{cases}$$





C)



Answer: C

B)





Give a formula for a piecewise-defined function f for the graph shown.

320)



 $f(x) = \begin{cases} 2x & \text{if } x \le 0 \\ -2x & \text{if } x > 0 \end{cases}$ 

Answer: A

321)



Answer: C

 $f(x) = \begin{cases} 2 & \text{if } x \le 0 \\ x & \text{if } x > 0 \end{cases}$   $f(x) = \begin{cases} 2 & \text{if } x < 0 \\ -2x & \text{if } x \ge 0 \end{cases}$   $f(x) = \begin{cases} 2 & \text{if } x < 0 \\ -x & \text{if } x \ge 0 \end{cases}$   $f(x) = \begin{cases} 2 & \text{if } x < 0 \\ -x & \text{if } x \ge 0 \end{cases}$ 



A)
$$f(x) = \begin{cases} 1 & \text{if } x < 0 \\ x^2 & \text{if } x \ge 0 \end{cases}$$
C)
$$f(x) = \begin{cases} 1 & \text{if } x \le 0 \\ x^2 - 4 & \text{if } x > 0 \end{cases}$$

Answer: B

$$f(x) = \begin{cases} -1 & \text{if } x < 0 \\ x^2 - 4 & \text{if } x \ge 0 \end{cases}$$

$$D)$$

$$f(x) = \begin{cases} 1 & \text{if } x < 0 \\ |x| - 4 & \text{if } x \ge 0 \end{cases}$$

323)



 $f(x) = \begin{cases} x^2 & \text{if } x \le 0 \\ -|x-2| & \text{if } x > 0 \end{cases}$ 

 $f(x) = \begin{cases} -x^2 & \text{if } x \le 0 \\ |x - 2| & \text{if } x > 0 \end{cases}$ 

Answer: A

B)
$$f(x) = \begin{cases} x^2 & \text{if } x \le 0 \\ -|x+2| & \text{if } x > 0 \end{cases}$$

B)
$$f(x) = \begin{cases} x^2 & \text{if } x \le 0 \\ -|x+2| & \text{if } x > 0 \end{cases}$$
D)
$$f(x) = \begin{cases} -|x-2| & \text{if } x < 0 \\ x^2 & \text{if } x \ge 0 \end{cases}$$



$$f(x) = \begin{cases} x + 3 & \text{if } x \le 0 \\ -\sqrt{x} & \text{if } x > 0 \end{cases}$$

$$f(x) = \begin{cases} -x + 3 & \text{if } x \le 0 \\ -\sqrt{x} & \text{if } x > 0 \end{cases}$$

Answer: A

f(x) =  $\begin{cases} x - 3 & \text{if } x \le 0 \\ -x^2 & \text{if } x > 0 \end{cases}$ D)  $f(x) = \begin{cases} x + 3 & \text{if } x \le 0 \\ \sqrt{x} & \text{if } x > 0 \end{cases}$ 

$$f(x) = \begin{cases} x + 3 & \text{if } x \le 0 \\ \sqrt{x} & \text{if } x > 0 \end{cases}$$

325)



$$f(x) = \begin{cases} 4 & \text{if } x < -1\\ x^3 & \text{if } x \ge -1 \end{cases}$$

$$f(x) = \begin{cases} 4 & \text{if } x < -1 \\ x^3 & \text{if } x \ge -1 \end{cases}$$

$$C)$$

$$f(x) = \begin{cases} 4 & \text{if } x < -1 \\ x^2 & \text{if } x \ge -1 \end{cases}$$

Answer: A

B)  

$$f(x) = \begin{cases} 4 & \text{if } x < -1 \\ x^3 - 1 & \text{if } x \ge -1 \end{cases}$$
D)  

$$f(x) = \begin{cases} -4 & \text{if } x < -1 \\ x^2 - 1 & \text{if } x \ge -1 \end{cases}$$

$$f(x) = \begin{cases} -4 & \text{if } x < -1\\ x^2 - 1 & \text{if } x \ge -1 \end{cases}$$



A)
$$f(x) = \begin{cases} x - 3 & \text{if } x \neq 3 \\ -2 & \text{if } x = 3 \end{cases}$$
C)

C) 
$$f(x) = \begin{cases} 2x - 3 & \text{if } x < 3 \\ 2x + 3 & \text{if } x > 3 \end{cases}$$

Answer: B

$$f(x) = \begin{cases} 2x - 3 & \text{if } x \neq 3 \\ -2 & \text{if } x = 3 \end{cases}$$

B)  $f(x) = \begin{cases} 2x - 3 & \text{if } x \neq 3 \\ -2 & \text{if } x = 3 \end{cases}$ D)  $f(x) = \begin{cases} 2x - 3 & \text{if } x \neq 2 \\ -3 & \text{if } x = 2 \end{cases}$ 

327)



A)
$$f(x) = \begin{cases} -3x & \text{if } x < -4 \\ -2|x - 2| + 4 & \text{if } x \ge -4 \end{cases}$$
C)

 $f(x) = \begin{cases} -3 & \text{if } x \le -4 \\ -2|x+2|+4 & \text{if } x > -4 \end{cases}$ 

Answer: B

$$f(x) = \begin{cases} -3 & \text{if } x < -4 \\ -2|x+2|+4 & \text{if } x \ge -4 \end{cases}$$

$$f(x) = \begin{cases} -3 & \text{if } x < -4 \\ -2|x+2| + 4 & \text{if } x \ge -4 \end{cases}$$

$$D)$$

$$f(x) = \begin{cases} -3x & \text{if } x < -4 \\ -2|x+2| + 4 & \text{if } x \ge -4 \end{cases}$$



A)  

$$f(x) = \begin{cases} (x-3)^2 - 5 & \text{if } x \neq 3\\ 2 & \text{if } x = 3 \end{cases}$$
C) 
$$f(x) = (x-3)^2 - 5$$

Answer: A

b)  

$$f(x) = \begin{cases} (x+3)^2 - 5 & \text{if } x \neq 3\\ 2 & \text{if } x = 3 \end{cases}$$
D)  

$$f(x) = \begin{cases} |x-3| - 5 & \text{if } x \neq 3\\ 2 & \text{if } x = 3 \end{cases}$$

329)



$$f(x) = \begin{cases} 2x & \text{if } x \le 1\\ x+1 & \text{if } x > 1 \end{cases}$$

$$C)$$

$$f(x) = \begin{cases} -x & \text{if } x \le 1\\ 2x+1 & \text{if } x > 1 \end{cases}$$

Answer: B

B)
$$f(x) = \begin{cases} -2x & \text{if } x \le 1 \\ x+1 & \text{if } x > 1 \end{cases}$$

$$f(x) = \begin{cases} -2x & \text{if } x \le 1\\ x+2 & \text{if } x > 1 \end{cases}$$

Graph the equation.

330) 
$$y = [x] + 1$$





C)



Answer: C

B)











C)



Answer: B

B)









C)



Answer: B

B)











C)



Answer: C

B)





334) y = 2[x]



A)



C)



Answer: D

B)



D)



Solve the problem.

335) A video rental company charges \$3 per day for renting a video tape, and then \$2 per day after the first. Use the greatest integer function and write an expression for renting a video tape for x days.

A) 
$$y = 2x + 3$$

B) 
$$y = 2||x - 1|| + 3$$

C) 
$$y + 3 = 2 ||x||$$

D) 
$$y = [2x + 3]$$

Answer: B

- 336) Suppose a car rental company charges \$100 for the first day and \$50 for each additional or partial day. Let S(x) represent the cost of renting a car for x days. Find the value of S(5.5).
  - A) \$275

B) \$350

C) \$325

D) \$375

Answer: B

337) Suppose a life insurance policy costs \$28 for the first unit of coverage and then \$7 for each additional unit of coverage. Let C(x) be the cost for insurance of x units of coverage. What will 10 units of coverage cost? C) \$98

A) \$70

B) \$42

D) \$91

Answer: D

338) A salesperson gets a commission of \$1000 for the first \$10,000 of sales, and then \$500 for each additional \$10,000 or partial of sales. Let S(x) represent the commission on x dollars of sales. Find the value of S(65,000).

A) \$3750

B) \$4250

C) \$4000

D) \$3250

Answer: C

339) Assume it costs 25 cents to mail a letter weighing one ounce or less, and then 20 cents for each additional ounce or fraction of an ounce. Let L(x) be the cost of mailing a letter weighing x ounces. Graph y = L(x).

A)



B)



C)



D)



Answer: D

340) Sketch a graph that depicts the amount of water in a 50-gallon tank during the course of the described pumping operations. The tank is initially full, and then a pump is used to take water out of the tank at a rate of 6 gallons per minute. The pump is turned off after 5 minutes. At that point, the pump is changed to one that will pump water into the tank. The change takes 2 minutes and the water level is unchanged during the switch. Then, water is pumped into the tank at a rate of 4 gallons per minute for 3 minutes.





C)





Answer: D

341) The charges for renting a moving van are \$55 for the first 30 miles and \$4 for each additional mile. Assume that a fraction of a mile is rounded up. (i) Determine the cost of driving the van 77 miles. (ii) Find a symbolic representation for a function f that computes the cost of driving the van x miles, where  $0 < x \le 100$ . (Hint: express f as a piecewise-constant function.)

A) \$243;

f(x) = 
$$\begin{cases} 55 & \text{if } 0 < x \le 30 \\ 55 + 4(x - 30) & \text{if } 30 < x \le 100 \end{cases}$$
C) \$243;
$$f(x) = \begin{cases} 55 & \text{if } 0 < x \le 30 \\ 55 + 4(x + 30) & \text{if } 30 < x \le 100 \end{cases}$$

if  $0 < x \le 30$ if  $30 < x \le 100$ 

if  $0 < x \le 30$ if  $30 < x \le 100$   $f(x) = \begin{cases} 55 \\ 55 + 4(x + 30) \end{cases}$ D) \$4423;  $f(x) = \begin{cases} 55 \\ 55 + 4(x - 30) \end{cases}$ 

B) \$483;

if  $0 < x \le 30$ if  $30 < x \le 100$ 

Answer: A

342) Sketch a graph showing the mileage that a person is from home after x hours if that individual drives at 30 mph to a lake 60 miles away, stays at the lake 1.5 hours, and then returns home at a speed of 60 mph.

A) 150 120 Distance (miles) 90 60 30 x 5 0 0.5 1.5 2 2.5 3 3.5 4 4.5 1 Time (hours)





Answer: B

343) In Country X, the average hourly wage in dollars from 1945 to 1995 can be modeled by

$$f(x) = \begin{cases} 0.076(x - 1945) + 0.31 & \text{if } 1945 \le x < 1970 \\ 0.182(x - 1970) + 3.07 & \text{if } 1970 \le x \le 1995 \end{cases}$$

Use f to estimate the average hourly wages in 1950, 1970, and 1990.

- A) \$0.69, \$2.21, \$6.71
- B) \$0.69, \$3.07, \$6.71
- C) \$3.45, \$6.71, \$2.21
- D) \$3.45, \$0.31, \$6.71

Answer: B

Provide an appropriate response.

344) Which of the following is a vertical translation of the function y = [[x]]?

- A) y = -[[x]]
- B) y = [[x 6]]
- C) y = [[x]] 6
- D) y = 6[[x]]

Answer: C

345) Which of the following is a horizontal translation of the function y = [[x]]?

- A) y = -[[x]]
- B) y = 7[[x]]
- C) y = [[x]] 7
- D) y = [[x 7]]

Answer: D

346) Which of the following is a reflection of the function y = [[x]] about the y-axis? Use your graphics calculator to verify your result.

- A) y = -[[x + 1]]
- B) y = [[-x + 1]]
- C) y = [[-x]]
- D) y = -[[x]]

Answer: C

Find the requested composition or operation.

347) f(x) = 6 - 8x, g(x) = -4x + 8

- Find (f + g)(x).
- A) -4x + 6
- B) 2x

- C) -12x + 14
- D) -4x + 14

Answer: C

348) f(x) = 7x - 6, g(x) = 3x - 4

Find (f - g)(x).

- A) -4x + 2
- B) 4x 10
- C) 10x 10
- D) 4x 2

Answer: D

349)  $f(x) = \sqrt{4x + 4}$ ,  $g(x) = \sqrt{4x - 9}$ 

Find (fg)(x).

A) 
$$(\sqrt{4x+4})(\sqrt{4x-9})$$

A) 
$$(\sqrt{4x+4})(\sqrt{4x-9})$$
 B)  $(2x-3)(\sqrt{4x+4})$ 

C) 
$$(4x + 4)(2x - 3)$$

D) 
$$(4x + 4)(4x - 9)$$

Answer: A

350) f(x) = 9x - 3, g(x) = 2x + 8

Find (fg)(x).

- A)  $11x^2 + 66x + 5$
- B)  $18x^2 + 66x 24$
- C)  $18x^2 + 2x 24$
- D)  $18x^2 24$

Answer: B

351) 
$$f(x) = 4x^2 - 9x$$
,  $g(x) = x^2 - 3x - 54$   
Find  $\left(\frac{f}{g}\right)(x)$ .

A) 
$$\frac{4x - 9}{-3}$$

B) 
$$\frac{4x}{x+1}$$

C) 
$$\frac{4x^2 - 9x}{x^2 - 3x - 54}$$

D) 
$$\frac{4 - x}{54}$$

Answer: C

352) 
$$f(x) = 3x + 10$$
,  $g(x) = 2x - 1$   
Find  $(f \circ g)(x)$ .

A) 
$$6x + 9$$

B) 
$$6x + 19$$

C) 
$$6x + 13$$

D) 
$$6x + 7$$

Answer: D

353) 
$$f(x) = \sqrt{x+5}$$
,  $g(x) = 8x - 9$ 

Find 
$$(f \circ g)(x)$$
.
A)  $2\sqrt{2x-1}$ 

B) 
$$8\sqrt{x+5} - 9$$

C) 
$$2\sqrt{2x+1}$$

D) 
$$8\sqrt{x-4}$$

Answer: A

354) 
$$f(x) = 4x^2 + 2x + 4$$
,  $g(x) = 2x - 5$ 

Find  $(g \cdot f)(x)$ .

A) 
$$8x^2 + 4x + 13$$

B) 
$$4x^2 + 4x + 3$$

C) 
$$8x^2 + 4x + 3$$

D) 
$$4x^2 + 2x - 1$$

Answer: C

355) 
$$f(x) = \frac{3}{x-7}$$
,  $g(x) = \frac{5}{3x}$ 

Find  $(f \circ g)(x)$ .

A) 
$$\frac{3x}{5 - 21x}$$

B) 
$$\frac{9x}{5 + 21x}$$

C) 
$$\frac{9x}{5 - 21x}$$

D) 
$$\frac{5x - 35}{9x}$$

Answer: C

356) 
$$f(x) = \frac{x-2}{5}$$
,  $g(x) = 5x + 2$ 

Find  $(g \circ f)(x)$ .

A) 
$$5x + 8$$

B) 
$$x - \frac{2}{5}$$

C) 
$$x + 4$$

Answer: D

## Perform the requested composition or operation.

357) Find 
$$(f + g)(4)$$
 when  $f(x) = x - 1$  and  $g(x) = x + 2$ .

Answer: D

358) Find 
$$(f - g)(-5)$$
 when  $f(x) = -4x^2 - 1$  and  $g(x) = x - 4$ .

$$C) -100$$

Answer: D

359) Find (fg)(4) when 
$$f(x) = x - 2$$
 and  $g(x) = -3x^2 + 15x + 1$ .  
A) 78 B)  $-282$  C) 26 D) 154

Answer: C

360) Find 
$$\left(\frac{f}{g}\right)$$
 (-5) when  $f(x) = 3x - 2$  and  $g(x) = 2x^2 + 14x + 3$ .  
A) 1 B) 0 C)  $\frac{2}{13}$  D)  $-\frac{2}{17}$ 

Answer: A

361) Find 
$$(f \circ g)(-4)$$
 when  $f(x) = 6x + 8$  and  $g(x) = 9x^2 - 5x - 1$ .  
A) -94 B) 986 C) -65 D) 2383  
Answer: B

362) Find 
$$(g \circ f)(9)$$
 when  $f(x) = -3x + 3$  and  $g(x) = 8x^2 - 2x - 9$ .  
A) 4647 B) -153 C) -132 D) -1860  
Answer: A

## Find the specified domain.

363) For 
$$f(x) = 2x - 5$$
 and  $g(x) = \sqrt{x + 6}$ , what is the domain of  $(f + g)$ ?

A)  $[0, \infty)$ 
B)  $[-6, \infty)$ 
C)  $[6, \infty)$ 
D)  $(-6, 6)$ 

364) For 
$$f(x) = 2x - 5$$
 and  $g(x) = \sqrt{x + 4}$ , what is the domain of  $\left(\frac{f}{g}\right)$ ?

A)  $[0, \infty)$ 
B)  $(-4, \infty)$ 
C)  $[4, \infty)$ 
D)  $(-4, 4)$ 

365) For 
$$f(x) = 2x - 5$$
 and  $g(x) = \sqrt{x + 2}$ , what is the domain of  $(f \circ g)$ ?

A)  $[0, \infty)$ 
B)  $[2, \infty)$ 
C)  $[-2, \infty)$ 
D)  $(-2, 2)$ 

366) For 
$$f(x) = 2x - 5$$
 and  $g(x) = \sqrt{x + 8}$ , what is the domain of  $(g \circ f)$ ?

A)  $[8, \infty)$ 
B)  $(-8, 8)$ 
C)  $[\infty, -1.5)$ 
D)  $[-1.5, \infty)$ 
Answer: D

367) For 
$$f(x) = x^2 - 36$$
 and  $g(x) = 2x + 3$ , what is the domain of  $(f - g)$ ?

A)  $[0, \infty)$ 
B)  $(-\infty, \infty)$ 
C)  $(-6, 6)$ 
D)  $[6, \infty)$ 

368) For 
$$f(x) = x^2 - 9$$
 and  $g(x) = 2x + 3$ , what is the domain of  $\left(\frac{f}{g}\right)$ ?

A)  $\left(-\infty, -\frac{3}{2}\right) \cup \left(-\frac{3}{2}, \infty\right)$ 
B)  $(-\infty, \infty)$ 
C)  $(-3, 3)$ 
D)  $\left[-\frac{3}{2}, \infty\right]$ 

Answer: A

369) For  $f(x) = x^2 - 49$  and g(x) = 2x + 3, what is the domain of  $\left(\frac{g}{f}\right)$ ?

A) 
$$\left[-\infty, \frac{3}{2}\right] \cup \left[-\frac{3}{2}, \infty\right]$$
C)  $\left[-\frac{3}{2}, \infty\right]$ 

D) 
$$(-\infty, -7) \cup (-7, 7) \cup (7, \infty)$$

Answer: D

370) For  $f(x) = x^2 - 81$  and g(x) = 2x + 3, what is the domain of  $(f \circ g)$ ?

B) 
$$(-\infty, \infty)$$

$$(-9, 9)$$

Answer: B

371) For  $f(x) = \sqrt{x-2}$  and  $g(x) = \frac{1}{x-9}$ , what is the domain of  $(f \cdot g)$ ?

A) 
$$(2, 9) \cup (9, \infty)$$

B) 
$$[2, 9) \cup (9, \infty)$$

D) 
$$[0, 9) \cup (9, \infty)$$

Answer: B

372) For  $g(x) = \sqrt{x+1}$  and  $h(x) = \frac{1}{x-7}$ , what is the domain of  $(h \circ g)$ ?

A) 
$$[-1,7) \circ (7,\infty)$$

B) 
$$[0, 48) \cup (48, \infty)$$

C) 
$$[0,7) \circ (7,\infty)$$

D) 
$$[-1, 48) \cup (48, \infty)$$

D) 1

Answer: D

Answer: B

Use the graphs to evaluate the expression.

373) f(-1) + g(0)



y = g(x)



-**-**

374) f(-2) - g(0)



y = g(x)



D) 0

D)  $\frac{1}{4}$ 

A) 4 Answer: B

375) f(-2) - g(4)



y = g(x)

B) 1



A) -3

Answer: A

376) f(4) \* g(-3)



y = g(x)



A) 6

B)  $\frac{1}{2}$ 

C) 8

D) -2

Answer: C

377)  $(g \circ f)(-2)$ 





y = g(x)



C) -3.5

A) -1

B) -2

Answer: B

D) -5

378) (f · g)(0)



y = g(x)



D) -2

Answer: A

379) (f · g)(0)





380) (g · f)(1)



y = g(x)

C) -4

Answer: A

381) (f + g)(1)



y = g(x)



Answer: A

B) -3

D) -4

D) -1

382) g(f(1))

y = f(x)



y = g(x)



A) -3

Answer: D

B) -4

C) 2

D) 3

Use the tables to evaluate the expression if possible.

383) Find (f + g)(-3).

A) 10

B) 6

C) -3

D) 2

Answer: B

384) Find (fg)(-4).

A) 16

B) 42

C) - 16

D) 56

Answer: D

385) Find  $(g \cdot f)(6)$ .

A) 14

B) -7

C) 2

D) 22

Answer: D

386) Find  $(f \circ g)(7)$ .

A) 7

B) 13

C) 26

D) 30

387) Find  $(g \cdot f)(5)$ .

A) 11

B) 25

C) 5

D) 9

Answer: A

388) Find  $(f \cdot f)(7)$ .

A) 37

B) 7

C) 15

D) 19

Answer: A

389) Find  $(g \circ g)(4)$ .

A) 7

B) 19

C) 9

D) 21

Answer: A

Determine whether  $(f \cdot g)(x) = x$  and whether  $(g \cdot f)(x) = x$ .

390) 
$$f(x) = \sqrt[5]{x - 12}$$
,  $g(x) = x^5 + 12$ 

A) No, no

B) Yes, no

C) Yes, yes

D) No, yes

Answer: C

391) 
$$f(x) = x^2 + 4$$
,  $g(x) = \sqrt{x} - 4$   
A) Yes yes

A) Yes, yes

B) Yes, no

C) No, yes

D) No, no

392)  $f(x) = \frac{1}{x}$ , g(x) = x

Answer: D

A) Yes, yes

B) Yes, no

C) No, no

D) No, yes

Answer: C

393) 
$$f(x) = \sqrt{x+1}$$
,  $g(x) = x^2$ 

A) No, yes

B) Yes, yes

C) No, no

D) Yes, no

Answer: C

394) 
$$f(x) = x^3 + 3$$
,  $g(x) = \sqrt[3]{x - 3}$   
A) Yes, no

B) Yes, yes

C) No, no

D) No, yes

Answer: B

Determine the difference quotient  $\frac{f(x+h)-f(x)}{h}$  (h  $\neq$  0) for the function f. Simplify completely.

395) 
$$f(x) = 4x - 12$$

Answer: B

396) 
$$f(x) = 6x^2 + 5x - 3$$

A) 
$$12x + 5 + 6h$$

B) 
$$12x + 5$$

C) 
$$6x + 6 + 12h$$

D) 
$$12xh + 5h + 5h^2$$

Answer: A

397) 
$$f(x) = 6 - 6x^3$$

A) 
$$-6(3x^2 - 3x - h)$$

B) 
$$-18x^2$$

C) 
$$-6(3x^2 + 3xh + h^2)$$
 D)  $-6(x^2 - xh - h^2)$ 

D) 
$$-6(x^2 - xh - h^2)$$

Answer: C

Consider the function h as defined. Find functions f and g such that  $(f \cdot g)(x) = h(x)$ .

398) 
$$h(x) = \frac{1}{x^2 - 2}$$

A) 
$$f(x) = \frac{1}{2}$$
,  $g(x) = x^2 - 2$ 

B) 
$$f(x) = \frac{1}{x^2}$$
,  $g(x) = -\frac{1}{2}$ 

C) 
$$f(x) = \frac{1}{x^2}$$
,  $g(x) = x - 2$ 

D) 
$$f(x) = \frac{1}{x}$$
,  $g(x) = x^2 - 2$ 

Answer: D

399) 
$$h(x) = |4x + 1|$$

A) 
$$f(x) = |x|, g(x) = 4x + 1$$

C) 
$$f(x) = x$$
,  $g(x) = 4x + 1$ 

B) 
$$f(x) = -|x|$$
,  $g(x) = 4x + 1$ 

D) 
$$f(x) = |-x|, g(x) = 4x - 1$$

Answer: A

400) 
$$h(x) = \frac{8}{x^2} + 10$$

A) 
$$f(x) = x$$
,  $g(x) = \frac{8}{x} + 10$ 

C) 
$$f(x) = x + 10$$
,  $g(x) = \frac{8}{x^2}$ 

B) 
$$f(x) = \frac{1}{x}$$
,  $g(x) = \frac{8}{x} + 10$ 

D) 
$$f(x) = \frac{8}{x^2}$$
,  $g(x) = 10$ 

Answer: C

401) 
$$h(x) = \frac{8}{\sqrt{2x+10}}$$

A) 
$$f(x) = 8$$
,  $g(x) = \sqrt{2 + 10}$ 

C) 
$$f(x) = \frac{8}{\sqrt{x}}$$
,  $g(x) = 2x + 10$ 

B) 
$$f(x) = \sqrt{2x + 10}$$
,  $g(x) = 8$ 

D) 
$$f(x) = \frac{8}{x}$$
,  $g(x) = 2x + 10$ 

402) 
$$h(x) = (-5x - 3)^3$$

A) 
$$f(x) = (-5x)^3$$
,  $g(x) = -3$ 

C) 
$$f(x) = -5x - 3$$
,  $g(x) = x^3$ 

B) 
$$f(x) = x^3$$
,  $g(x) = -5x - 3$ 

D) 
$$f(x) = -5x^3$$
,  $g(x) = x - 3$ 

Answer: B

403) 
$$h(x) = \sqrt{-37x^2 + 11}$$

A) 
$$f(x) = -37x^2 + 11$$
,  $g(x) = \sqrt{x}$ 

C) 
$$f(x) = \sqrt{-37x + 11}$$
,  $g(x) = x^2$ 

B) 
$$f(x) = \sqrt{x}$$
,  $g(x) = -37x^2 + 11$   
D)  $f(x) = \sqrt{-37x^2}$ ,  $g(x) = \sqrt{11}$ 

Answer: B

#### Solve the problem.

- 404) Regrind, Inc. regrinds used typewriter platens. The cost to buy back each used platen is \$2.00. The fixed cost to run the grinding machine is \$249 per day. If the company sells the reground platens for \$5.00, how many must be reground daily to break even?
  - A) 124 platens
- B) 35 platens
- C) 83 platens
- D) 55 platens

Answer: C

- 405) Northwest Molded molds plastic handles which cost \$0.20 per handle to mold. The fixed cost to run the molding machine is \$2117 per week. If the company sells the handles for \$1.20 each, how many handles must be molded weekly to break even?
  - A) 1512 handles
- B) 2117 handles
- C) 10,585 handles
- D) 1411 handles

Answer: B

- 406) Midtown Delivery Service delivers packages which cost \$1.90 per package to deliver. The fixed cost to run the delivery truck is \$120 per day. If the company charges \$6.90 per package, how many packages must be delivered daily to break even?
  - A) 13 packages
- B) 16 packages
- C) 63 packages
- D) 24 packages

Answer: D

- 407) A lumber yard has fixed costs of \$3466.00 a day and marginal costs of \$0.80 per board-foot produced. The company gets \$1.80 per board-foot sold. How many board-feet must be produced daily to break even?
  - A) 1333 board-feet
- B) 4332 board-feet
- C) 2310 board-feet
- D) 3466 board-feet

Answer: D

- 408) Midtown Delivery Service delivers packages which cost \$1.90 per package to deliver. The fixed cost to run the delivery truck is \$415 per day. If the company charges \$6.90 per package, how many packages must be delivered daily to make a profit of \$90?
  - A) 101 packages
- B) 218 packages
- C) 83 packages
- D) 47 packages

Answer: A

409) The cost of manufacturing clocks is given by  $C(x) = 80 + 57x - x^2$ . Also, it is known that in t hours the number of clocks that can be produced is given by x = 5t, where  $1 \le t \le 12$ . Express C as a function of t.

A) 
$$C(t) = 80 + 285t - 25t$$

B) 
$$C(t) = 80 + 57t + t^2$$

C) 
$$C(t) = 80 + 285t - 25t^2$$

D) 
$$C(t) = 80 + 57t - 5$$

410) At Allied Electronics, production has begun on the X–15 Computer Chip. The total revenue function is given by  $R(x) = 52x - 0.3x^2$  and the total cost function is given by C(x) = 3x + 11, where x represents the number of boxes of computer chips produced. The total profit function, P(x), is such that P(x) = R(x) - C(x). Find P(x).

A) 
$$P(x) = 0.3x^2 + 46x - 33$$

B) 
$$P(x) = -0.3x^2 + 46x + 11$$

C) 
$$P(x) = -0.3x^2 + 49x - 11$$

D) 
$$P(x) = 0.3x^2 + 49x - 22$$

Answer: C

411) At Allied Electronics, production has begun on the X–15 Computer Chip. The total revenue function is given by  $R(x) = 44x - 0.3x^2$  and the total profit function is given by  $P(x) = -0.3x^2 + 41x - 16$ , where x represents the number of boxes of computer chips produced. The total cost function, C(x), is such that C(x) = R(x) - P(x). Find C(x).

A) 
$$C(x) = 4x + 21$$

B) 
$$C(x) = 5x + 12$$

C) 
$$C(x) = 3x + 16$$

D) 
$$C(x) = -0.3x^2 + 6x + 16$$

Answer: C

412) At Allied Electronics, production has begun on the X–15 Computer Chip. The total cost function is given by C(x) = 4x + 9 and the total profit function is given by  $P(x) = -0.3x^2 + 49x - 9$ , where x represents the number of boxes of computer chips produced. The total revenue function, R(x), is such that R(x) = C(x) + P(x). Find R(x).

A) 
$$R(x) = 53x + 0.3x^2$$

B) 
$$R(x) = 53x - 0.3x^2$$

C) 
$$R(x) = 55x - 0.3x^2$$

D) 
$$R(x) = 52x - 0.6x^2$$

Answer: B

413) The radius r of a circle of known area A is given by  $r = \sqrt{A/\pi}$ , where  $\pi \approx 3.1416$ . Find the radius and circumference of a circle with an area of 46.12 sq ft. (Round results to two decimal places.)

A) 
$$r = 14.67$$
 ft,  $C = 92.17$  ft

B) 
$$r = 3.83$$
 ft,  $C = 8.86$  ft

C) 
$$r = 3.83$$
 ft,  $C = 24.06$  sq ft

D) 
$$r = 3.83$$
 ft,  $C = 24.06$  ft

Answer: D

414) The volume of water added to a circular drum of radius r is given by  $V_W = 15t$ , where  $V_W$  is volume in cu ft and t is time in sec. Find the depth of water in a drum of radius 2 ft after adding water for 3 sec. (Round result to one decimal place.)

Answer: A

415) A retail store buys 55 VCRs from a distributor at a cost of \$150 each plus an overhead charge of \$30 per order. The retail markup is 25% on the total price paid. Find the profit on the sale of one VCR.

Answer: D

416) A balloon (in the shape of a sphere) is being inflated. The radius is increasing at a rate of 14 cm per second. Find a function, r(t), for the radius in terms of t. Find a function, V(r), for the volume of the balloon in terms of r. Find (V ∘ r)(t).

A) 
$$(V \circ r)(t) = \frac{153664\pi\sqrt{t}}{3}$$

B) 
$$(V \cdot r)(t) = \frac{10976\pi t^3}{3}$$

C) 
$$(V \circ r)(t) = \frac{13720\pi t^2}{3}$$

D) 
$$(V \circ r)(t) = \frac{1372\pi t^3}{3}$$

Answer: B

417) A stone is thrown into a pond. A circular ripple is spreading over the pond in such a way that the radius is increasing at the rate of 2.3 feet per second. Find a function, r(t), for the radius in terms of t. Find a function, A(r), for the area of the ripple in terms of r. Find  $(A \circ r)(t)$ .

A) 
$$(A \cdot r)(t) = 2.3\pi t^2$$

B) 
$$(A \cdot r)(t) = 5.29\pi t^2$$

C) 
$$(A \cdot r)(t) = 5.29\pi^2 t$$

D) 
$$(A \circ r)(t) = 4.6\pi t^2$$

Answer: B

418) Ken is 6 feet tall and is walking away from a streetlight. The streetlight has its light bulb 14 feet above the ground, and Ken is walking at the rate of 3.3 feet per second. Find a function, d(t), which gives the distance Ken is from the streetlight in terms of time. Find a function, S(d), which gives the length of Ken's shadow in terms of d. Then find  $(S \cdot d)(t)$ .

A) 
$$(S \cdot d)(t) = 1.82t$$

B) 
$$(S \cdot d)(t) = 3.14t$$

C) 
$$(S \cdot d)(t) = 5.58t$$

D) 
$$(S \cdot d)(t) = 2.48t$$

Answer: D

- 419) Ken is 6 feet tall and is walking away from a streetlight. The streetlight has its light bulb 14 feet above the ground, and Ken is walking at the rate of 4.8 feet per second. Find a function, d(t), which gives the distance Ken is from the streetlight in terms of time. Find a function, S(d), which gives the length of Ken's shadow in terms of d. Then find  $(S \cdot d)(t)$ . What is the meaning of  $(S \cdot d)(t)$ ?
  - A)  $(S \cdot d)(t)$  gives the distance Ken is from the streetlight in terms of time.
  - B)  $(S \cdot d)(t)$  gives the length of Ken's shadow in terms of time.
  - C)  $(S \cdot d)(t)$  gives the time in terms of Ken's distance from the streetlight.
  - D)  $(S \cdot d)(t)$  gives the length of Ken's shadow in terms of his distance from the streetlight.

Answer: B

Name:

#### Date:

# Chapter 2 Test Form A

1. Match the set described in Column I with the correct interval notation from Column II. Choices in Column II may be used once, more than once, or not at all.

Column I

(a) domain of 
$$f(x) = (x - 3)^2$$

(b) range of 
$$f(x) = (x - 3)^2$$

(c) domain of 
$$x = y^2 + 3$$

(d) range of 
$$x = y^2 + 3$$

(e) domain of 
$$f(x) = 3 - \sqrt{x}$$

(f) range of 
$$f(x) = \sqrt{3-x}$$

(f) range of 
$$f(x) = \sqrt{3 - x}$$

(g) domain of 
$$f(x) = \sqrt[3]{x+3}$$

(h) range of 
$$f(x) = \sqrt[3]{x-3}$$

(i) domain of 
$$f(x) = |x - 3|$$

(i) range of 
$$f(x) = |x| + 3$$

Column II

A. 
$$[3, \infty)$$

B. 
$$[0, \infty)$$

C. 
$$(3, \infty)$$

C. 
$$(3, \infty)$$

D. 
$$(-\infty, 0]$$

E. 
$$[-3, \infty)$$

F. 
$$(-\infty, 3]$$

G. 
$$(-\infty, \infty)$$

H. 
$$(-\infty,0)$$

- 2. Consider the piecewise-defined function defined by  $f(x) = \begin{cases} x^2 6 & \text{if } x \le 1 \\ \sqrt{x} & \text{if } x > 1 \end{cases}$ .
  - (a) Graph f by hand.
  - (b) Use a graphing calculator to obtain an accurate graph in the window [-5, 10] by [-10, 10].
- 3. Graph y = f(x) by hand.

(a) 
$$f(x) = (x-1)^3 + 2$$
 (b)  $f(x) = 2\sqrt{x-3}$ 

(b) 
$$f(x) = 2\sqrt{x - 3}$$

4. If the point (2, 7) lies on the graph of y = f(x), determine a point on the graph of each equation.

(a) 
$$y = f\left(\frac{1}{2}x\right)$$

(b) 
$$y = f(4x)$$

Observe the coordinates displayed at the bottom of the given screen showing a portion of the graph y = f(x). Answer each of the following based on your observation.



- (a) If the graph is symmetric with respect to the y-axis, what are the coordinates of another point on the graph?
- (b) If the graph is symmetric with respect to the origin, what are the coordinates of another point on the graph?
- (c) Suppose the graph is symmetric with respect to the y-axis. Sketch a typical viewing window with dimensions [-5, 5] by [0, 10]. Then draw the graph you would expect to see in this window.

# Test Form 2-A (continued)

Name:

- 6. (a) Write a description that explains how the graph of  $y = 2\sqrt{x-1} + 3$  can be obtained by translating the graph of  $y = \sqrt{x}$ .
  - (b) Sketch by hand the graph of y = -2|x + 2| 3. State the domain and the range.
- 7. Consider the graph of the function shown here.



State the interval(s) over which the function is:

- (a) increasing
- (b) decreasing
- (c) constant
- (d) continuous

- (e) What is the domain of the function?
- (f) What is the range of this function?
- Solve each of the following analytically, showing all steps. Next graph  $y_1 = |4x + 2|$  and  $y_2 = 2$  in the standard viewing window of a graphing calculator. Then state how the graphs support your solution in each case.

(a) 
$$|4x + 2| = 2$$

(b) 
$$|4x + 2| < 2$$
 (c)  $|4x + 2| > 2$ 

(c) 
$$|4x + 2| > 2$$

9. Given  $f(x) = 3x^2 - 2x - 6$  and g(x) = 3x + 5, find each of the following. Simplify the expression when possible.

(a) 
$$(f - g)(x)$$

(b) 
$$\frac{f}{g}(x)$$

(c) the domain of 
$$\frac{f}{g}$$

(d) 
$$(f \circ g)(x)$$

(a) 
$$(f-g)(x)$$
 (b)  $\frac{f}{g}(x)$  (c) the domain of  $\frac{f}{g}$  (d)  $(f\circ g)(x)$  (e)  $\frac{f(x+h)-f(x)}{h}$   $(h\neq 0)$ 

10. The graph of y = f(x) is shown here.



(a) 
$$y = f(x + 3)$$

(a) 
$$y = f(x + 3)$$
 (b)  $y = f(x) + 3$  (c)  $y = f(-x)$  (d)  $y = -f(x)$  (e)  $y = 3f(x)$  (f)  $y = |f(x)|$ 

(c) 
$$y = f(-x)$$

(d) 
$$y = -f(x)$$

(e) 
$$y = 3f(x)$$

(f) 
$$y = |f(x)|$$

| Name: | <br> | <br> |  |
|-------|------|------|--|
| Date: |      |      |  |

## Test Form 2-A (continued)

- 11. The price of postage for mail is defined by the function P(x) = 0.46[x + 1], where x represents the weight of the letter in ounces.
  - (a) Using dot mode and the window [0, 5] by [0,4], graph this function on a graphing calculator.
  - (b) Use the graph to find the price of a 2.42 ounce envelope.
- 12. The members of the New Jazz band want to record a new CD. The cost to record a CD is \$1700 for studio fees plus \$2.25 for each CD produced.
  - (a) Write a cost function C, where x represents the number of CD's produced.
  - (b) Find the revenue function R, if each CD in part (a) sells for \$10.
  - (c) Write the profit function.
  - (d) How many CD's must be produced and sold before the band earns a profit?
  - (e) Support the results of part (d) graphically.

# **Chapter 2 Test Form B**

1. Match the set described in Column I with the correct interval notation from Column II. Choices in Column II may be used once, more than once, or not at all.

Column I

(a) domain of 
$$f(x) = x^2 - 5$$

(b) range of  $f(x) = x^2 - 5$ 

(c) domain of  $f(x) = \sqrt{x} + 5$ 

(d) range of  $f(x) = \sqrt{x-5}$ 

(e) domain of f(x) = |x| - 5

(f) range of f(x) = |x + 5|

(g) domain of  $f(x) = \sqrt[3]{x-5}$ 

(h) range of  $f(x) = \sqrt[3]{x+5}$ 

(i) domain of  $x = y^2 - 5$ 

(j) range of  $x = y^2 - 5$ 

Column II

A.  $(-\infty, \infty)$ 

B.  $[0, \infty)$ 

C.  $(-\infty, 0]$ 

D.  $[-5, \infty)$ 

E.  $(5, \infty)$ 

F.  $(-5, \infty)$ 

G.  $(-\infty, 5]$ 

H.  $[5, \infty)$ 

- Consider the piecewise-defined function defined by  $f(x) = \begin{cases} x^2 7 & \text{if } x \le 1 \\ -\sqrt{x} + 5 & \text{if } x > 1 \end{cases}$ .
  - (a) Graph f by hand.
  - (b) Use a graphing calculator to obtain an accurate graph in the window [-5, 10] by [-10, 10].
- 3. Graph y = f(x) by hand.

(a) 
$$f(x) = |x + 2| - 1$$
 (b)  $f(x) = \sqrt[3]{-x}$ 

(b) 
$$f(x) = \sqrt[3]{-x}$$

4. If the point (4, 2) lies on the graph of y = f(x), determine a point on the graph of each equation.

$$(a) y = f(x - 3)$$

(b) 
$$y = f(x) - 3$$

5. Observe the coordinates displayed at the bottom of the given screen showing a portion of the graph y = f(x). Answer each of the following based on your observation.



- (a) If the graph is symmetric with respect to the y-axis, what are the coordinates of another point on the graph?
- (b) If the graph is symmetric with respect to the origin, what are the coordinates of another point on the graph?
- (c) Suppose the graph is symmetric with respect to the y-axis. Sketch a typical viewing window with dimensions [-8, 8] by [0, 10]. Then draw the graph you would expect to see in this window.
- 6. (a) Write a description that explains how the graph of  $y = \sqrt[3]{x+5}$  can be obtained by translating the graph of  $v = \sqrt[3]{x}$ .
  - (b) Sketch by hand the graph of y = -|x 2| + 3. State the domain and the range.

# Test Form 2-B (continued)

7. Consider the graph of the function shown here.



State the interval(s) over which the function is:

- (a) increasing
- (b) decreasing
- (c) constant
- (d) continuous

- (e) What is the domain of the function?
- (f) What is the range of this function?

8. Solve each of the following analytically, showing all steps. Next graph  $y_1 = |2x - 1|$  and  $y_2 = 5$  in the standard viewing window of a graphing calculator. Then state how the graphs support your solution in each case.

(a) 
$$|2x - 1| = 5$$

(a) 
$$|2x - 1| = 5$$
 (b)  $|2x - 1| < 5$  (c)  $|2x - 1| > 5$ 

(c) 
$$|2x - 1| > 5$$

9. Given  $f(x) = 2x^2 + 5x - 3$  and g(x) = 2x + 1, find each of the following. Simplify the expression when

(a) 
$$(f - g)(x)$$

(b) 
$$\frac{f}{g}(x)$$

(c) the domain of 
$$\frac{f}{g}$$

(d) 
$$(f \circ g)(x)$$

(a) 
$$(f - g)(x)$$
 (b)  $\frac{f}{g}(x)$  (c) the domain of  $\frac{f}{g}$  (d)  $(f \circ g)(x)$  (e)  $\frac{f(x+h)-f(x)}{h}$   $(h \neq 0)$ 

10. The graph of y = f(x) is shown here.



(a) 
$$y = f(x) - 3$$

(a) 
$$y = f(x) - 3$$
 (b)  $y = f(x - 3)$  (c)  $y = -f(x)$  (d)  $y = f(-x)$  (e)  $y = 3f(x)$  (f)  $y = |f(x)|$ 

(c) 
$$y = -f(x)$$

(d) 
$$y = f(-x)$$

(e) 
$$y = 3f(x)$$

(f) 
$$y = |f(x)|$$

## Test Form 2-B (continued)

| Name: |
|-------|
|-------|

- 11. In The Branches Tree Service has been hired to clear an area of trees. If x represents the number of hours they will work, where x > 0, then the function C(x) = 225[x] + 375 gives the total cost in dollars.
  - (a) Using dot mode and the window [0, 10] by [0,3000], graph this function on a graphing calculator.
  - (b) Use the graph to find the price of an 8 hour day.
- 12. Mark and Scott open a new doughnut shop. Their initial cost is \$12,000. A dozen doughnuts costs \$0.25 to make.
  - (a) Write a cost function C, where x represents the number of dozens of doughnuts made.
  - (b) Find the revenue function R, if each dozen in part (a) sells for \$8.00.
  - (c) Write the profit function.
  - (d) How many dozen doughnuts must be produced and sold before the men earn a profit?
  - (e) Support the results of part (d) graphically.

Name:

### Date:

# **Chapter 2 Test Form C**

1. Match the set described in Column I with the correct interval notation from Column II. Choices in Column II may be used once, more than once, or not at all.

Column I

(a) domain of 
$$f(x) = \sqrt{x} - 2$$

(b) range of 
$$f(x) = \sqrt{x+2}$$

(c) domain of 
$$f(x) = |x - 2|$$

(d) range of 
$$f(x) = |x| + 2$$

(e) domain of 
$$f(x) = x^2 + 2$$

(f) range of 
$$f(x) = x^2 + 2$$

(g) domain of 
$$f(x) = \sqrt[3]{x+2}$$

(h) range of 
$$f(x) = \sqrt[3]{x} - 2$$

(i) domain of 
$$x = y^2 + 2$$

(j) range of 
$$x = y^2 + 2$$

Column II

A. 
$$(-\infty, 0)$$

B. 
$$(-\infty, \infty)$$

C. 
$$(-\infty, 2]$$

D. 
$$[-2, \infty)$$

D. 
$$[-2, \infty)$$

E. 
$$(-\infty, 0]$$

F. 
$$(2, \infty)$$

G. 
$$[0, \infty)$$

H. 
$$[2, \infty)$$

- 2. Consider the piecewise-defined function defined by  $f(x) = \begin{cases} 4\sqrt{-x} + 2 & \text{if } x < -4 \\ .5x^2 6 & \text{if } x \ge -4 \end{cases}$ 
  - (a) Graph f by hand.
  - (b) Use a graphing calculator to obtain an accurate graph in the window [-15, 10] by [-10, 20].
- 3. Graph y = f(x) by hand.

(a) 
$$f(x) = -(x+1)^2 + 2$$

(b) 
$$f(x) = (x-3)^2 - 3$$

4. If the point (-1, -2) lies on the graph of y = f(x), determine a point on the graph of each equation.

(a) 
$$y = -f(x)$$

(b) 
$$y = f(-x)$$

5. Observe the coordinates displayed at the bottom of the given screen showing a portion of the graph y = f(x). Answer each of the following based on your observation.



- (a) If the graph is symmetric with respect to the y-axis, what are the coordinates of another point on the graph?
- (b) If the graph is symmetric with respect to the origin, what are the coordinates of another point on the graph?
- (c) Suppose the graph is symmetric with respect to the y-axis. Sketch a typical viewing window with dimensions [-6, 6] by [0, 10]. Then draw the graph you would expect to see in this window.

# Test Form 2-C (continued)

Date:

- 6. (a) Write a description that explains how the graph of  $f(x) = \frac{1}{2}\sqrt[3]{x+3}$  can be obtained by translating the graph of  $y = \sqrt[3]{x}$ .
  - (b) Sketch by hand the graph of y = -3|x 6| + 4. State the domain and the range.
- 7. Consider the graph of the function shown here.



State the interval(s) over which the function is:

- (a) increasing
- (b) decreasing
- (c) constant
- (d) continuous

- (e) What is the domain of the function?
- (f) What is the range of this function?
- Solve each of the following analytically, showing all steps. Next graph  $y_1 = |3x 6|$  and  $y_2 = 3$  in the standard viewing window of a graphing calculator. Then state how the graphs support your solution in each case.

(a) 
$$|3x - 6| = 3$$

(b) 
$$|3x - 6| < 3$$

(c) 
$$|3x - 6| > 3$$

9. Given  $f(x) = 4x^2 - 3x + 2$  and g(x) = 3x + 2, find each of the following. Simplify the expression when

(a) 
$$(f - g)(x)$$

(b) 
$$\frac{f}{g}(x)$$

(a) 
$$(f-g)(x)$$
 (b)  $\frac{f}{g}(x)$  (c) the domain of  $\frac{f}{g}$ 

(d) 
$$(f \circ g)(x)$$

(d) 
$$(f \circ g)(x)$$
 (e)  $\frac{f(x+h) - f(x)}{h}(h \neq 0)$ 

10. The graph of y = f(x) is shown here.



(a) 
$$y = f(x + 2)$$
 (b)  $y = f(x) + 2$  (c)  $y = f(-x)$  (d)  $y = -f(x)$  (e)  $y = 2f(x)$  (f)  $y = |f(x)|$ 

(b) 
$$y = f(x) + 2$$

(c) 
$$y = f(-x)$$

(d) 
$$y = -f(x)$$

(e) 
$$v = 2f(x)$$

(f) 
$$v = |f(x)|$$

| Name: | <br> | <br> |
|-------|------|------|
| Date: |      |      |

## Test Form 2-C (continued)

- 11. The PayMore car rental company is a luxury car rental agency. If x represents the number of days you rent the car, where x > 0, then the function C(x) = 300[x] + 500 gives the total cost in dollars.
  - (a) Using dot mode and the window [0, 10] by [0,3700], graph this function on a graphing calculator.
  - (b) Use the graph to find the price of a 3.25 day rental.
- 12. The class of 2014 wants to raise money for a class trip by selling mini-doughnuts. Their initial cost is \$500 to rent the equipment. A bag of doughnuts costs \$0.35 to make.
  - (a) Write a cost function C, where x represents the number of bags of doughnuts made.
  - (b) Find the revenue function R, if each bag in part (a) sells for \$3.50.
  - (c) Write the profit function.
  - (d) How many bags of doughnuts must be produced and sold before the class earns a profit?
  - (e) Support the results of part (d) graphically.

# **Chapter 2 Test Form D**

1. Match the set described in Column I with the correct interval notation from Column II. Choices in Column II may be used once, more than once, or not at all.

Column I

(a) domain of  $f(x) = x^2 + 9$ 

(b) range of  $f(x) = x^2 + 9$ 

(c) domain of  $f(x) = \sqrt{x} - 9$ 

(d) range of  $f(x) = \sqrt{x+9}$ 

(e) domain of f(x) = |x - 9|

(f) range of f(x) = |x| + 9

(g) domain of  $f(x) = \sqrt[3]{x+9}$ 

(h) range of  $f(x) = \sqrt[3]{x} - 9$ 

(i) domain of  $x = y^2 + 9$ 

(i) range of  $x = v^2 + 9$ 

Column II

A.  $[0, \infty)$ 

B.  $[9, \infty)$ 

C.  $(-\infty, 9]$ 

D.  $(-9, \infty)$ 

E.  $(-\infty, \infty)$ 

F.  $(9, \infty)$ 

G.  $(-\infty, 0]$ 

H.  $[-9, \infty)$ 

- Consider the piecewise-defined function defined by  $f(x) = \begin{cases} x^2 8 & \text{if } x < 4 \\ -\sqrt{x} 4 & \text{if } x \ge 4 \end{cases}$ .
  - (a) Graph f by hand.
  - (b) Use a graphing calculator to obtain an accurate graph in the window [-5, 15] by [-10, 5].
- 3. Graph y = f(x) by hand.

(a) 
$$f(x) = \sqrt[3]{x} + 1$$
 (b)  $f(x) = |-2x|$ 

(b) 
$$f(x) = |-2x|$$

4. If the point (4, 3) lies on the graph of y = f(x), determine a point on the graph of each equation.

(a) 
$$y = 2f(x)$$

(b) 
$$y = f(2x) - 1$$

5. Observe the coordinates displayed at the bottom of the given screen showing a portion of the graph y = f(x). Answer each of the following based on your observation.



- (a) If the graph is symmetric with respect to the y-axis, what are the coordinates of another point on the graph?
- (b) If the graph is symmetric with respect to the origin, what are the coordinates of another point on the graph?
- (c) Suppose the graph is symmetric with respect to the y-axis. Sketch a typical viewing window with dimensions [-5, 5] by [0, 10]. Then draw the graph you would expect to see in this window.
- 6. (a) Write a description that explains how the graph of  $y = \sqrt[3]{x-4} + 5$  can be obtained by translating the graph of  $y = \sqrt[3]{x}$ .
  - (b) Sketch by hand the graph of  $y = \frac{1}{2}|x-4| + 3$ . State the domain and the range.

### Test Form 2-D (continued)

Date:

7. Consider the graph of the function shown here.



State the interval(s) over which the function is:

- (a) increasing
- (b) decreasing
- (c) constant
- (d) continuous

- (e) What is the domain of the function?
- (f) What is the range of this function?

8. Solve each of the following analytically, showing all steps. Next graph  $y_1 = |2x + 3|$  and  $y_2 = 3$  in the standard viewing window of a graphing calculator. Then state how the graphs support your solution in each case.

(a) 
$$|2x + 3| = 3$$
 (b)  $|2x + 3| < 3$  (c)  $|2x + 3| > 3$ 

(b) 
$$|2x + 3| < 3$$

(c) 
$$|2x + 3| > 3$$

9. Given  $f(x) = -2x^2 + 2x - 1$  and g(x) = 2x - 3, find each of the following. Simplify the expression when

(a) 
$$(f - g)(x)$$

(b) 
$$\frac{f}{g}(x)$$

(c) the domain of 
$$\frac{f}{g}$$

(d) 
$$(f \circ g)(x)$$

(a) 
$$(f - g)(x)$$
 (b)  $\frac{f}{g}(x)$  (c) the domain of  $\frac{f}{g}$  (d)  $(f \circ g)(x)$  (e)  $\frac{f(x+h)-f(x)}{h}$   $(h \neq 0)$ 

10. The graph of y = f(x) is shown here.



(a) 
$$y = f(x - 2)$$
 (b)  $y = f(x) - 2$  (c)  $y = -f(x)$  (d)  $y = f(-x)$  (e)  $y = 2f(x)$  (f)  $y = |f(x)|$ 

(b) 
$$y = f(x) - 2$$

(c) 
$$y = -f(x)$$

(d) 
$$y = f(-x)$$

(e) 
$$v = 2f(x)$$

(f) 
$$v = |f(x)|$$

#### Test Bank for Graphical Approach to College Algebra 6th Edition by Hornsby IBSN 9780321909817

Full Download: http://downloadlink.org/product/test-bank-for-graphical-approach-to-college-algebra-6th-edition-by-hornsby-ibsn-

#### Test Form 2-D (continued)

| Name: |  |
|-------|--|
| Name: |  |

- 11. The Budget Printing company produces wedding invitations. If x represents the number of invitations, where x > 0, then the function  $C(x) = 60 \left[ \frac{x}{35} \right] + 70$  gives the total cost in dollars.
  - (a) Using dot mode and the window [0, 250] by [0,500], graph this function on a graphing calculator.
  - (b) Use the graph to find the total cost of 150 invitations.
- 12. The class of 2014 wants to raise money for a class trip by printing and selling silk screen t-shirts. Their initial cost is \$150 to rent the silk screen machine. Each t-shirt costs \$3.50 to make.
  - (a) Write a cost function C, where x represents the number of t-shirts produced.
  - (b) Find the revenue function R, if each t-shirt in part (a) sells for \$15.00.
  - (c) Write the profit function.
  - (d) How many t-shirts must be produced and sold before the class earns a profit?
  - (e) Support the results of part (d) graphically.