Test Bank for College Algebra with Intermediate Algebra A Blended Course 1st Edition by Beecher IBSN 9780134556574 Full Download: http://downloadlink.org/product/test-bank-for-college-algebra-with-intermediate-algebra-a-blended-course-1st-edit

CHAPTER 12		NAME		
TES	T FORM A	CLASS	_SCORE	GRADE
1.	For the sequence whose <i>n</i> th term is $a_n =$	$\left(-1\right)^{n+1}\left(2-\frac{1}{n}\right)$	$\Big)^2$, find 1.	ANSWERS
2.	a_8 . Find the first 5 terms of the sequence wit	h general term	2.	
3.	$a_n = (-1)^{n+1} (3n-4).$ Find and evaluate: $\sum_{k=1}^{4} (k^2 + k).$		3.	
Writ	e sigma notation. Answers may vary.		4.	
4.	8 + 16 + 24 + 32 + 40		5.	
5.	$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \cdots$		6.	
6.	Find the first 4 terms of the recursively de $a_1 = 2$, $a_{n+1} = 3a_n + 5$.	efined sequend		
7.	Find the 20th term of the arithmetic seque	ence 32, 28, 2		
8.	The 1st term of an arithmetic sequence is $\frac{1}{1}$ Find the 10th term	-5 and the 12	8. 8.	
	is $\frac{1}{2}$. Find the 10th term.			
9.	Find the sum of the first 20 terms of the s	series 2+12+		
10.	Find the sum: $\sum_{k=1}^{24} (-2k-1)$.		10.	
11.	Find the 7th term of the geometric sequen	nce 3, 15, 75, 3	375, 11.	

Copyright ©2017 Pearson Education, Inc.

NAME_____

ANSWERS	12. For a geometric sequence, $r = 2$ and $S_6 = 315$. Find a_1 .	
2	Find the sum, if it exists.	
3.	13. $\sum_{k=1}^{10} 2^k$ 14. 100,000 + 80,000 + 64,000 + $\frac{10}{2}$	•••
	15. Find fraction notation for $5.\overline{01}$.	
.4	16. <i>Salvage Value</i> . The value of a piece of home care equipmer \$3000. Its salvage value each year is 75% of its value the before. Give a sequence that lists the salvage value of the	year
5	of equipment for each year of a 5-year period.	piece
6	 17. <i>Hourly Wage</i>. Jayden accepts a job with a starting hourly v \$10.25, and is promised a raise of 20¢ per hour every mont two years. What will Jayden's hourly wage be at the end o two-year period? 	th for
7	18. <i>Amount of an Annuity</i> . To create a college fund, a parent m sequence of 15 yearly deposits of \$1200 each in a savings account on which interest is compounded annually at 3.5 % the amount of the annuity.	
	 19. Use mathematical induction to prove that, for every natural number n, 	1
9. <u>See work.</u>	$5+10+15+\dots+5n = \frac{5n(n+1)}{2}.$	

NAME_____

Eval	uate. $_{12}P_3$ 21. $_{13}C_7$ 22. $\binom{n}{4}$	ANSWERS
23.	How many 4-letter code symbols can be formed with the letters P, R, O, D, U, C, and T without repetition?	21
24.	How many 4-digit codes can be formed using the digits 2, 4, 6, 8, and 0 if the digits: a) can be repeated?	22
	b) are not repeated and must begin with 4?	23
25.	<i>Class Representatives</i> . A class has 80 members. How many sets of 3 representatives can be selected from this group?	24. a)
26.	<i>Work crews</i> . There are 9 seniors and 6 juniors in a class. In how many ways can a clean-up crew of 3 seniors and 2 juniors be selected?	b) 25
27.	Expand: $(x-a)^6$.	26
28.	Find the 3rd term of the binomial expansion of $(2x + y)^5$.	27
29.	Determine the number of subsets of a set containing 8 members.	28
30.	<i>Chocolates.</i> Suppose we select, without looking or otherwise inspecting, a chocolate from a box that contains 14 cream-filled chocolates and 10 caramel-filled chocolates. What is the probability that we choose a cream-filled chocolate?	29
		30

NAME_____

ANSWERS 31.	31.	<i>Marbles</i> . Suppose Jay selects four marbles without looking from a bag containing 4 white marbles, 2 blue marbles, 8 red marbles, and 6 green marbles. What is the probability of getting 1 white marble and 3 red marbles?		
	32.	The graph of the sequence v	whose general term is $a_n = -2n + 7$	
		is which of the following?		
		A. a_n	B. a_n	
32.		5 3 2 1 1 -5-4-3-2-1 -1 -2 -3 4 -5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
33		l l	I	
		С.	D.	
		a_n	$ \begin{array}{c} a_n \\ 5 \\ 4 \\ 3 \\ 2 \\ 1 \\ -5 \\ -4 \\ -3 \\ -5 \\ -4 \\ -3 \\ -5 \\ -4 \\ -5 \\ -4 \\ -5 \\ -4 \\ -5 \\ -4 \\ -5 \\ -4 \\ -5 \\ -4 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5$	
	33.	Solve for <i>n</i> : $_{n}P_{10} = 3 \cdot _{n}P_{9}$.		

CHAPTER 12 NAME_ **TEST FORM B** CLASS SCORE GRADE 1. For the sequence whose *n*th term is $a_n = (-2)^{n-2}(n-1)$, find a_8 . **ANSWERS** 1. 2. Find the first 5 terms of the sequence with general term $a_n = \frac{(n-1)(n+2)}{3}.$ 2. 3. Find and evaluate: $\sum_{k=1}^{4} \frac{2^k}{k+1}.$ 3. Write sigma notation. Answers may vary. 4. 4. $5+10+15+20+25+\cdots$ 5. 3 + 9 + 27 + 81 + 2435. 6. Find the first 4 terms of the recursively defined sequence $a_1 = 4, a_{n+1} = 2a_n - 1.$ 6. Find the 18th term of the arithmetic sequence 3, 7, 11, 7. 7. The 1st term of an arithmetic sequence is -8 and the 15th term is 8. 34. Find the 7th term. 8. 9. Find the sum of the first 20 terms of the series $100 + 75 + 50 + 25 + \cdots$. 9. 10. Find the sum: $\sum_{k=1}^{24} (3k-4)$. 10. 11. Find the 6th term of the geometric sequence 50, 10, 2, $\frac{2}{5}$, 11. _____

NAME_____

ANSWERS	12. For a geometric sequence, $r = 0.2$ and $S_5 = 4.9984$. Find a_1 .
2	- Find the sum, if it exists.
3	$13. \sum_{k=1}^{7} 3^{k} \qquad \qquad 14. 2 + \frac{5}{2} + \frac{25}{8} + \cdots$
	15. Find fraction notation for $3.\overline{15}$.
4	16. <i>Salvage Value</i> . The value of a piece of home care equipment is \$4200. Its salvage value each year is 70% of its value the year before. Give a sequence that lists the salvage value of th piece of equipment for each year of a 5-year period.
6	17. <i>Hourly Wage</i> . Dakota accepts a job with a starting hourly wage of \$10.30. He is promised a raise of 30¢ per hour every two months for the next two years. What will his hourly wag be at the end of the two-year period?
7	 18. <i>The Economic Multiplier</i>. The government is making a \$30,000 expenditure for environmental education. If 35% o this is spent again, and so on, what is the total effect on the economy?
8	19. Use mathematical induction to prove that, for every natural number <i>n</i> , $5+9+13+\dots+(4n+1) = n(2n+3).$
9. <u>See work.</u>	-

NAME_____

Eval	uate.	ANSWERS
20.	$_{13}P_5$ 21. $_{10}C_7$ 22. $\binom{n}{3}$	20
23.	How many 5-letter code symbols can be formed with the letters F, A, C, T, O, and R without repetition?	21
24.	How many 4-digit codes can be formed using the digits 2, 4, 6, 8, and 0 if the digits:	22
	a) can be repeated?b) are not repeated and must end with 6?	23
25.	<i>Class Representatives</i> . A class has 35 members. How many sets of 2 representatives can be selected from this group?	24. a) b)
26.	<i>Youth Sports</i> . A youth sports team has 7 defense players and 8 offense players. How many ways can the coach choose 3 defense players and 5 offense players?	25
27.	Expand: $(x-d)^5$.	26
28.	Find the 4th term of the binomial expansion of $(p+q)^{10}$.	27
29.	Determine the number of subsets of a set containing 5 members.	28
30.	<i>Card drawing</i> . Suppose we draw a card from a well-shuffled deck of 52 cards. What is the probability of drawing a jack?	29
		30

NAME_____

ANSWERS 1	31.	from a bag containing 10 wh marbles, and 6 green marble	ets three marbles without looking hite marbles, 5 blue marbles, 3 rec es. What is the probability of e marble, and 1 blue marble?
	32.	The graph of the sequence w	whose general term is $a_n = n - 4$ i
		which of the following?	
		A.	B.
2	-	a_n	an 5 4 3 2 1 -5 -4 -3 -2 -1 1 1 2 3 4 5 n
		-1 -2 -3 -3 -4 -5	
3	-	С.	D.
		$ \begin{array}{c} a_n \\ 5 \\ -5 \\ -4 \\ -3 \\ -5 \\ -4 \\ -3 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5$	a_n
	33.	Solve for <i>n</i> : $\binom{n}{6} = 2\binom{n-1}{5}$	

CHAPTER 12 NAME_ SCORE GRADE CLASS TEST FORM C For the sequence whose *n*th term is $a_n = (-1)^n (3n+2)$, find a_6 . ANSWERS 1. 1. Find the first 5 terms of the sequence with general term 2. $a_n = \frac{2n-1}{n}.$ 3. Find and evaluate: $\sum_{k=1}^{4} \frac{k}{2}$. Write sigma notation. Answers may vary. 4. $-3+6-9+12-15+\cdots$ 5. $\frac{3}{2}+\frac{3}{4}+\frac{3}{8}+\frac{3}{16}+\frac{3}{32}$ 6. Find the first 4 terms of the recursively defined sequence $a_1 = 10, a_{n+1} = \frac{1}{2}a_n + 1.$ Find the 12th term of the arithmetic sequence $\frac{3}{4}, \frac{5}{4}, \frac{7}{4}, \dots$. 7. 8. The 1st term of an arithmetic sequence is 21 and the 12th term is 8. 26.5. Find the 6th term. Find the sum of the first 20 terms of the series $-5+5+15+\cdots$. 9. 9. 10. Find the sum: $\sum_{k=1}^{24} (4k-2)$. 10._____ Find the 6th term of the geometric sequence $2, -6, 18, -54, \dots$. 11.

NAME_____

ANSWERS	12. For a geometric sequence, $r = 2$ and $S_4 = 45$. Find a_1 .
2	Find the sum, if it exists.
3	13. $\sum_{k=1}^{6} 4^k$ 14. $60 + 40 + \frac{80}{3} + \cdots$
	15. Find fraction notation for $0.\overline{74}$.
4	16. <i>Salvage Value</i> . The value of a piece of home care equipment \$2000. Its salvage value each year is 60% of its value the year before. Give a sequence that lists the salvage value of the piece of equipment for each year of a 5-year period.
5	17. <i>Hourly Wage</i> . Barry accepts a job with a starting hourly wage of \$12.95. He is promised a raise of 60¢ per hour every 4
.6	months for the next two years. What will his hourly wage be the end of the two-year period?
7	18. Earnings. Suppose someone offered you a job for five years under the following conditions. You will be paid \$5 for the first month, \$7 for the second, and \$9.80 for the third, and so on, earning 40 % more each month. How much would you earn altogether?
8	19. Use mathematical induction to prove that for every natural number <i>n</i> , $1+2+2^2+\dots+2^{n-1}=2^n-1.$
9. <u>See work.</u>	

NAME_____

Eval		ANSWERS
20.	$_{13}P_9$ 21. $_{20}C_9$ 22. $\binom{n}{5}$	20
23.	How many 4-letter code symbols can be formed with the letters E, X, P, A, N, and D without repetition?	21
24.	How many 3-digit codes can be formed using the digits 2, 4, 6, 8, and 0 if the digits:	22
	a) can be repeated?b) are not repeated and must begin with 8?	23
25.	<i>Class Representatives</i> . A class has 60 members. How many sets of 3 representatives can be selected from this group?	24. a) b)
26.	<i>School Committees.</i> Suppose a school community has 9 teachers and 100 students. How many committees can be formed consisting of 2 teachers and 5 students?	25
27.	Expand: $(x-2)^5$.	26
28.	Find the 3rd term of the binomial expansion of $(s+t)^7$.	27
29.	Determine the number of subsets of a set containing 6 members.	28
30.	<i>Card drawing</i> . Suppose we draw a card from a well-shuffled deck of 52 cards. What is the probability of drawing a face card (jack, queen, or king)?	29
		30

NAME_____

ANSWERS 31.	31.	<i>Marbles</i> . Suppose Jay selects four marbles without looking from a bag containing 10 white marbles, 5 red marbles, 3 blue marbles, and 2 green marbles. What is the probability of getting 3 blue marbles and 1 red marble?		
	32.	The graph of the sequence w which of the following? A. a_n	whose general term is $a_n = n - 3$ is B.	
32		$ \begin{array}{c} 5 \\ 4 \\ 3 \\ 2 \\ 1 \\ -5 \\ -4 \\ -3 \\ -5 \\ -4 \\ -5 \\ -5 \\ -4 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5$	5 4 2 1 -54321. -2 -3 -4 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5	
33		C.	D.	
	33.	Solve for <i>n</i> : $\binom{n}{5} = \binom{n-1}{6}$.		

CHAPTER 12 NAME **TEST FORM D** CLASS SCORE GRADE **ANSWERS** For the sequence whose *n*th term is $a_n = (-1)^{n-1} \frac{n}{2} (2n+1)$, find 1. a_8 . 1. 2. Find the first 5 terms of the sequence with general term $a_n = \frac{(-1)^n \left(4n+3\right)}{n}.$ 2. 3. Find and evaluate: $\sum_{k=1}^{4} \frac{2k-1}{k^2}$. Write sigma notation. Answers may vary. 4. (-1)+2+(-3)+4+(-5)+65. 5. $6 + 12 + 18 + 24 + 30 + \cdots$ Find the first 4 terms of the recursively defined sequence 6. 6. $a_1 = 0.5, a_{n+1} = 4 + 2a_n$. 7. Find the 17th term of the arithmetic sequence 12, 7, 2, 7. 8. The 1st term of an arithmetic sequence is -8 and the 15th term 8. is -1. Find the 5th term. 9. _ Find the sum of the first 20 terms of the series $12+8+4+\cdots$. 9. Find the sum: $\sum_{k=1}^{24} (-3k+1)$. 10. 10. Find the 8th term of the geometric sequence $-4, 6, -9, \frac{27}{2}, \dots$ |11. 11.

NAME_____

ANSWERS	12. For a geometric sequence, $r = 2$ and $S_8 = -63.75$. Find a_1 .
12	Find the sum, if it exists.
13	13. $\sum_{k=1}^{10} 3^k$ 14. $-16 + (-8) + (-4) + \cdots$
	15. Find fraction notation for $2.\overline{09}$.
14	16. <i>Salvage Value</i> . The value of a piece of home care equipment is \$1200. Its salvage value each year is 75% of its value the year before. Give a sequence that lists the salvage value of the piece of equipment for each year of a 5-year period.
15	17. <i>Hourly Wage</i> . Aidan accepts a job with a starting hourly wage of \$17.50. He is promised a raise of 80¢ per hour every three months for the next two years. What will his hourly wage be at the end of the two-year period?
10	 Bouncing Tennis Ball. A tennis ball is dropped from a height
17	of 12 ft and always rebounds $\frac{2}{3}$ of the distance fallen. How far (up and down) will the ball have traveled when it hits the pavement for the 5 th time?
18	19. Use mathematical induction to prove that for every natural number <i>n</i> , 2 - 2 - 2 - 2 - 2 - n(n+1)(2n+1)
19. <u>See work.</u>	$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}.$

NAME_____

Eval		ANSWERS
20.	$_{10}P_4$ 21. $_{12}C_2$ 22. $\binom{n}{3}$	20
23.	How many 4-letter code symbols can be formed with the letters P, R, I, M, E, and S without repetition?	21
24.	How many 5-digit codes can be formed using the digits 2, 4, 6, 8, and 0 if the digits:	22
	a) can be repeated?b) are not repeated and must begin with 6?	23
25.	<i>Class Representatives</i> . A class has 40 members. How many sets of 4 representatives can be selected from this group?	24. a)
26.	<i>Dinner Specials</i> . For a particular special, a diner can choose one appetizer, one entrée, and one dessert. The restaurant offers choices from 4 appetizers, 3 entrees, and 2 desserts. In how many ways can a dinner special be formed?	b) 25
27.	Expand: $(a-2)^5$.	26
28.	Find the 4th term of the binomial expansion of $(3x + y)^4$.	27
29.	Determine the number of subsets of a set containing 7 members.	28
30.	<i>Socks</i> . Your sock drawer contains 8 black, 3 blue, 2 brown, and 2 white pairs of socks which are rolled into matching pairs. In the dark, you select a pair of socks. What is the probability that	29
	you select a pair that is white?	30

NAME_____

ANSWERS 31.	31.	from a bag containing 5 wh	cts four marbles without looking ite marbles, 3 blue marbles, 8 red es. What is the probability of getting rbles?
	32.	The graph of the sequence	whose general term is $a_n = 6 - 2n$ is
		which of the following?	
		Α.	B.
32	-	a_n 5 4 3 2 1 -5 - 4 - 3 - 2 - 1 - 1 -2 -3 4 -5 -3 -5 -3 -5 -5 -4 -3 -2 -3 -3 -3 -3 -3 -4 -5 -3 -4 -5 -3 -2 -1 -1 -2 -3 -3 -2 -1 -1 -2 -3 -3 -2 -1 -1 -2 -3 -3 -2 -1 -1 -2 -3 -3 -2 -1 -1 -2 -3 -3 -2 -3 -3 -3 -2 -1 -2 -3 -	$ \begin{array}{c} a_n \\ 5 \\ 4 \\ 3 \\ 2 \\ -5 \\ -4 \\ -3 \\ -5 \\ -4 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5$
33	_	C.	D.
		a_n	$ \begin{array}{c} a_{n} \\ 5 \\ 4 \\ 3 \\ 2 \\ 1 \\ -5 \\ -5 \\ -4 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3$
	33.	Solve for <i>n</i> : $\binom{n}{n-2} = 15$.	

NAME_

CLASS SCORE GRADE **TEST FORM E** 1. For the sequence whose *n*th term is $a_n = n(n-2)^3$, find a_7 . ANSWERS c) 2345 a) 875 b) 1728 d) 105 1. _____ 2. Find and evaluate: $\sum_{k=1}^{4} \frac{(-1)^{k+1}}{2k}$. a) $-\frac{1}{8}$ b) $-\frac{7}{24}$ c) $\frac{5}{12}$ d) $\frac{7}{24}$ 2. Find sigma notation for 1+2+4+8+16+32. 3. a) $\sum_{k=1}^{5} 2^{k}$ b) $\sum_{k=1}^{6} 2^{k-1}$ c) $\sum_{k=1}^{6} 2^{k}$ d) $\sum_{k=1}^{\infty} 1 \cdot 2^{k-1}$ 3. 4. Find sigma notation for $4 - 6 + 8 - 10 + 12 - 14 + \cdots$. a) $\sum_{n=1}^{\infty} 2^n$ b) $\sum_{n=2}^{\infty} 2(n-2)$ c) $\sum_{n=2}^{\infty} (-1)^n 2n$ d) $\sum_{n=2}^{\infty} (-1)^{n+1} 2n$ 4. 5. Find the 4th term of the recursively defined sequence $a_1 = \frac{1}{2}, a_{n+1} = 3a_n + 2.$ 5. a) 14 b) $39\frac{1}{2}$ c) 63 d) $3\frac{7}{8}$ 6. Find the 19th term of the arithmetic sequence $\frac{3}{4}, \frac{5}{4}, \frac{7}{4}, \dots$. 6. _____ a) $\frac{41}{4}$ b) $\frac{43}{4}$ c) $\frac{39}{4}$ d) $\frac{19}{2}$

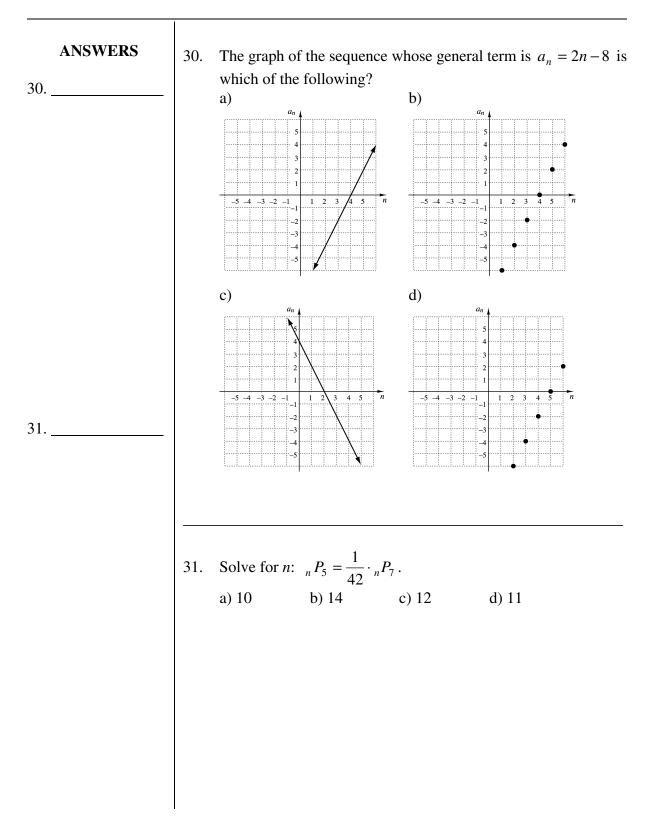
NAME_____

TEST FORM E

7.	ANSWERS		is 64. Find t	he 5th term.	tic sequence is c) $\frac{32}{19}$	a - 12 and the 20th term d) $-\frac{8}{5}$
8.		8.			terms of the s c) -750	series $20 + 15 + 10 + \cdots$. d) - 550
9.		9.	Find the sum a) –530	$\sum_{k=1}^{20} (-3k+5)$ b) -55). c) –1060	d) 990
10.		10.			c) $\frac{4096}{125}$	nce 100, 80, 64, d) $\frac{8192}{25}$
11.		11.	For a geometric algorithm $-\frac{8}{3}$	tric sequence, b) –2	$r = \frac{1}{4}$ and $S_4 =$ c) -8	$= -2.65625$. Find a_1 . d) $-\frac{85}{12}$
12.		12.		h: $\sum_{k=1}^{8} (-1)^k 3^k$ b) -9840	c) –1641	d) -4920
13.		13.	Find the sum a) 16	h, if it exists: b) $\frac{16}{3}$	$4+1+\frac{1}{4}+\cdots$ c) 6	d) Does not exist

NAME_____

4.	When $0.\overline{72}$ is the denomina				
	a) 72	b) 8	c) 11	d) 9	14
5.	\$3,200,000 e	expenditure f is spent agai ? Round to t	for restoration n, and so on	0,000	
6.	A garden has the third row, altogether?	4 plants in t and so on f	he first row, or 10 rows.	, 5 in the second row How many plants a nts d) 170 plants	
7.	6	nds $\frac{3}{5}$ of the trebounds?			
8.	a) It is someti	or $n = 1, 2, 3$, mes true.	 b) It is ne	ever true. ot possible to evalua	18 te.
9.	Find S_{k+1} , the proof of $4+8$ a) $4+4k = 2k$ b) $4+8+12-12$ c) $4+8+12-12$ d) $4+8+12-12$	luction 19			


NAME_____

ANSWERS 20	20.	Evaluate: a) 28	₈ P ₂ . b) 56	c) 20,160	d) 112
21		Evaluate: a) 95,040 c) 792	$_{12}C_5$.	b) 3,991,680 d) 5040)
22	22.	Evaluate: a) $\frac{n!}{3!}$	$\binom{n}{2}.$ b) $\frac{(n-2)!}{2!}$	c) $\frac{2!n!}{(n-2)!}$	d) $\frac{n!}{(n-2)! 2!}$
23	23.		ible completed a	answer sheets	25 questions. How are there?
24	24.	-	ays can it choos		

NAME_____

25.	choose two o	of five fruit op	tions, three of	ception, the host must six bagel options, and y way can this be done? d) 28,800	25.	ANSWERS
26.	c) $x^8 - 4x^6 $	$(-1)^{4}.$ $(+16x^{4} - 4x^{2} - 4x^{2} + 6x^{4} - 4x^{2} + 6x^{4} - 4x^{2} + 6x^{4} + 4x^{2} - 6x^{4} + 4x^{2} - 6x^{4} + 4x^{2} - 6x^{4} + 6x^{4} + 6x^{4} - 6x^{4} - 6x^{4} + 6x^{4} - 6x^{$	1		26. 27.	
27.			nomial expans c) $28c^4d^4$	ion of $(c+d)^8$. d) $56c^4d^4$	28.	
28.	Determine th a) 16		subsets of a set c) 64	containing 8 members. d) 256	29.	
29.	deck of 52 c	• • • •	the probability	from a well-shuffled of drawing a red king? d) $\frac{1}{104}$		

NAME_____

NAME

CHAFTER 12							
ГES	T FORM F			CLASSSCOR	REGRADE		
1.	For the seq a) 845		(c) 725 term is a_n	= $5(2n+1)^2$, find a_6 . d) 605	ANSWERS 1		
2.	Find and e	valuate: $\sum_{k=1}^{3} \frac{k}{k}$	$\frac{2}{1+1}$.				
	a) $\frac{9}{4}$	b) $\frac{23}{6}$	c) $\frac{181}{144}$	d) $\frac{49}{12}$	2		
3.	-	b) $\sum_{k=1}^{5} 3 \cdot 5^k$			3		
4.		b) $\sum_{n=1}^{6} \frac{1}{n-1}$		-	4		
5.	n-1	$\sum_{n=1}^{n} n - 1$ h term of the re	n-1		5		
5.	$a_1 = 3, a_{n+1}$	$a_{n} = 2a_n - 5.$ b) -9	-	-	6		
6.	Find the 16 a) –82	6th term of the b) 104	20	quence 14, 8, 2, d) -76			
7.		m of an arithm 1 the 5th term.	1	is 7 and the 20th term is	7		

NAME_____

8.	ANSWERS	8.	Find the sum a) $\frac{580}{3}$	b) $\frac{1180}{3}$	c) terms of the solution $\frac{590}{3}$	series $\frac{1}{3} + \frac{4}{3} + \frac{7}{3} + \cdots$. d) $\frac{640}{3}$
9.		9.	Find the sum	$\sum_{k=1}^{24} (4k+8).$	c) 2784	
			a) 104	b) 1392	c) 2784	d) 2496
10.		10.				nce 10, 20, 40,
			a) 1280	0) 2300	c) 5120	d) 2330
11.						= 12.1. Find a_1 .
			a) –0.5	b) –0.1	c) 0.3025	d) 0.1
12.		12.	Find the sum $a_{1} = 12285$	$h \sum_{k=1}^{12} -3(2)^k.$ h) -24 570	c) –12,282	d) -12288
13.			Find the sum		0.2 + 0.4 + 0.8	
14.		14.	When $1.\overline{38}$ i the numerato a) 99		-	ction notation, what is d) 46

NAME_____

15.	repaid in 5 yr at 8% interes	y borrows \$20,000. The loan is to be t, compounded annually. How much 5 yr? Round to the nearest dollar. c) \$21,600 d) \$29,549	ANSWERS 15
16.	the third row, 35 in the four many plants are there altoge a) 1320 plants	e first row, 15 in the second row, 25 in th row, and so on for 12 rows. How ether? b) 720 plants d) 1440 plants	16
17.	° .	opped from a height of 256 cm and listance fallen. How high does it ds? b) 45.5625 cm d) 81 cm	17
18.	If possible, evaluate the stat $n^2 > (n-1)^2$, for $n = 1, 2$,	tement:	18
		b) It is never true.d) It is not possible to evaluate.	
19.		statement, S_3 , in a mathematical ++ $(3n-1) = \frac{n(3n+1)}{2}$, for <i>n</i> a	19
	natural number. $1(2, 1, 1)$		
	a) $2 = \frac{1(3 \cdot 1 + 1)}{2}$; True		
	b) $2+5+8=\frac{3(3\cdot 3+1)}{2}$; Fa		
	c) $2+5+8+\dots+(3n-1)=$		
	d) $2+5+8=\frac{3(3\cdot 3+1)}{2}$; Tr	rue	

NAME_____

ANSWERS 20	20.	Evaluate: ${}_{12}P_{10}$. a) 66 c) 132	b) 239,500,8 d) 665,280	00
21	21.	Evaluate: ${}_{8}C_{3}$. a) 336 b) 6720	c) 56	d) 120
22	22.	Evaluate: $\binom{n}{3}$. a) $\frac{n!}{(n-3)! 3!}$ b) $\frac{n!}{3!}$	c) $\frac{n!}{(n-3)!}$	d) $\frac{n! 3!}{(n-3)!}$
23	23.	<i>Test answers</i> . A multiple of each of which may be answ completed answer sheets at a) 531,441 b) 1728	vered a, b, or c re there?	. How many possible
24	24.	<i>Committee Members</i> . A cl many different committees a) 6840 c) 8000		are possible?

NAME_____

25.	<i>Menu Option</i> choose three options, and can this be de	ANSWERS 25			
	a) 79,2300	b) 6	c) 30	d) 6600	
26.	Expand: $(x + a) x^4 + 9$ b) $x^4 + 4\sqrt{3}x^4$	$(-\sqrt{3})^4$. $x^3 + 18x^2 + 12$	$2\sqrt{3}x+9$		26
	,	$+18x^{2}+36x$			
	d) $x^{+} + 4\sqrt{3}x^{+}$	$x^3 + 48x^2 + 4x^2$	$\sqrt{3x+9}$		27
27.	Find the 5^{th} t a) $80m$	erm of the bir b) 32	nomial expans c) 160 <i>m</i>	ion of $(m+2)^5$. d) $32m$	28
28.	Determine th	e number of s	subsets of a se	t containing 10	
	members. a) 512	b) 100	c) 1024	d) 45	29
29.	a bag contair marbles. Wh marble?	ning 5 red man nat is the prob	bles, 4 yellow	oking, one marble from marbles, and 7 blue cting a red or yellow d) $\frac{3}{4}$	

Test Bank for College Algebra with Intermediate Algebra A Blended Course 1st Edition by Beecher IBSN 9780134556574 Full Download: http://downloadlink.org/product/test-bank-for-college-algebra-with-intermediate-algebra-a-blended-course-1st-edit

Copyright ©2017 Pearson Education, Inc.