1.1 Graphs and Models #### 1 ## 1.1 Graphs and Models #### **Multiple Choice** Identify the choice that best completes the statement or answers the question. _____ 1. Which of the following is the correct graph of y = 2 - x? a. d. b. e. a. d. b. e. 3. Which of the following is the correct graph of $y = 3x - x^2$? a. d. b. e. a. d. b. e. #### ___ 5. Find all intercepts: $$y = x^2 - x - 12$$ - a. x-intercepts: (4,0), (-3,0); y-intercepts: (0, 4), (0, 3) - b. x-intercept: (12, 0); y-intercepts: (0, 4), (0, 3) - c. *x*-intercepts: (4, 0), (-3,0); *y*-intercept: (0, -12) - d. x-intercepts: (4, 0), (-3,0); y-intercepts: (0, -12), (0, 12) - e. x-intercept: (-3, 0); y-intercept: (0, -12) #### _ 6. Find all intercepts: $$y = 64x - x^3$$ - a. x-intercepts: (-8, 0), (8, 0); no y-intercept - b. x-intercept: (0, 0); y-intercepts: (0, 0), (0, -8), (0, 8) - c. x-intercepts: (0, 0), (-8, 0), (8, 0); y-intercept: (0, 0) - d. x-intercepts: (0, 0), (-8, 0), (8, 0); no y-intercept - e. x-intercepts: (-8, 0), 8; y-intercept: (0, 0) #### _ 7. Find all intercepts: $$y = (x+5)\sqrt{4-x^2}$$ - a. x-intercepts: (-5, 0), (-2, 0), (2, 0); y-intercepts: (0, 0), (0, 10) - b. x-intercepts: (-5, 0), (2, 0); y-intercept: (0, 10) - c. x-intercepts: (-5, 0), (2, 0); y-intercept: (0, -10) - d. *x*-intercepts: (-5, 0), (-2, 0), (2, 0); *y*-intercept: (0, 10) - e. x-intercepts: (-5, 0), (-2, 0), (2, 0); y-intercept: (0, -10) - 2. Test for symmetry with respect to each axis and to the origin. $$x^2y^2=8$$ - a. symmetric with respect to the origin - b. symmetric with respect to the x-axis - c. symmetric with respect to the y-axis - d. no symmetry - e. A, B, and C - _____ 9. Test for symmetry with respect to each axis and to the origin. $$y = \frac{x^2 + 2}{x}$$ - a. symmetric with respect to the origin - b. symmetric with respect to the y-axis - c. symmetric with respect to the *x*-axis - d. both B and C - e. no symmetry $$x = y^3 - 9y$$ a. d. b. e. none of the above ___ 11. Sketch the graph of the equation: $$x = 4 - y^2$$ a. d. b. e. ## ____ 12. Sketch the graph of the equation: $$y = |x + 2|$$ a. d. b. e. none of the above ____ 13. Find the points of intersection of the graphs of the equations: $$x = y^2 - 3$$ $$y = x + 1$$ a. $$(-2, 1), (-1, 2)$$ e. $$(-2, -3), (-1, 2)$$ ____ 14. The table given below shows the Consumer Price Index (CPI) for selected years. Use the regression capabilities of a graphing utility to find a mathematical model of the form $y = at^2 + bt + c$ for the data. In the model, y represents the CPI and t represents the year, with t = 5 corresponding to 1975. Round all numerical values in your answer to three decimal places. | ear | 975 | 980 | 985 | 990 | 995 | 000 | 005 | |-----|-----|-----|------|------|------|------|------| | PI | 7.8 | 0.6 | 03.6 | 30.7 | 52.4 | 70.5 | 92.5 | a. $$y = -0.019t^2 + 5.268t + 30.871$$ b. $$y = -0.019t^2 - 5.957t + 30.871$$ c. $$y = -0.016t^2 - 5.957t - 30.871$$ d. $$y = -0.019t^2 + 5.957t + 40.871$$ e. $$y = -0.016t^2 + 5.268t + 40.871$$ | ear | 975 | 980 | 985 | 990 | 995 | 000 | 005 | |-----|-----|-----|------|------|------|------|------| | PI | 5.5 | 0.6 | 05.5 | 35.5 | 60.5 | 72.5 | 50.5 | a. d. b. e. _____ 16. The table given below shows the Consumer Price Index (CPI) for selected years. The mathematical model for the data given below is $y = -0.031t^2 + 5.887t + 24.429$, where y represents the CPI and t represents the year, with t = 5 corresponding to 1975. Use the model to predict the CPI for the year 2010. Round your answer to the nearest integer. | ear | 975 | 980 | 985 | 990 | 995 | 000 | 005 | |-----|-----|-----|------|------|------|------|------| | PI | 2.8 | 0 | 06.6 | 30.7 | 52.4 | 71.2 | 94.3 | - a. y = 211 - b. y = 209 - c. y = 192 - d. y = 173 - e. y = 210 _____ 17. Find the sales necessary to break even (R = C) if the cost C of producing x units is $C = 5.3\sqrt{x} + 40,000$ and the revenue R for selling x units is R = 3.3x. Round your answer to the nearest integer. - a. $x \approx 6,244$ units - b. $x \approx 12,334$ units - c. $x \approx 12,305$ units - d. x ≈ 12, 299 units - e. x ≈ 6, 239 units The resistance y in ohms of 1000 feet of solid metal wire at $77^{\circ}F$ can be approximated by the 18. model $y = \frac{10,000}{x^2} - 0.57$, $5 \le x \le 100$, where x is the diameter of the wire in mils (0.001 in). Use a graphing utility to graph the model $y = \frac{10,000}{x^2} - 0.57, 5 \le x \le 100.$ a. d. e. _____ 19. The resistance y in ohms of 1000 feet of solid metal wire at $77^{\circ}F$ can be approximated by the model $y = \frac{12,750}{x^2} - 0.37$, $5 \le x \le 100$, where x is the diameter of the wire in mils (0.001 in). If the diameter of the wire is doubled, the resistance is changed by approximately what factor? In determining your answer, you can ignore the constant -0.37. - a. 3 - b. $\frac{1}{2}$ - c. 4 - d. $\frac{1}{4}$ - e. $\frac{1}{3}$ ## 1.1 Graphs and Models Answer Section | 1.
OBJ: | ANS: Identify the gr | C | PTS: | 1
on | DIF: | Easy | REF:
MSC: | Section 1.1
Skill | |-------------|-------------------------|--------------|--------------------------|----------------|----------------------------|-------------------------|--------------|-------------------------| | 2.
OBJ: | ANS: Identify the gr | Ē | PTS: | 1 | DIF: | Easy | REF:
MSC: | Section 1.1
Skill | | 3.
OBJ: | ANS: Identify the gr | B | PTS: | 1 | DIF: | Easy | REF:
MSC: | Section 1.1
Skill | | 4.
OBJ: | ANS: Identify the gr | В | PTS: | 1 | DIF: | Easy | REF:
MSC: | Section 1.1
Skill | | 5.
OBJ: | ANS: | C | PTS: | 1 | DIF: | Easy | REF:
MSC: | Section 1.1
Skill | | 6.
OBJ: | ANS: Calculate the | C | PTS: | 1 | DIF: | Easy | REF:
MSC: | Section 1.1
Skill | | 7.
OBJ: | ANS: Calculate the | D | PTS: | 1 | DIF: | Easy | REF:
MSC: | Section 1.1
Skill | | 8.
OBJ: | ANS: | Е | PTS: | 1 | DIF: of an equation | Easy | REF:
MSC: | Section 1.1
Skill | | 9.
OBJ: | ANS: | A | PTS: | 1 | DIF: of an equation | Easy | REF:
MSC: | Section 1.1
Skill | | 10.
OBJ: | ANS: Graph a cubic | C | PTS: | 1 | DIF: | Med | REF:
MSC: | Section 1.1
Skill | | 11.
OBJ: | ANS: Graph a quadr | В | PTS: | 1 | DIF: | Easy | REF:
MSC: | Section 1.1
Skill | | 12.
OBJ: | ANS: Graph an abso | D | PTS: | 1 | DIF: | Med | REF:
MSC: | Section 1.1
Skill | | 13.
OBJ: | ANS: | C | PTS: | 1
of the o | DIF:
graphs of equation | Med | REF:
MSC: | Section 1.1
Skill | | 14. | ANS: | A | PTS: | 1 | DIF: | Easy | REF: | Section 1.1 | | OBJ: | _ | | | | regression capa | | MSC: | Application | | 15.
OBJ: | ANS:
Plot a quadrat | B
ic mode | PTS:
el for data usin | 1
g the re | DIF:
egression capab | Easy ilities of a grapl | - | - | | 16. | ANS: | Е | PTS: | 1 | DIF: | Easy | MSC:
REF: | Application Section 1.1 | | 17. | Evaluate a qua | D | PTS: | 1 | DIF: | Med | MSC:
REF: | Application Section 1.1 | | OBJ: 18. | Solve for the l
ANS: | В | PTS: | 1 | DIF: | Med | MSC:
REF: | Application Section 1.1 | | OBJ: 19. | ANS: | D | PTS: | ibilities
1 | of a graphing u
DIF: | itility
Med | MSC:
REF: | Application Section 1.1 | | OBJ: | Interpret a rati | ional m | odel | | | | MSC: | Application | ## 1.2 Linear Models and Rates of Change ### **Multiple Choice** Identify the choice that best completes the statement or answers the question. ____ 1. Estimate the slope of the line from the graph. - a. $-\frac{1}{5}$ - b. 5 - c. 2 - d. $-\frac{1}{2}$ - e. $\frac{1}{5}$ 2. Sketch the line passing through the point (3, 4) with the slope $-\frac{3}{2}$. a. d. b. e. c. Find the slope of the line passing through the pair of points. 3. - a. $\frac{3}{5}$ b. $-\frac{5}{3}$ c. $\frac{5}{3}$ d. 0 e. $-\frac{3}{5}$ Find the slope of the line passing through the points $\left(-\frac{1}{8}, \frac{8}{3}\right)$ and $\left(-\frac{3}{16}, \frac{1}{24}\right)$. 4. - a. 63 - -21 - c. 42 - d. 21 - e. -42 If a line has slope m = -4 and passes through the point (4, 8), through which of the following points does the line also pass? - a. (1, 20) - b. (1, 12) - c. (1, 0) - d. (8, -16) - e. (8, -24) A moving conveyor is built to rise 5 meters for every 7 meters of horizontal change. Find the slope of the conveyor. - b. - 5 7 7 5 -7 5 -5 7 A moving conveyor is built to rise 1 meter for every 5 meters of horizontal change. Suppose the conveyor runs between two floors in a factory. Find the length of the conveyor if the vertical distance between floors is 10 meters. Round your answer to the nearest meter. - a. 61 meters - b. 39 meters - c. 51 meters - d. 50 meters - e. 41 meters - Find the slope of the line x + 3y = 15. 8. - Find the *y*-intercept of the line x + 4y = 8. 9. - a. (0, 2) - b. (0, 4) - c. (0, 8) - d. (4, 0) - e. (2, 0) - Find an equation of the line that passes through the point (7, 2) and has the slope m10. that is undefined. - a. y = 7 - b. x = 7 - c. y = 2 - d. x = 2 - e. y = 7x - Find an equation of the line that passes through the point (-11, -9) and has the slope 11. $m=\frac{9}{2}$. - a. $y = \frac{9}{2}x \frac{81}{2}$ b. $y = \frac{9}{2}x + \frac{81}{2}$ c. $y = \frac{9}{2}x + 162$ - d. $y = \frac{9}{2}x$ - e. $y = -\frac{9}{2}x$ - ____ 12. Find an equation of the line that passes through the points (18, -7) and (-18, 23). - a. $y = -\frac{5}{6}x 8$ - b. $y = \frac{5}{6}x 8$ - c. $y = \frac{5}{6}x + 8$ - $y = -\frac{5}{6}x + 8$ - e. $y = -\frac{5}{6}x$ - _____ 13. Find an equation of the line that passes through the points $\left(-\frac{8}{11}, -\frac{70}{11}\right)$ and - $\left(\frac{3}{2}, -\frac{21}{4}\right)$ - a. $y = \frac{1}{2}x$ - b. $y = \frac{1}{2}x + 6$ - c. $y = \frac{1}{2}x + 12$ - d. $y = \frac{1}{2}x 12$ - e. $y = \frac{1}{2}x 6$ - _____ 14. Use the result, "the line with intercepts (a, 0) and (0, b) has the equation $\frac{x}{a} + \frac{y}{b} = 1$, $a \ne 0$, $b \ne 0$ ", to write an equation of the line with x-intercept: (8, 0) and y-intercept: (0,7). - a. 8x 7y 8
= 0 - b. 7x 8y + 7 = 0 - c. 8x + 7y + 8 = 0 - d. 7x + 8y + 56 = 0 - e. 7x + 8y 56 = 0 a. d. b. e. ____ 16. Write an equation of the line that passes through the given point and is perpendicular to the given line. Point Line $$(-1, -7)$$ $x = 6$ - a. y = 7 - b. y = -7 - c. y = -1 - d. x = -1 - e. x = 1 ____ 17. Write an equation of the line that passes through the given point and is parallel to the given line. Point Line $$(3, -4)$$ $-2x - 5y = 9$ - a. -2x 5y = 14 - b. -2x 5y = 23 - c. 2x 5y = 14 - d. -2x + 5y = -26 - e. 2x 5y = 23 ____ 18. Write an equation of the line that passes through the point (-6,4) and is perpendicular to the line x + y = 5. - a. x-y+10=0 - b. x y + 2 = 0 - c. x + y 2 = 0 - d. x + y + 10 = 0 - e. x + y 5 = 0 _____ 19. Write an equation of the line that passes through the point $\left(\frac{5}{4}, \frac{5}{8}\right)$ and is parallel to the line 7x - 3y = 0. - a. 56x 24y 55 = 0 - b. 56x + 12y 55 = 0 - c. 56x 8y + 55 = 0 - d. 56x + 6y + 55 = 0 - e. 56x + 4y 55 = 0 a. $$V = 7.5t - 159$$ 22 b. $$V = -7.5t - 114$$ c. $$V = -7.5t + 174$$ d. $$V = 7.5t + 114$$ e. $$V = 7.5t - 144$$ ____ 21. Find an equation of the line through the points of intersection of $y = x^2$ and $y = 6x - x^2$. a. $$y = x - 6$$ b. $$y = 6x$$ c. $$y = -6x$$ d. $$y = 3x$$ e. $$y = x + 3$$ ____ 22. A company reimburses its sales representatives \$175 per day for lodging and meals plus 45ϕ per mile driven. Write a linear equation giving the daily cost C to the company in terms of x, the number of miles driven. Round the numerical values in your answer to two decimal places, where applicable. a. $$C = -1.75x + 45$$ b. $$C = 0.45x + 175$$ c. $$C = -0.45x - 175$$ d. $$C = 0.45x - 175$$ e. $$C = 1.75x - 45$$ 23. A company reimburses its sales representatives \$160 per day for lodging and meals plus 42¢ per mile driven. How much does it cost the company if a sales representative drives 135 miles on a given day? Round your answer to the nearest cent. b. 216.70 24. A real estate office handles an apartment complex with 50 units. When the rent is \$800 per month, all 50 units are occupied. However, when the rent is \$845, the average number of occupied units drops to 47. Assume that the relationship between the monthly rent p and the demand x is linear. Write a linear equation giving the demand x in terms of the rent p. a. $$x = \frac{1}{15} (1595 - p)$$ b. $$x = \frac{1}{15} (1505 + p)$$ c. $$x = \frac{1}{45} \left(1550 + p \right)$$ d. $$x = \frac{1}{15} (1550 - p)$$ e. $$x = \frac{1}{45} (1595 - p)$$ $\underline{}$ 25. A real estate office handles an apartment complex with 50 units. When the rent is \$600 per month, all 50 units are occupied. However, when the rent is \$645, the average number of occupied units drops to 47. Assume that the relationship between the monthly rent p and the demand x is linear. Predict the number of units occupied if the rent is raised to \$660. - a. 43 units - b. 54 units - c. 57 units - d. 49 units - e. 46 units ____ 26. Find the distance between the point (-4,7) and line x-y-2=0 using the formula, Distance = $\frac{\left|Ax_1 + By_1 + C\right|}{\sqrt{A^2 + B^2}}$ for the distance between the point (x_1, y_1) and the line $$Ax + By + C = 0.$$ a. $$\frac{11\sqrt{2}}{2}$$ b. $$\frac{4\sqrt{3}}{3}$$ c. $$\frac{13\sqrt{2}}{2}$$ d. $$9\sqrt{2}$$ e. $$\frac{6\sqrt{3}}{3}$$ ## 1.2 Linear Models and Rates of Change Answer Section | 1. | ANS: | В | PTS: | 1 | DIF: | Easy | REF: | Section 1.2 | |-------|-----------------|------------|------------------|-----------|---------------------|------------------|------|-------------| | OBJ: | | slope of | a line from its | graph | | , | MSC: | Skill | | 2. | ANS: | Ď | PTS: | 1 | DIF: | Easy | REF: | Section 1.2 | | OBJ: | Sketch the lin | e passin | g through a po | int with | specified slop | • | MSC: | Skill | | 3. | ANS: | B | PTS: | 1 | DIF: | Easy | REF: | Section 1.2 | | OBJ: | Calculate the | slope of | f a line passing | through | n two points | • | MSC: | Skill | | 4. | ANS: | Ĉ | PTS: | 1 | DIF: | Med | REF: | Section 1.2 | | OBJ: | Calculate the | slope of | f a line passing | through | n two points | | MSC: | Skill | | 5. | ANS: | À | PTS: | 1 | DIF: | Med | REF: | Section 1.2 | | OBJ: | Identify a poin | nt on a l | ine with specif | ied pro | perties | | MSC: | Skill | | 6. | ANS: | В | PTS: | 1 | DIF: | Easy | REF: | Section 1.2 | | OBJ: | Calculate slop | es in ap | | | | ···· y | MSC: | Application | | 7. | ANS: | C | PTS: | 1 | DIF: | Med | REF: | Section 1.2 | | OBJ: | | | | | | | MSC: | Application | | 8. | ANS: | Е | PTS: | 1 | DIF: | Med | REF: | Section 1.2 | | OBJ: | | | quation to deter | _ | | 1,100 | MSC: | Skill | | 9. | ANS: | A | PTS: | 1 | DIF: | Med | REF: | Section 1.2 | | OBJ: | | | quation to deter | - | | 1,100 | MSC: | Skill | | 10. | ANS: | В | PTS: | 1 | DIF: | Easy | REF: | Section 1.2 | | OBJ: | | | a line given a p | oint on | | • | MSC: | Skill | | 11. | ANS: | В | PTS: | 1 | DIF: | Easy | REF: | Section 1.2 | | OBJ: | | | a line given a p | - | | • | MSC: | Skill | | 12. | ANS: | D | PTS: | 1 | DIF: | Easy | REF: | Section 1.2 | | OBJ: | | | a line given two | - | | Lasy | MSC: | Skill | | 13. | ANS: | E | PTS: | 1 | DIF: | Med | REF: | Section 1.2 | | OBJ: | | | a line given two | - | | Wicd | MSC: | Skill | | 14. | ANS: | E | PTS: | 1 | DIF: | Easy | REF: | Section 1.2 | | OBJ: | | | a line given its | _ | | Lasy | MSC: | Skill | | 15. | ANS: | B | PTS: | 1 | DIF: | Med | REF: | Section 1.2 | | OBJ: | | | linear equation | | DII". | Med | MSC: | Skill | | 16. | ANS: | C | PTS: | 1 | DIF: | Med | REF: | Section 1.2 | | OBJ: | | | | - | | ine to which it | | Section 1.2 | | | el/perpendicula | | a mie given a p | OIIIt OII | the fine and a | inc to which it | MSC: | Skill | | • | | | PTS: | 1 | DIF: | Med | REF: | | | 17. | ANS: | | | | | ine to which it | | Section 1.2 | | | el/perpendicula | | a mie given a p | OIII OII | the fine and a | ine to which it | MSC: | Skill | | • | ANS: | | DTC. | 1 | DIE. | Mod | | Section | | 18. | | A stion of | PTS: | 1 | DIF: | Med | REF: | | | 1.2OB | J. Write an equ | auon oi | a illie given a | point of | ii ule iiile aliu a | line to which is | MSC: | Skill | | 19. | ANS: | A | PTS: | 1 | DIF: | Easy | REF: | Section 1.2 | | OBJ: | | | | | | ine to which it | | | | | 1 | | C r | | | | MSC: | Skill | | 20. | ANS: | D | PTS: | 1 | DIF: | Easy | REF: | Section 1.2 | | OBJ: | | | s in application | | - | <i>J</i> | MSC: | Application | | | | • | | | | | | * * | | 21. | ANS: | D | PTS: | 1 | DIF: | Med | RE | F: Section | n 1.2 | | |-----|------|---|----------|-------------------|---------|--------|------|------------|-------------|--| | | OBJ: | Write an equation of a line through the points of intersection of quadratic equations | | | | | | | | | | | | | | | | | | MSC: | Skill | | | | 22. | ANS: | В | PTS: | 1 | DIF: | Easy | REF: | Section 1.2 | | | | OBJ: | Write linear | equation | s in application | ıs | | | MSC: | Application | | | | 23. | ANS: | В | PTS: | 1 | DIF: | Easy | REF: | Section 1.2 | | | | OBJ: | Evaluate line | ar equat | ions in applicat | ions | | | MSC: | Application | | | | 24. | ANS: | D | PTS: | 1 | DIF: | Med | REF: | Section 1.2 | | | | OBJ: | Write linear | equation | is in application | ıs | | | MSC: | Application | | | | 25. | ANS: | E | PTS: | 1 | DIF: | Easy | REF: | Section 1.2 | | | | OBJ: | Evaluate linear equations in applications MSC: Application | | | | | | | | | | | 26. | ANS: | C | PTS: | 1 | DIF: | Med | REF: | Section 1.2 | | | | OBJ: | Calculate the | distanc | e between a poi | int and | a line | | MSC: | Skill | | ## 1.3 Functions and Their Graphs #### **Multiple Choice** Identify the choice that best completes the statement or answers the question. 1. Evaluate (if possible) the function f(x) = -6x - 5 at x = -2. Simplify the result. a. -7 26 - b. 17 - c. 3 - d. - e. undefined _____ 2. Evaluate (if possible) the function $f(x) = \sqrt{x-5}$ at x = 9. Simplify the result. - a. 3 - b. 2 - c. -2 - d. 4 - e. undefined ____ 3. Evaluate (if possible) the function $g(x) = x^2(x+2)$ at x = t - 6. Simplify the result. - a. $t^3 4t^2 + 12t 144$ - b. $t^3 4t^2 + 84t 144$ - c. $t^3 16t^2 + 84t 144$ - d. $t^3 16t^2 + 12t 144$ - e. none of the above Let f(x) = 14x + 8. Then simplify the expression $\frac{f(x) - f(9)}{x - 9}$. - a. 15 - b. 14 - c. 19 - d. 11 - e. undefined ____ 5. Let $$g(x) = \frac{1}{\sqrt{x+15}}$$. Evaluate the expression $\frac{g(x) - g(-11)}{x+11}$ and then simplify the result. $$g(x) = \frac{1}{\sqrt{x+15}}, \frac{g(x)-g(-11)}{x+11}$$ a. $$\frac{2\sqrt{x+15} - x - 15}{2(x+11)(x+15)}$$ b. $$\frac{2\sqrt{x+15} + x - 15}{2(x-11)(x+15)}$$ c. $$\frac{2\sqrt{x+15} + x - 15}{2(x+11)(x+15)}$$ d. $$2\sqrt{x+15} - x - 15$$ $2(x-11)(x+15)$ - e. undefined - ____ 6. Find the domain and range of the function $f(x) = x^2 6$. - a. domain: [-6, ∞) - range: [-6, ∞) - b. domain: [-6, ∞) - range: (−6, ∞) - c. domain: (-∞, ∞) - range: (−6, ∞) - d. domain: (-∞, ∞) - range: [6, ∞) - e. domain: (-∞, ∞) range: [-6, ∞) - ____ 7. Find the domain and range of the function $g(t) = \sqrt{t-10}$. - a. domain: [10, ∞) - range: (0, ∞) - b. domain: (10, ∞) - range: [0, ∞) - c. domain: [10, ∞) - range: (-∞, ∞) - d. domain: [0, ∞) range: [10, ∞) - e. none of the above ## ____ 8. Find the domain and range of the function $h(x) = \frac{11}{x+6}$. - a. domain: $(-\infty, -6) \cup (-6, \infty)$ - range: (-∞, ∞) - b. domain: $(-\infty, -6) \cup (-6, \infty)$ - range: $(-\infty, 0) \cup (0, \infty)$ - c. domain: (-∞, -6] ∪ [-6, ∞) - range: $(-\infty, 0) \cup (0, \infty)$ - d. domain: (-∞, 6) - range: (0, ∞) - e. domain: (-6, ∞) - range: (0, ∞) ____ 9. Evaluate the function $$f(x) = \begin{cases} 2x + 1, & x < 0 \\ 2x + 2, & x \ge 0 \end{cases}$$ at $f(5)$. - a. f(5) = 6 - b. f(5) = 5 - c. f(5) = 13 - d. f(5) = 11 - e. f(5) = 12 _____ 10. Determine the domain
and range of the function $$f(x) = \begin{cases} 3x + 2, & x < 0 \\ 3x + 6, & x \ge 0 \end{cases}$$. - a. domain: (-∞, 2) - range: $(-\infty, 2) \cap [6, \infty]$ - b. domain: (-∞, ∞) - range: $(-\infty, 2) \cup [6, \infty)$ - c. domain: (-∞, ∞) - range: $(-\infty, 2) \cup (\infty, 6]$ - d. domain: $(-\infty, \infty)$ - range: $(\infty, 2) \cup (6, -\infty)$ - e. domain: (-∞, 3) - range: $(-\infty, 2) \cap [6, \infty)$ ____ 11. Determine whether $$y$$ is a function of x . $$y - 5x^2 = 6$$ - a. no - b. yes Determine whether y is a function of x. $$\underline{\qquad} 12.$$ $$xy - x^2 = 3y + x$$ - a. no - b. Yes Use the graph of y = f(x) given below to find the graph of the function y = f(x + 5). 13. a. d. b. e. c. 14. Use the graph of y = f(x) given below to find the graph of the function y = f(x) + 4. a. d. b. e. - Specify a sequence of transformations for the function $h(x) = \sin\left(x + \frac{\pi}{3}\right) + 7$ that 15. will yield the graph of h from the graph of the function $f(x) = \sin x$. - The function $h(x) = \sin\left(x + \frac{\pi}{3}\right) + 7$ is a horizontal shift $\frac{\pi}{3}$ units to the right, followed by a vertical shift 7 units downwards. - The function $h(x) = \sin\left(x + \frac{\pi}{3}\right) + 7$ is a horizontal shift $\frac{\pi}{3}$ units to the left, followed by a vertical shift 7 units upwards. - The function $h(x) = \sin\left(x + \frac{\pi}{3}\right) + 7$ is a horizontal shift $\frac{\pi}{3}$ units to the left, followed by a horizontal shift 7 units to the right. - The function $h(x) = \sin\left(x + \frac{\pi}{3}\right) + 7$ is a vertical shift $\frac{\pi}{3}$ units downwards, followed by a horizontal shift 7 units to the right. - The function $h(x) = \sin\left(x + \frac{\pi}{3}\right) + 7$ is a vertical shift $\frac{\pi}{3}$ units upwards, followed by a horizontal shift 7 units to the left. - Given $f(x) = \cos x$ and $g(x) = \frac{\pi}{2}x$, evaluate f(g(2)). - c. $\frac{\pi}{2}\sin(2)$ - d. -1e. $\frac{\pi}{2}\cos(2)$ - 17. Determine whether the function is even, odd, or neither. $$f(x) = x^2(3-x)^2$$ - a. odd - neither 18. Determine whether the function is even, odd, or neither. $$f(x) = x \sin 2x$$ - even - odd - c. neither - Find the coordinates of a second point on the graph of a function f if the given point $\left[-\frac{6}{5}, 8\right]$ is on the graph and the function is even. - a. $\left(8, -\frac{6}{5}\right)$ - b. $\left(-8, -\frac{6}{5}\right)$ c. $\left(-\frac{6}{5}, -8\right)$ - d. $\left(\frac{6}{5}, -8\right)$ e. $\left(\frac{6}{5}, 8\right)$ - Find the coordinates of a second point on the graph of a function f if the given point $\left[-\frac{9}{8}, 5\right]$ is on the graph and the function is odd. - a. $\left(-5, -\frac{9}{8}\right)$ - b. $\left(\frac{9}{8}, -5\right)$ c. $\left(-5, \frac{9}{8}\right)$ - d. $\left(-\frac{9}{8}, -5\right)$ e. $\left(\frac{9}{8}, 5\right)$ - 21. The horsepower H required to overcome wind drag on a certain automobile is approximated by $H(x) = 0.002x^2 + 0.005x - 0.027$, $10 \le x \le 100$ where x is the speed of the car in miles per hour. Find $H\left(\frac{x}{1.1}\right)$. Round the numerical values in your answer to five decimal places. - $H\left(\frac{x}{1.1}\right) = 0.00150x^2 + 0.00455x 0.02700$ $H\left(\frac{x}{1.1}\right) = 0.00150x^2 + 0.00165x 0.00455$ - $H\left(\frac{x}{1.1}\right) = 0.00165x^2 + 0.00150x 0.02700$ $H\left(\frac{x}{1.1}\right) = 0.00165x^2 + 0.00455x 0.02700$ $H\left(\frac{x}{1.1}\right) = 0.00455x^2 + 0.00165x 0.02700$ - 22. An open box of maximum volume is to be made from a square piece of material 22 centimeters on a side by cutting equal squares from the corners and turning up the sides (see figure). Write the volume V as a function of x, the length of the corner squares. - a. $V = x(22 2x)^2$ - b. $V = x + (22 x)^2$ - c. $V = x^2 + (22 2x)$ - d. $V = x^2(22 2x)$ - e. V = x(22 2x) ____ 23. An open box of maximum volume is to be made from a square piece of material 30 centimeters on a side by cutting equal squares from the corners and turning up the sides(see figure). What is the domain of the function $V = x(30 - 2x)^2$. a. domain: $0 < x < \infty$ b. domain: 30 c. domain: 0 < x < 15d. domain: 0 < x < 30 e. domain: 15 # **1.3 Functions and Their Graphs Answer Section** | 1.
OBJ: | ANS:
Evaluate a fur | D
nction a | PTS: | 1 | DIF: | Easy | REF:
MSC: | Section 1.3
Skill | |------------|------------------------|---------------|-----------------|----------|---------------|----------|--------------|----------------------| | 2. | ANS: | В | PTS: | 1 | DIF: | Easy | REF: | Section 1.3 | | OBJ: | Evaluate a fur | | | | | 3 | MSC: | Skill | | 3. | ANS: | C | PTS: | 1 | DIF: | Easy | REF: | Section 1.3 | | OBJ: | Evaluate a fur | nction a | | | | 3 | MSC: | Skill | | 4. | ANS: | В | PTS: | 1 | DIF: | Med | REF: | Section 1.3 | | OBJ: | Simplify a dif | ference | quotient | | | | MSC: | Skill | | 5. | ANS: | A | PTS: | 1 | DIF: | Med | REF: | Section 1.3 | | OBJ: | Simplify a dif | ference | quotient | | | | MSC: | Skill | | 6. | ANS: | E | PTS: | 1 | DIF: | Easy | REF: | Section 1.3 | | OBJ: | Identify the de | omain a | and range of a | function | 1 | • | MSC: | Skill | | 7. | ANS: | E | PTS: | 1 | DIF: | Easy | REF: | Section 1.3 | | OBJ: | Identify the de | omain a | and range of a | function | 1 | • | MSC: | Skill | | 8. | ANS: | В | PTS: | 1 | DIF: | Easy | REF: | Section 1.3 | | OBJ: | Identify the de | omain a | and range of a | function | 1 | • | MSC: | Skill | | 9. | ANS: | E | PTS: | 1 | DIF: | Easy | REF: | Section 1.3 | | OBJ: | Evaluate a pie | ecewise | function | | | • | MSC: | Skill | | 10. | ANS: | В | PTS: | 1 | DIF: | Easy | REF: | Section 1.3 | | OBJ: | Identify the de | omain a | and range of a | function | 1 | • | MSC: | Skill | | 11. | ANS: | В | PTS: | 1 | DIF: | Easy | REF: | Section 1.3 | | OBJ: | Identify equat | ions th | at are function | s | | • | MSC: | Skill | | 12. | ANS: | В | PTS: | 1 | DIF: | Easy | REF: | Section 1.3 | | OBJ: | Identify equat | ions th | at are function | s | | • | MSC: | Skill | | 13. | ANS: | E | PTS: | 1 | DIF: | Easy | REF: | Section 1.3 | | OBJ: | Graph transfo | rmatio | ns of functions | | | • | MSC: | Skill | | 14. | ANS: | A | PTS: | 1 | DIF: | Med | REF: | Section 1.3 | | OBJ: | Graph transfo | rmatio | ns of functions | | | | MSC: | Skill | | 15. | ANS: | В | PTS: | 1 | DIF: | Med | REF: | Section 1.3 | | OBJ: | Describe a tra | nsform | ation of an equ | ation | | | MSC: | Skill | | 16. | ANS: | D | PTS: | 1 | DIF: | Easy | REF: | Section 1.3 | | OBJ: | Evaluate com | posite f | functions | | | • | MSC: | Skill | | 17. | ANS: | C | PTS: | 1 | DIF: | Easy | REF: | Section 1.3 | | OBJ: | Identify the ty | pe of s | ymmetry of the | e graph | of a function | • | MSC: | Skill | | 18. | ANS: | A | PTS: | 1 | DIF: | Easy | REF: | Section 1.3 | | OBJ: | Identify the ty | pe of s | ymmetry of the | e graph | of a function | • | MSC: | Skill | | 19. | ANS: | E | PTS: | 1 | DIF: | Easy | REF: | Section 1.3 | | OBJ: | Identify point | s on a g | graph using syr | nmetry | | • | MSC: | Skill | | 20. | ANS: | В | PTS: | 1 | DIF: | Easy | REF: | Section 1.3 | | OBJ: | Identify point | s on a g | graph using syr | nmetry | | | MSC: | Skill | | 21. | ANS: | D | PTS: | 1 | DIF: | Med | REF: | Section 1.3 | | OBJ: | Apply compo | site fun | ections | | | | MSC: | Application | | 22. | ANS: | A | PTS: | 1 | DIF: | Med | REF: | Section 1.3 | | OBJ: | Create function | ons in a | pplications | | | | MSC: | Application | | | | | | | | | | | 23. ANS: C PTS: 1 DIF: Med REF: Section 1.3 OBJ: Identify domains in applications MSC: Application ## 1.4 Fitting Models to Data ### **Multiple Choice** Identify the choice that best completes the statement or answers the question. 1. Determine which type of function would be most appropriate to fit the given data. - a. exponential - b. linear - c. quadratic - d. no relationship - e. trigonometric 2. Which function below would be most appropriate model for the given data? - a. no apparent relationship between x and y - b. trigonometric - c. quadratic - d. linear - ____ 3. The following ordered pairs represent temperatures in degrees Fahrenheit taken each hour from 1:00 pm until 5:00 pm. Let T be temperature, and let t be time, where t = 1 corresponds to 1:00 pm, t = 2 corresponds to 2:00 pm, and so on. Plot the data. Visually find a linear model for the data and find its equation. From the visual linear model that you created, determine which of the models that follow appears to best approximate the data. - a. T = 2t + 60 - b. T = -2t + 70 - c. T = -4t + 60 - d. T = 4t + 70 - e. T = 3t + 65 - ____ 4. Each ordered pair gives the exposure index x of a carcinogenic substance and the cancer mortality y per 100,000 people in the population. Use the model y = 9.2x + 108.4 to approximate y if x = 7. Round your answer to one decimal place. - a. 168.2 - b. 163.6 - c. 182.0 - d. 172.8 - e. 177.4 - _____ 5. Hooke's Law states that the force F required to compress or stretch a spring (within its elastic limits) is proportional to the distance d that the spring is compressed or stretched from its original length. That is, F = kd where k is a measure of the stiffness of the spring and is called the spring constant. The table shows the elongation d in centimeters of a spring when a force of F newtons is applied. Use the regression capabilities of a graphing utility to find a linear model for the data. Round the numerical values in your answer to three decimal places. | F | 20 | 40 | 60 | 80 | 100 | |---|-----|-----|-----|-----|-----| | d | 1.9 | 3.8 | 5.7 | 7.6 | 9.5 | - a. d = 0.675F - b. d = 0.118F - c. d = 0.112F - d. d = 0.095F - e. d = 0.905F _____ 6. Hooke's Law states that the force F required to compress or stretch a spring (within its elastic limits) is proportional to the distance d that the spring is compressed or stretched from its original length. That is, F = kd where k is a measure of
the stiffness of the spring and is called the spring constant. The table shows the elongation d in centimeters of a spring when a force of F newtons is applied. Use a graphing utility to plot the data and graph the linear model. | F | 20 | 40 | 60 | 80 | 100 | |---|-----|-----|-----|-----|-----| | d | 1.3 | 2.6 | 3.9 | 5.2 | 6.5 | a. 40 d. b. e. c _____ 7. Hooke's Law states that the force F required to compress or stretch a spring (within its elastic limits) is proportional to the distance d that the spring is compressed or stretched from its original length. That is, F = kd where k is a measure of the stiffness of the spring and is called the spring constant. The table shows the elongation d in centimeters of a spring when a force of F newtons is applied. Use the model d = 0.085 F to estimate the elongation of the spring when a force of 55 newtons is applied. Round your answer to two decimal places. | F | 20 | 40 | 60 | 80 | 100 | |---|-----|-----|-----|-----|-----| | d | 1.7 | 3.4 | 5.1 | 6.8 | 8.5 | - a. 8.08 cm - b. 6.38 cm - c. 4.68 cm - d. 2.98 cm - e. 9.78 cm _____ 8. In an experiment, students measured the speed *s* (in meters per second) of a falling object *t* seconds after it was released. The results are shown in the table below. Use the regression capabilities of a graphing utility to find a linear model for the data. Round all numerical values in your answer to one decimal place. | t | 0 | 1 | 2 | 3 | 4 | |---|---|------|------|------|------| | S | 0 | 13.0 | 21.4 | 31.2 | 41.4 | - a. s = 10.1t + 1.2 - b. s = 3.0t 1.2 - c. s = 1.2t + 10.1 - d. s = 10.1t + 3.0 - e. s = 1.2t 3.0 9. In an experiment, students measured the speed *s* (in meters per second) of a falling object *t* seconds after it was released. The results are shown in the table below. Use the regression capabilities of a graphing utility to find a linear model for the data. Round all numerical values in your answer to one decimal place. | t | 0 | 1 | 2 | 3 | 4 | |---|---|----|------|------|------| | S | 0 | 40 | 48.4 | 58.2 | 68.4 | a. d. b. e. c. ____ 10. In an experiment, students measured the speed s (in meters per second) of a falling object t seconds after it was released. The results are shown in the table below. Use the model s = 11.9t + 4.8 to estimate the speed of the object after 1.5 seconds. Round your answer to two decimal places. | t | 0 | 1 | 2 | 3 | 4 | |---|---|------|------|------|------| | 2 | 0 | 22.0 | 30.4 | 40.2 | 50.4 | - a. 21.05 meters/second - b. 20.95 meters/second - c. 24.25 meters/second - d. 23.55 meters/second - e. 22.65 meters/second ____ 11. Students in a lab measured the breaking strength *S* (in pounds) of wood 2 inches thick, *x* inches high, and 12 inches long. The results are shown in the table below. Use the regression capabilities of a graphing utility to fit a quadratic model to the data. Round the numerical values in your answer to two decimal places, where applicable. | х | 4 | б | 8 | 10 | 12 | |---|------|------|--------|--------|--------| | ೱ | 2422 | 5512 | 10,362 | 16,302 | 23,912 | a. $$S = 170.89x^2 - 209.79x + 324$$ b. $$S = 180.89x^2 - 205.79x + 324$$ c. $$S = 190.89x^2 + 201.79x + 331$$ d. $$S = 170.89x^2 - 209.79x + 327$$ e. $$S = 180.89x^2 + 203.79x - 331$$ Students in a lab measured the breaking strength S (in pounds) of wood 2 inches thick, x inches high, and 12 inches long. The results are shown in the table below. Use a graphing utility to plot the data and graph the quadratic model. | х | 4 | б | 8 | 10 | 12 | |---|------|------|--------|---------|--------| | ន | 2370 | 4460 | 13,310 | 19, 250 | 29,860 | d. b. e. 13. Students in a lab measured the breaking strength S (in pounds) of wood 2 inches thick, x inches high, and 12 inches long. The results are shown in the table below. Use the model $S = 180.89x^2 - 205.79x + 284$ to approximate the breaking strength when x = 2. Round your answer to two decimal places. | х | 4 | б | 8 | 10 | 12 | |---------------|------|------|--------|---------|---------| | \mathcal{S} | 2382 | 5472 | 10,322 | 16, 262 | 23, 872 | - a. 595.98 pounds - b. 390.19 pounds - c. 957.76 pounds - d. 801.77 pounds - e. 751.97 pounds 14. A V8 car engine is coupled to a dynamometer and the horsepower *y* is measured at different engine speeds *x* (in thousands of revolutions per minute). The results are shown in the table below. Use the regression capabilities of a graphing utility to find a cubic model for the data. Round the numerical values in your answer to three decimal places, where applicable. | х | 1 | 2 | 3 | 4 | 5 | б | |---|----|-----|-----|-----|-----|-----| | у | 64 | 109 | 164 | 224 | 249 | 269 | a. $$y = -1.608x^3 - 14.583x^2 + 13.389x - 37$$ b. $$y = -1.706x^3 - 14.583x^2 - 16.389x + 34$$ c. $$y = 1.806x^3 + 11.583x^2 + 16.389x - 41$$ d. $$y = -1.806x^3 + 14.583x^2 + 16.389x + 34$$ e. $$y = 1.608x^3 + 11.583x^2 - 19.389x + 41$$ 15. A V8 car engine is coupled to a dynamometer and the horsepower y is measured at different engine speeds x (in thousands of revolutions per minute). The results are shown in the table below. Use a graphing utility to plot the data and graph the cubic model. | х | 1 | 2 | 3 | 4 | 5 | б | |---|-----|-----|-----|-----|-----|-----| | У | 110 | 155 | 210 | 270 | 295 | 315 | d. b. e. ____ 16. A V8 car engine is coupled to a dynamometer and the horsepower y is measured at different engine speeds x (in thousands of revolutions per minute). The results are shown in the table below. Use the model $y = -1.806x^3 + 14.58x^2 + 16.4x + 30$ to approximate the horsepower when the engine is running at 5500 revolutions per minute. Round your answer to two decimal places. | х | 1 | 2 | 3 | 4 | 5 | б | |---|----|-----|-----|-----|-----|-----| | у | 60 | 105 | 160 | 220 | 245 | 265 | - a. 260.77 hp - b. 262.73 hp - c. 262.36 hp - d. 261.38 hp - e. 261.91 hp ## 1.4 Fitting Models to Data Answer Section | 1. | ANS: | A | PTS: | 1 | DIF: | Easy | REF: | Section 1.4 | | | |------------|---|--------------|--------------------------|----------|------------------|-------------------|--------------|-------------------------|--|--| | OBJ: | • | | propriate functio | | _ | Г | MSC: | Skill | | | | 2.
OBJ: | ANS: | D | PTS: | 1 | DIF: | Easy | REF:
MSC: | Section 1.4
Skill | | | | | • | ost app
E | ropriate functio
PTS: | | DIF: | F | | | | | | 3.
OBJ: | ANS: | | PIS:
ar model for giv | 1 | | Easy | REF:
MSC: | Section 1.4 Application | | | | 4. | ANS: | D | ar moder for giv | 1 | DIF: | Foor | REF: | Section 1.4 | | | | OBJ: | | | ls in application | _ | DIF. | Easy | MSC: | Application | | | | 5. | ANS: | D D | PTS: | 1 | DIF: | Easy | REF: | Section 1.4 | | | | | | | for data using the | _ | | • | | | | | | OBJ. | Wille a linear | moder | Tor data doing to | ne regi | ession capacini | ios of a grapini | MSC: | Application | | | | 6. | ANS: | D | PTS: | 1 | DIF: | Easy | REF: | Section 1.4 | | | | OBJ: | Plot data point | ts and t | he graph of a lii | near m | odel | | MSC: | Application | | | | 7. | ANS: | C | PTS: | 1 | DIF: | Easy | REF: | Section 1.4 | | | | OBJ: | Evaluate linea | r mode | ls in application | ıs | | | MSC: | Application | | | | 8. | ANS: | A | PTS: | 1 | DIF: | Easy | REF: | Section 1.4 | | | | OBJ: | Write a linear | model | for data using tl | he regr | ession capabilit | ties of a graphin | | | | | | | | | | | | | MSC: | Application | | | | 9. | ANS: | C | PTS: | 1 | DIF: | Easy | REF: | Section 1.4 | | | | OBJ: | Plot data point | ts and t | he graph of a lii | near m | odel | | MSC: | Application | | | | 10. | ANS: | E | PTS: | 1 | DIF: | Easy | REF: | Section 1.4 | | | | OBJ: | Evaluate linear models in applications MSC: Application | | | | | | | | | | | 11. | ANS: | В | PTS: | 1 | DIF: | Med | REF: | Section 1.4 | | | | OBJ: | Write a quadra | atic mo | del for data usir | ng the i | regression capa | bilities of a gra | | - | | | | | | | | | | | MSC: | Application | | | | 12. | ANS: | В | PTS: | 1 | DIF: | Med | REF: | Section 1.4 | | | | OBJ: | Plot data point | ts and t | he graph of a qu | ıadrati | c model | | MSC: | Application | | | | 13. | ANS: | A | PTS: | 1 | DIF: | Med | REF: | Section 1.4 | | | | OBJ: | Evaluate quad | ratic m | odels in applica | tions | | | MSC: | Application | | | | 14. | ANS: | D | PTS: | 1 | DIF: | Med | REF: | Section 1.4 | | | | OBJ: | Evaluate cubic | e mode | ls in application | IS | | | MSC: | Application | | | | 15. | ANS: | D | PTS: | 1 | DIF: | Med | REF: | Section 1.4 | | | | OBJ: | Plot data point | ts and t | he graph of a cu | ibic mo | odel | | MSC: | Application | | | | 16. | ANS: | A | PTS: | 1 | DIF: | Med | REF: | Section 1.4 | | | | OBJ: | | | | | | | | | | | | | | | | | | | MSC: | Application | | | ## **1.5 Inverse Functions** ### **Multiple Choice** Identify the choice that best completes the statement or answers the question. _ 1. Match the graph of the function given below with the graph of its inverse function. a. d. b. e. c. _ 2. Match the graph of the function given below with the graph of its inverse function. a. d. b. e. c. _____ 3. Use the Horizontal Line Test to determine whether the following statement is true or false. The function $f(x) = \frac{3}{19}x + 3$ is one-to-one on its entire domain and therefore has an inverse function. - a. false - b. true _____ 4. Use the Horizontal Line Test to determine whether the following statement is true or false. The function f(x) = 14(x-15) + 15 is one-to-one on its entire domain and therefore has an inverse function. - a. true - b. false - True or False: The function $f(x) = \frac{1}{s 38} 2$ is one-to-one on its entire domain. 5. - a. false - b. true - True or False: The function f(x) = |x + 10| |x 10| is one-to-one on the domain $-10 \le x \le 10.$ - a. false - b. true - 7. Find $f^{-1}(x)$ if f(x) = 12x 10. - a. $f^{-1}(x) = \ln(12x + 10)$ - b. $f^{-1}(x) = \frac{1}{12x 10}$ - c. $f^{-1}(x) = \frac{1}{12}x + \frac{1}{10}$ - d.
$f^{-1}(x) = 10x 12$ - e. $f^{-1}(x) = \frac{1}{12}x + \frac{5}{6}$ - ____ 8. Find $f^{-1}(x)$ if $f(x) = x^7$. - a. $f^{-1}(x) = \frac{1}{7}x^{-7}$ b. $f^{-1}(x) = x^{\frac{1}{7}}$ c. $f^{-1}(x) = \frac{1}{8}x^{8}$ - d. $f^{-1}(x) = x^{-7}$ e. $f^{-1}(x) = 7x^6$ ____ 9. Find $$f^{-1}(x)$$ if $f(x) = x^3 - 4$. a. $$f^{-1}(x) = x^{\frac{1}{3}} + \frac{1}{4}$$ b. $$f^{-1}(x) = \frac{1}{3}(x+4)^{-\frac{2}{3}}$$ c. $$f^{-1}(x) = x^{\frac{1}{3}} + 4^{\frac{1}{3}}$$ d. $$f^{-1}(x) = (x+4)^{\frac{1}{3}}$$ d. $$f^{-1}(x) = x + 4$$ e. $f^{-1}(x) = (x+4)^{\frac{1}{3}}$ ____ 10. Find $$f^{-1}(x)$$ if $f(x) = 6x^2, x \ge 0$. a. $$f^{-1}(x) = \sqrt{\frac{1}{6x}}$$ b. $$f^{-1}(x) = \frac{1}{6x^2}$$ c. $$f^{-1}(x) = \sqrt{\frac{6}{x}}$$ d. $$f^{-1}(x) = \frac{1}{6\sqrt{x}}$$ e. $$f^{-1}(x) = \sqrt{\frac{x}{6}}$$ ____ 11. Find $$f^{-1}(x)$$ if $f(x) = \sqrt{13 - x^2}$, $0 \le x \le \sqrt{13}$. a. $$f^{-1}(x) = x + \sqrt{13}, \ 0 \le x \le \sqrt{13}$$ b. $$f^{-1}(x) = (13 - x^2)^2, 0 \le x \le \sqrt{13}$$ c. $$f^{-1}(x) = \sqrt{13 - x^2}, 0 \le x \le \sqrt{13}$$ d. $$f^{-1}(x) = \sqrt{x^2 - 13}, 0 \le x \le \sqrt{13}$$ e. $$f^{-1}(x) = \frac{1}{\sqrt{13-x^2}}, 0 \le x \le \sqrt{13}$$ ____ 12. Find $$f^{-1}(x)$$ if $f(x) = 3\sqrt[5]{8x-9}$. a. $$f^{-1}(x) = \frac{1}{3}(8x - 9)^5$$ 54 b. $$f^{-1}(x) = \frac{1}{3} \left(\left(\frac{x}{3} \right)^5 + 9 \right)$$ c. $$f^{-1}(x) = \frac{1}{8} \left(\left(\frac{x}{3} \right)^5 - 9 \right)$$ d. $$f^{-1}(x) = \frac{1}{8} \left(\left(\frac{x}{3} \right)^5 + 9 \right)$$ e. $$f^{-1}(x)$$ does not exist ____ 13. Find $$f^{-1}(x)$$ if $f(x) = x^{\frac{7}{17}}$. a. $$f^{-1}(x) = \frac{17}{7}^{\frac{7}{17}}$$ b. $$f^{-1}(x) = x^{-\frac{7}{17}}$$ c. $$f^{-1}(x) = x^{119}$$ d. $$f^{-1}(x) = x^{-\frac{17}{7}}$$ e. $$f^{-1}(x) = x^{\frac{17}{7}}$$ ____ 14. You need 50 pounds of two commodities costing \$1.80 and \$2.40 per pound. Find the inverse function of the cost function y = 1.80x + 2.40(50 - x). a. $$y = \frac{5}{3}(240 - x)$$ b. $$y = \frac{10}{3} (-120 + x)$$ c. $$y = \frac{5}{3}(-240 - x)$$ d. $$y = \frac{5}{3} (120 - x)$$ e. $$y = \frac{10}{3} (120 + x)$$ ____ 15. You need 50 pounds of two commodities costing \$1.60 and \$1.95 per pound. Determine the number of pounds of the less expensive commodity purchased if the total cost y = 1.60x + 1.95(50 - x) is \$94. - a. 10 pounds - b. 17 pounds - c. 7 pounds - d. 5 pounds - e. 13 pounds ____ 16. Use the functions f(x) = x + 2 and g(x) = 4x - 7 to find the function $(g^{-1} \circ f^{-1})(x)$. - a. $\frac{x-5}{7}$ - b. 4x + 5 - c. 4x 1 - d. $\frac{x+5}{4}$ - e. $\frac{x-1}{4}$ ____ 17. Use the functions f(x) = x + 2 and g(x) = 4x - 3 to find the function $(f \circ g)^{-1}(x)$. - a. 4x 5 - b. $\frac{x-5}{4}$ - c. $\frac{x+1}{4}$ - d. $\frac{x-1}{3}$ - e. 4x + 1 _____ 18. Evaluate the expression $\arcsin\left(\frac{1}{2}\right)$ without using a calculator. - a. 0 - b. $\frac{3\pi}{2}$ - c. $\frac{7\pi}{2}$ - d. $\frac{\pi}{6}$ - e. $\frac{4\pi}{5}$ - Evaluate the expression $\arccos\left(\frac{\sqrt{2}}{2}\right)$ without using a calculator. 19. - Evaluate the expression $\cos\left(\arcsin\frac{3}{5}\right)$ without using a calculator. - Write the following expression in algebraic form. $\sin(\arccos(2x))$ - b. $1-2x^2$ c. $1+2x^2$ d. $1+4x^2$ e. $\sqrt{1-2x^2}$ - 22. Write the following expression in algebraic form. $\cos\left(\arcsin\left(2x^2\right)\right)$ 23. Write the following expression in algebraic form. $$tan \left(arcsec \left(\frac{x}{8} \right) \right)$$ a. $$x^2 - 64$$ b. $\sqrt{x^2 - 64}$ c. $$1 + 64x^2$$ d. $$\sqrt{x^2 - 8}$$ e. $$1 + 8x^2$$ $\underline{}$ 24. Solve the following equation for x. $$\arcsin(7x - \pi) = \frac{1}{10}$$ a. $$x = \frac{\pi + \sin\left(\frac{1}{10}\right)}{7}$$ b. $$x = \frac{\cos\left(\pi + \frac{1}{10}\right)}{7}$$ c. $$x = \frac{\csc\left(\pi + \frac{1}{10}\right)}{7}$$ d. $$x = \frac{\pi + \csc\left(\frac{1}{10}\right)}{7}$$ e. $$x = \frac{\sin\left(\pi + \frac{1}{10}\right)}{7}$$ 25. Solve the following equation for x. $\arccos(10x - \pi) = \frac{1}{2}$ a. $$x = \frac{\sin\left(\pi + \frac{1}{2}\right)}{10}$$ b. $$x = \frac{\pi + \sec\left(\frac{1}{2}\right)}{10}$$ c. $$x = \frac{\sec\left(\pi + \frac{1}{2}\right)}{10}$$ $$x = \frac{\cos\left(\pi + \frac{1}{2}\right)}{10}$$ d. $$x = \frac{\cos\left(\pi + \frac{1}{2}\right)}{10}$$ e. $$x = \frac{\pi + \cos\left(\frac{1}{2}\right)}{10}$$ ## **1.5 Inverse Functions Answer Section** | 1. | ANS: | A | PTS: | 1 | DIF: | Easy | REF: | Section 1.5 | |------|----------------|----------|-----------------|----------|-----------------|-----------------|------|-------------| | OBJ: | Identify the g | _ | | | | _ | MSC: | Skill | | 2. | ANS: | C | PTS: | 1 | DIF: | Easy | REF: | Section 1.5 | | OBJ: | Identify the g | _ | | | | | MSC: | Skill | | 3. | ANS: | В | PTS: | 1 | DIF: | Med | REF: | Section 1.5 | | OBJ: | Recognize inv | | | | | | MSC: | Application | | 4. | ANS: | A | PTS: | 1 | DIF: | Med | REF: | Section 1.5 | | OBJ: | Recognize inv | vertible | functions | | | | MSC: | Application | | 5. | ANS: | В | PTS: | 1 | DIF: | Med | REF: | Section 1.5 | | OBJ: | Recognize inv | vertible | functions | | | | MSC: | Application | | 6. | ANS: | В | PTS: | 1 | DIF: | Med | REF: | Section 1.5 | | OBJ: | Recognize inv | vertible | functions | | | | MSC: | Application | | 7. | ANS: | Е | PTS: | 1 | DIF: | Easy | REF: | Section 1.5 | | OBJ: | Construct the | inverse | e of a function | | | · | MSC: | Skill | | 8. | ANS: | В | PTS: | 1 | DIF: | Easy | REF: | Section 1.5 | | OBJ: | Construct the | inverse | e of a function | | | • | MSC: | Skill | | 9. | ANS: | D | PTS: | 1 | DIF: | Med | REF: | Section 1.5 | | OBJ: | Construct the | inverse | e of a function | | | | MSC: | Skill | | 10. | ANS: | Е | PTS: | 1 | DIF: | Med | REF: | Section 1.5 | | OBJ: | Construct the | inverse | e of a function | | | | MSC: | Skill | | 11. | ANS: | C | PTS: | 1 | DIF: | Med | REF: | Section 1.5 | | OBJ: | Construct the | inverse | e of a function | | | | MSC: | Skill | | 12. | ANS: | D | PTS: | 1 | DIF: | Med | REF: | Section 1.5 | | OBJ: | Construct the | inverse | e of a function | | | | MSC: | Skill | | 13. | ANS: | E | PTS: | 1 | DIF: | Med | REF: | Section 1.5 | | OBJ: | Construct the | inverse | e of a function | | | | MSC: | Skill | | 14. | ANS: | D | PTS: | 1 | DIF: | Easy | REF: | Section 1.5 | | OBJ: | Construct the | inverse | e of a function | in appl | ications | | MSC: | Application | | 15. | ANS: | Α | PTS: | 1 | DIF: | Easy | REF: | Section 1.5 | | OBJ: | Solve a linear | equati | on in applicati | ions | | | MSC: | Application | | 16. | ANS: | D | PTS: | 1 | DIF: | Easy | REF: | Section 1.5 | | OBJ: | Construct the | inverse | e of a composi | tion of | functions | | MSC: | Skill | | 17. | ANS: | C | PTS: | 1 | DIF: | Easy | REF: | Section 1.5 | | OBJ: | Construct the | inverse | e of a composi | tion of | functions | | MSC: | Skill | | 18. | ANS: | D | PTS: | 1 | DIF: | Easy | REF: | Section 1.5 | | OBJ: | Evaluate an in | nverse 1 | trigonometric | express | ion | | MSC: | Skill | | 19. | ANS: | D | PTS: | 1 | DIF: | Easy | REF: | Section 1.5 | | OBJ: | Evaluate an in | iverse 1 | - | express | ion | | MSC: | Skill | | 20. | ANS: | В | PTS: | 1 | DIF: | Med | REF: | Section 1.5 | | OBJ: | Evaluate an e | xpressi | on involving a | ın inver | se trigonometri | ic expression | MSC: | Skill | | 21. | ANS: | A | PTS: | 1 | DIF: | Med | REF: | Section 1.5 | | OBJ: | Convert an in | verse t | - | expressi | on to an algebr | raic expression | MSC: | Skill | | 22. | ANS: | A | PTS: | 1 | DIF: | Med | REF: | Section 1.5 | | OBJ: | Convert an in | verse t | rigonometric e | expressi | on to an algebr | aic expression | MSC: | Skill | ## 60 Chapter 1: Preparation for Calculus | 23. | ANS: | B
warsa t | 1 10. | 1 | DIF:
on to an algebra | Med | REF:
MSC: | Section 1.5 | |-----|------|--------------|----------------------|---|--------------------------|-----|--------------|-------------| | 24. | ANS: | A | PTS: | 1 | DIF: | Med | | Section 1.5 | | 25. | ANS: | Е | PTS: conometric equa | 1 | DIF: | Med | REF: | Section 1.5 | ## 1.6 Exponential and Logarithmic Functions #### **Multiple Choice** Identify the choice that best completes the statement or answers the question. - ____ 1. What is the domain of the function $f(x) = 6 \ln(4x)$? - a. (0,∞) - b. $\left(\frac{1}{4}\infty\right)$ - c. (0,1) - d. (1,e) - e. (e, ∞) - ____ 2. What is the domain of the function $f(x) = 4 + \ln(x 6)$? - a. (1,∞) - b. (6, ∞) - c. (0,∞) - d. (0,6) - e. (1,6) - ____ 3. Write the following expression as a logarithm of a single quantity. $$\ln x - 4 \ln \left(x^2 + 1 \right)$$ - a. $\ln \left(\frac{x}{\left(x^2 + 1\right)^{-4}} \right)$ - b. $\ln\left(x-4\left(x^2+1\right)\right)$ - c. $\ln \left(\frac{x}{4(x^2 + 1)} \right)$ - d. $\ln\left(\frac{-4x}{x^2+1}\right)$ - e. $\ln\left(\frac{x}{\left(x^2+1\right)^4}\right)$ Write the following expression as a logarithm of a single quantity. 4. $$13\ln x - 12\ln\left(x^2 + 16\right)$$ a. $$\ln\left(13x - 12\left(x^2 + 16\right)\right)$$ b. $$\ln \left(\frac{x^{13}}{\left(x^2 + 16 \right)^{12}} \right)$$ c. $$\ln\left(x^{13}\left(x^2+16\right)^{12}\right)$$ d. $$\ln\left(x^{13} - \left(x^2 + 16\right)^{12}\right)$$ d. $$\ln\left(x^{13} - \left(x^2 + 16\right)^{12}\right)$$ e. $\ln\left(\frac{x^{13}}{12\left(x^2 + 16\right)}\right)$ 5. Solve the following equation for x. $$e^{\ln(13x)}=3$$ $$x = \frac{\ln(3)}{\ln(13)}$$ b. $$x = \frac{3}{13}$$ c. $$x = 39$$ $$x = \frac{3}{\ln(13)}$$ e. $$x = \frac{3}{e \ln(13)}$$ 6. Solve the following equation for x. $$\ln(x-5)^5 = 3$$ a. $$x = 8$$ b. $$\sqrt{3}$$ c. $$x = \frac{3}{\ln(5)^5}$$ d. $$x = e^{\frac{3}{5}} + 5$$ 7. Solve the following equation for x. $$\ln x^{-10} = 6$$ a. $$x = \sqrt[10]{\ln(6)}$$ b. $$x = \frac{6}{\ln{(10)}}$$ c. $$x = \sqrt[10]{e^{-6}}$$ d. $$x = \sqrt[10]{e^6}$$ d. $$x = \sqrt[10]{e^6}$$ e. $x = \ln(10)\ln(6)$ Solve the following equation for x. 8.
$$-5 + 7e^{3x} = 10$$ a. $$x = \frac{1}{3} \ln \frac{15}{7}$$ b. $$x = -\frac{1}{3} \ln \frac{15}{7}$$ c. $$x = \frac{15}{7e^3}$$ d. $$x = -\frac{1}{3} \ln \frac{50}{7}$$ e. $$x = \frac{1}{3} \ln \frac{50}{7}$$ # **1.6 Exponential and Logarithmic Functions Answer Section** | 1. | ANS: | A | PTS: | 1 | DIF: | Easy | REF: | Section 1.6 | | | |------|--|--|-----------------|----------|----------|------|------|-------------|--|--| | OBJ: | Identify the do | MSC: | Skill | | | | | | | | | 2. | ANS: | В | PTS: | 1 | DIF: | Easy | REF: | Section 1.6 | | | | OBJ: | Identify the do | Identify the domain of a logarithmic function MSC: | | | | | | | | | | 3. | ANS: | E | PTS: | 1 | DIF: | Med | REF: | Section 1.6 | | | | OBJ: | Write a logari | thmic e | expression as a | single o | quantity | | MSC: | Skill | | | | 4. | ANS: | В | PTS: | 1 | DIF: | Med | REF: | Section 1.6 | | | | OBJ: | Write a logarithmic expression as a single quantity MSC: | | | | | | | | | | | 5. | ANS: | В | PTS: | 1 | DIF: | Easy | REF: | Section 1.6 | | | | OBJ: | Solve an exponential equation MSC: Skill | | | | | | | | | | | 6. | ANS: | D | PTS: | 1 | DIF: | Med | REF: | Section 1.6 | | | | OBJ: | Solve a logarithmic equation MSC: Skill | | | | | | | | | | | 7. | ANS: | C | PTS: | 1 | DIF: | Med | REF: | Section 1.6 | | | | OBJ: | Solve a logarithmic equation MSC: Skill | | | | | | | | | | | 8. | ANS: | A | PTS: | 1 | DIF: | Med | REF: | Section 1.6 | | | | OBJ: | Solve an exponential equation MSC: Skill | | | | | | | | | | #### 2.1 A Preview of Calculus #### **Multiple Choice** Identify the choice that best completes the statement or answers the question. _____ 1. Decide whether the following problem can be solved using precalculus, or whether calculus is required. If the problem can be solved using precalculus, solve it. If the problem seems to require calculus, use a graphical or numerical approach to estimate the solution. Find the distance traveled in 16 seconds by an object traveling at a constant velocity of 20 feet per second. - a. calculus, 320 ft - b. calculus, 340 ft - c. precalculus, 320 ft - d. calculus, 640 ft - e. precalculus, 640 ft _____ 2. Decide whether the following problem can be solved using precalculus, or whether calculus is required. If the problem can be solved using precalculus, solve it. If the problem seems to require calculus, use a graphical or numerical approach to estimate the solution. Find the distance traveled in 20 seconds by an object moving with a velocity of $v(t) = 8 + 6\cos t$ feet per second. - a. calculus, 162.4485 ft - b. precalculus, 163.7985 ft - c. calculus, 165.4777 ft - d. precalculus, 165.4777 ft - e. precalculus, 162.4485 ft 3. Decide whether the following problem can be solved using precalculus, or whether calculus is required. If the problem can be solved using precalculus, solve it. If the problem seems to require calculus, use a graphical or numerical approach to estimate the solution. A cyclist is riding on a path whose elevation is modeled by the function $f(x) = 0.08 \left(16x - x^2 \right)$ where x and f(x) are measured in miles. Find the rate of change of elevation when x = 4. - precalculus, 0.08 - b. calculus, 0.2 - c. calculus, 0.64 - d. calculus, 0.08 - e. precalculus, 0.2 4. Decide whether the following problem can be solved using precalculus, or whether calculus is required. If the problem can be solved using precalculus, solve it. If the problem seems to require calculus, use a graphical or numerical approach to estimate the solution. A cyclist is riding on a path whose elevation is modeled by the function f(x) = 0.2x where x and f(x) are measured in miles. Find the rate of change of elevation when x = 5. y = f(x) - a. calculus, 2 - b. precalculus, 0.2 - c. calculus, 0.2 - d. precalculus, 2 - e. precalculus, 0.45 - _____ 5. Decide whether the following problem can be solved using precalculus, or whether calculus is required. If the problem can be solved using precalculus, solve it. If the problem seems to require calculus, use a graphical or numerical approach to estimate the solution. Find the area of the shaded region bounded by the triangle with vertices (0,0), (8,9), (17,0). - a. precalculus, 153 - b. calculus, 229.5 - c. precalculus, 76.5 - d. precalculus, 229.5 - e. calculus, 153 _____ 6. Decide whether the following problem can be solved using precalculus, or whether calculus is required. If the problem can be solved using precalculus, solve it. If the problem seems to require calculus, use a graphical or numerical approach to estimate the solution. Find the area of the shaded region. - a. calculus, 11 - b. precalculus, 11 - c. precalculus, 13 - d. calculus, 16 - e. precalculus, 16 _____ 7. Consider the function $f(x) = \sqrt{x}$ and the point P(4,2) on the graph of f. Graph f and the secant line passing through P(4,2) and Q(x,f(x)) for x=3. a. d. b. e. c. _____ 8. Consider the function $f(x) = \sqrt{x}$ and the point P(81,9) on the graph of f. Find the slope of the secant line passing through P(81,9) and Q(x,f(x)) for x = 1. Round your answer to four decimal places. - a. m=0.1000 - b. m=0.0122 - c. m=0.0122 - d. m=0.3133 - e. m=0.1000 ____ 9. Consider the function $f(x) = \sqrt{x}$ and the point P(9,3) on the graph of f. Estimate the slope m of the tangent line of f at P(9,3). Round your answer to four decimal places. - a. m=0.1667 - b. m=0.0832 - c. m=0.3800 - d. m=0.0556 - e. m=0.0833 ____ 10. Consider the function $f(x) = 6x - x^2$ and the point P(2,8) on the graph of f. Graph f and the secant line passing through P(2,8) and Q(x,f(x)) for x=3. a. 70 d. b. e. c. ____ 11. Consider the function $f(x) = 11x - x^2$ and the point P(4, 28) on the graph of f. Find the slope of the secant line passing through P(4, 28) and Q(x, f(x)) for x = 5. Round your answer to one decimal place. - a. 3.5 - b. 2.0 - c. 3.0 - d. 4.5 - e. 9.0 ____ 12. Consider the function $f(x) = 8x - x^2$ and the point P(3, 15) on the graph of f. Estimate the slope of the tangent line of f at P(3, 15). - a. 10 - b. 3 - c. 8 - d. 2 - e. 9 _____ 13. Use the rectangles in the following graph to approximate the area of the region bounded by $y = \cos x$, y = 0, $x = -\frac{\pi}{2}$, and $x = \frac{\pi}{2}$. - a. 3.9082 - b. 2.6055 - c. 1.9541 - d. 1.4656 - e. 0.9770 ____ 14. Use the rectangles in the following graph to approximate the area of the region bounded by $y = \sin x$, y = 0, x = 0, and $x = \pi$. a. 0.7850 72 - b. 1.5700 - c. 3.1400 - d. 1.1775 - e. 1.0519 - 15. Use the rectangles in the graph given below to approximate the area of the region bounded by y = 4 / x, y = 0, x = 1, and x = 4 Round your answer to three decimal places. - a. 2.481 units² - b. 6.371 units² - c. 3.585 units² - d. 6.872 units² - e. 6.903 units² ___ 16. Consider the length of the graph of f(x) = 5/x from (1,5) to (5,1) Approximate the length of the curve by finding the sum of the lengths of four line segments, as shown in following figure. Round your answer to two decimal places. - a. 6.11 - b. 8.12 - c. 5.66 - d. 8.49 - e. 7.11 # **2.1** A Preview of Calculus Answer Section | 1. | ANS: | C | PTS: | 1 | DIF: | Easy | REF: | Section 2.1 | |-------------|-------------------------------------|------------------------|---|-------------------------|-------------------|------------|--------------|----------------------| | OBJ: | Recognize pr | oblems | requiring preca | alculus | and find the sol | ution | MSC: | Skill | | 2. | ANS: | C | PTS: | 1 | DIF: | Med | REF: | Section 2.1 | | OBJ: | Recognize pr | oblems | requiring calcu | ılus and | l estimate soluti | ons | MSC: | Skill | | 3. | ANS: | C | PTS: | 1 | DIF: | Med | REF: | Section 2.1 | | OBJ: | Recognize pr | oblems | requiring calcu | ılus and | l estimate soluti | ons | MSC: | Skill | | 4. | ANS: | В | PTS: | 1 | DIF: | Easy | REF: | Section 2.1 | | OBJ: | Recognize pr | oblems | requiring preca | alculus | and find the sol | ution | MSC: | Skill | | 5. | ANS: | C | PTS: | 1 | DIF: | Easy | REF: | Section 2.1 | | OBJ: | Recognize pr | oblems | requiring preca | alculus | and find the sol | ution | MSC: | Skill | | 6. | ANS: | A | PTS: | 1 | DIF: | Med | REF: | Section 2.1 | | OBJ: | Recognize pr | oblems | requiring calcu | ılus and | l estimate soluti | on | MSC: | Skill | | 7. | ANS: | D | PTS: | 1 | DIF: | Easy | REF: | Section 2.1 | | OBJ: | Graph a func | tion and | l the secant line | passin | g through giver | n points | MSC: | Skill | | 8. | ANS: | A | PTS: | 1 | DIF: | Easy | REF: | Section 2.1 | | OBJ: | Calculate the | slope o | of a secant line p | passing | through given | points | MSC: | Skill | | 9. | ANS: | A | PTS: | 1 | DIF: | Med | REF: | Section 2.1 | | OBJ: | Estimate the | slope of | f a tangent line | | | | MSC: | Skill | | 10. | ANS: | D | PTS: | 1 | DIF: | Easy | REF: | Section 2.1 | | OBJ: | Graph a func | tion and | the secant line | passin | g through giver | n points | MSC: | Skill | | 11. | ANS: | В | PTS: | 1 | DIF: | Easy | REF: | Section 2.1 | | OBJ: | Calculate the | slope o | of a secant line p | passing | through given | points | MSC: | Skill | | 12. | ANS: | D | PTS: | 1 | DIF: | Med | REF: | Section 2.1 | | OBJ: | Calculate the | slope o | of secant line pa | ssing th | nrough the give | n points | MSC: | Skill | | 13. | ANS: | C | PTS: | 1 | DIF: | Med | REF: | Section 2.1 | | OBJ: | Estimate the | area of | a region using 1 | rectang | les | | MSC: | Skill | | 14. | | | | | | | | | | | ANS: | В | PTS: | 1 | DIF: | Med | REF: | Section 2.1 | | OBJ: | | _ | PTS:
a region using 1 | _ | | Med | REF:
MSC: | Section 2.1
Skill | | | | _ | | _ | | Med
Med | | | | OBJ: | Estimate the ANS: | area of B | a region using 1 | rectang | les
DIF: | | MSC: | Skill | | OBJ:
15. | Estimate the ANS: Estimate the ANS: | area of B
area of A | a region using to PTS: a region using
to PTS: | rectanging tectanging 1 | les
DIF: | Med
Med | MSC:
REF: | Skill
Section 2.1 | ## 2.2 Finding Limits Graphically and Numerically #### **Multiple Choice** Identify the choice that best completes the statement or answers the question. ____ 1. Complete the table and use the result to estimate the limit. $$\lim_{x \to 3} \frac{x - 3}{x^2 - 16x + 39}$$ | х | 2.9 | 2.99 | 2.999 | 3.001 | 3.01 | 3.1 | |------|-----|------|-------|-------|------|-----| | f(x) | | | | | | | - a. 0.525000 - b. 0.275000 - c. -0.100000 - d. 0.400000 - e. -0.475000 _____ 2. Complete the table and use the result to estimate the limit. $$\lim_{x \to 7} \frac{\frac{1}{x-3} - \frac{1}{4}}{x-7}$$ | х | 6.9 | 6.99 | 6.999 | 7.001 | 7.01 | 7.1 | |------|-----|------|-------|-------|------|-----| | f(x) | | | | | | | - a. -0.062500 - b. 0.067500 - c. -0.192500 - d. 0.047500 - e. -0.172500 3. Complete the table and use the result to estimate the limit. $$\lim_{x \to -10} \frac{\sqrt{-6x - 54} - \sqrt{6}}{x + 10}$$ | х | -10.1 | -10.01 | -10.001 | -9.999 | -9.99 | -9.9 | |------|-------|--------|---------|--------|-------|------| | f(x) | | | | | | | - a. 0.974745 - b. -1.099745 - c. -1.224745 - d. 1.058078 - e. 1.224745 4. Complete the table and use the result to estimate the limit. $$\lim_{x \to 0} \frac{\sin^3 x}{x^3}$$ | х | -0.1 | -0.01 | -0.001 | 0.001 | 0.01 | 0.1 | |------|------|-------|--------|-------|------|-----| | f(x) | | | | | | | - a. -0.5 - b. 0 - c. 1 - d. 0.5 - e. -1 5. Complete the table and use the result to estimate the limit. $$\lim_{x \to 0} \frac{\cos(3x) - 1}{3x}$$ | х | -0.1 | -0.01 | -0.001 | 0.001 | 0.01 | 0.1 | |------|------|-------|--------|-------|------|-----| | f(x) | | | | | | | - a. -1 - b. -0.5 - c. 0 - d. 0.5 - e. 1 ____ 6. Determine the following limit. (Hint: Use the graph to calculate the limit.) $$\lim_{x \to 1} (5 - x)$$ - a. 6 - b. 1 - c. 5 - d. 4 - e. does not exist - ____ 7. Determine the following limit. (Hint: Use the graph to calculate the limit.) $$\lim_{x \to 1} \left(x^2 + 4 \right)$$ - a. 5 - b. 1 - c. 0 - d. 4 - e. does not exist ____ 8. Let $$f(x) = \begin{cases} 4 - x, & x \neq 1 \\ 0, & x = 1 \end{cases}$$ Determine the following limit. (Hint: Use the graph to calculate the limit.) $$\lim_{x \to 1} f(x)$$ - a. 5 - b. 4 - c. 3 - d. 0 - e. does not exist ____ 9. Let $$f(x) = \begin{cases} x^2 + 5, & x \neq 1 \\ 1, & x = 1 \end{cases}$$. Determine the following limit. (Hint: Use the graph to calculate the limit.) $$\lim_{x \to 1} f(x)$$ - a. 6 - b. 25 - c. 1 - d. 5 - e. does not exist. ____ 10. Determine the following limit. (Hint: Use the graph to calculate the limit.) $$\lim_{x \to 2} \frac{1}{x-2}$$ | a.
b.
c.
d.
e. | -2
0
-4
2
does not exist | |----------------------------|--| | rin | 11. A ring has a inner circumference of 10 centimeters. What is the radius of the g? Round your answer to four decimal places. | | c.
d. | 0.7958 centimeter 3.1831 centimeters 1.5915 centimeters 1.7841 centimeters 10.1321 centimeters | | | 12. A ring has a inner circumference of 9 centimeters. If the ring's inner circumference a vary between 8 centimeters and 10 centimeters how can the radius vary? Round your answer to e decimal places. | | c. | Radius can vary between 2.54648 centimeters and 3.18310 centimeters. | | you | 13. A sphere has a volume of 4.76 cubic inches. What is the radius of the sphere? Round are answer to four decimal places. | | b.
c. | 1.0435 inches
1.6565 inches
1.0660 inches
2.1320 inches
1.9335 inches | | _ | 14. A sphere has a volume of 5.2 cubic inches. If the sphere's volume can vary between cubic inches and 6.1 cubic inches, how can the radius vary? Round your answer to five decimal ces. | - a. Radius can vary between 1.01653 inches and 1.13348 inches. - b. Radius can vary between 1.61365 inches and 1.79929 inches. - c. Radius can vary between 0.27474 inch and 1.97474 inches. - d. Radius can vary between 1.85897 inches and 2.18882 inches. - e. Radius can vary between 1.02490 inches and 1.20676 inches. # **2.2 Finding Limits Graphically and Numerically Answer Section** | 1. | ANS: | C | PTS: | 1 | DIF: | Med | REF: | Section 2.1 | |------|----------------|------------|-----------------|------------|------|------|------|-------------| | OBJ: | Estimate a lin | nit fron | a table of val | lues | | | MSC: | Skill | | 2. | ANS: | A | PTS: | 1 | DIF: | Med | REF: | Section 2.1 | | OBJ: | Estimate a lin | nit from | a table of val | lues | | | MSC: | Skill | | 3. | ANS: | C | PTS: | 1 | DIF: | Med | REF: | Section 2.1 | | OBJ: | Estimate a lin | nit from | a table of val | lues | | | MSC: | Skill | | 4. | ANS: | C | PTS: | 1 | DIF: | Med | REF: | Section 2.1 | | OBJ: | Estimate a lin | nit from | a table of val | lues | | | MSC: | Skill | | 5. | ANS: | C | PTS: | 1 | DIF: | Med | REF: | Section 2.1 | | OBJ: | Estimate a lin | nit fron | | lues | | | MSC: | Skill | | 6. | ANS: | D | PTS: | 1 | DIF: | Easy | REF: | Section 2.1 | | OBJ: | Estimate the | limit of | a function fro | om its gra | - | | MSC: | Skill | | 7. | ANS: | A | PTS: | 1 | DIF: | Med | REF: | Section 2.1 | | | Estimate the | limit of | | m its gra | aph | | MSC: | Skill | | 8. | ANS: | C | PTS: | 1 | DIF: | Med | REF: | Section 2.1 | | OBJ: | Estimate the | | | • | • | | MSC: | Skill | | 9. | ANS: | A | PTS: | 1 | DIF: | Med | REF: | Section 2.1 | | OBJ: | | limit of | | • | • | | MSC: | Skill | | 10. | ANS: | E | PTS: | 1 | DIF: | Med | REF: | Section 2.1 | | OBJ: | | limit of | | m its gra | aph | | MSC: | Skill | | 11. | ANS: | C | PTS: | 1 | DIF: | Easy | REF: | Section 2.1 | | OBJ: | Solve a linear | _ | | ions | | | MSC: | Application | | 12. | ANS: | C | | 1 | DIF: | Med | REF: | Section 2.1 | | OBJ: | Solve a linear | r equation | | ions | | | MSC: | Application | | 13. | ANS: | A | PTS: | 1 | DIF: | Easy | REF: | Section 2.1 | | OBJ: | Solve a cubic | - | | ons | | | MSC: | Application | | 14. | ANS: | A | PTS: | 1 | DIF: | Med | REF: | Section 2.1 | | OBJ: | Solve a linear | r equation | on in applicati | ions | | | MSC: | Application | #### 82 # 2.3 Evaluating Limits Analytically ### **Multiple Choice** Identify the choice that best completes the statement or answers the question. ____ 1. Find the limit. $$\lim_{x \to -4} 9x^2 + 36x$$ - a. 108 - b. -108 - c. 288 - d. -288 - e. (____ 2. Find the limit. $$\lim_{x \to 6} \frac{x}{x^2 + 8}$$ - a. $\frac{1}{14}$ - b. $\frac{1}{10}$ - c. $\frac{3}{22}$ - d. $\frac{3}{7}$ - e. <u>3</u> ____ 3. Find the limit. $$\lim_{x \to 4} \frac{\sqrt{x+5}}{x-1}$$ - a. 3 - b. -1 - c. -3 - d. 1 - e. 9 4. Find the limit. $$\lim_{x \to \frac{3\pi}{4}} \sin x$$ - a. $\frac{\sqrt{3}}{2}$ - b. $-\frac{\sqrt{2}}{2}$ c. $-\frac{1}{2}$ - e. does not exist ____ 5. Find the limit. $$\lim_{x \to 2} \cos \frac{\pi x}{3}$$ ____ 6. Find the limit. $$\lim_{x \to 5} \cos \left(\frac{\pi x}{6} \right)$$ - b. 0 c. $\frac{1}{2}$ d. $-\frac{\sqrt{3}}{2}$ e. $\frac{\sqrt{3}}{2}$ 7. Find the lmit. $$\lim_{x \to \pi} \tan \left(\frac{x}{3} \right)$$ a. $$\frac{-1}{\sqrt{3}}$$ b. $$\sqrt{3}$$ c. $$-\sqrt{3}$$ d. $$\frac{1}{\sqrt{3}}$$ b. $$\sqrt{3}$$ c. $$-\sqrt{3}$$ d. $$\frac{1}{\sqrt{3}}$$ e. does not exixt Let $f(x) = -x^2 - 5$ and g(x) = 2x. Find the limit. $$\lim_{x \to -2} g(f(x))$$ a. $$-18$$ 9. Let f(x) = 4x - 2 and $g(x) = x^3$. Find the limit. $$\lim_{x \to 1} g(f(x))$$ 10. Let $f(x) = 3 + 2x^2$ and $g(x) = \sqrt{x+3}$. Find the limit. $$\lim_{x \to 2} g(f(x))$$ a. $$\sqrt{6}$$ a. $$\sqrt{6}$$ b. $\sqrt{14}$ c. $\sqrt{11}$ d. $\sqrt{10}$ e. $\sqrt{2}$ c. $$\sqrt{11}$$ d. $$\sqrt{10}$$ e. $$\sqrt{2}$$ Let $f(x) = x^2 - x - 5$ and $g(x) = \sqrt[3]{x + 14}$. Find the limits. $$\lim_{x \to 3} g(f(x))$$ - a. $-\frac{3}{\sqrt{1}}$ b. $\frac{3}{\sqrt{29}}$ - c. $\sqrt[3]{15}$ d. $\sqrt[3]{15}$ - e. $\sqrt[3]{1}$ Suppose that $\lim_{x \to c} f(x) = -13$ and $\lim_{x \to c} g(x) = -10$. Find the following limit. ____ 12. $$\lim_{x \to c} \left[f(x) + g(x) \right]$$ - a. 0 - b. -10 - c. -3 - d. -23 - e. 130 Suppose that $\lim_{x \to c} f(x) = -15$ and $\lim_{x \to c} g(x) = -10$. Find the following limit. 13. $$\lim_{x \to c} \left[f(x)g(x) \right]$$ - a. 10 - b. -5 - c. -25 - d. -15 - e. 150 Suppose that $\lim_{x \to 0} f(x) = 7$ and $\lim_{x \to 0} g(x) = 3$. Find the following limit. 14. $$\lim_{x \to c} \frac{f(x)}{g(x)}$$ - a. 21 - c. -21 d. 7 - e. does not exist ____ 15. Suppose that $$\lim_{x \to c} f(x) = -11$$ and $\lim_{x \to c} g(x) = -3$. Find the following limit. $$\lim_{x \to c} \left[f(x) - g(x) \right]$$ 86 d. $$-14$$ ____ 16. Suppose that $$\lim_{x \to c} f(x) = 5$$. Find the following limit. $$\lim_{x \to c} \left[f(x)^3 \right]$$ ____ 17. Suppose that $$\lim_{x \to c} f(x) = -5$$. Find the following limit. $$\lim_{x \to c} 3f(x)$$ $$\lim_{x \to -4} \frac{8x^2 + 40x + 32}{x + 4}$$ Find the limit (if it exists). 19. $$\lim_{x \to -8} \frac{x+8}{x^2 - 64}$$ - c. -32 - d. -8 - 20. Find the limit (if it exists). $$\lim_{x \to 5} \frac{\sqrt{x+4} - 3}{x-5}$$ - b. - c. 0 - e. Limit does not exist. - 21. Find the limit (if it exists). $$\lim_{\Delta x \to 0} \frac{(x + \Delta x)^2 - 9(x + \Delta x) + 2 - (x^2 - 9x + 2)}{\Delta x}$$ a. $$\frac{1}{3}x^3 - \frac{9}{2}x^2 + 2x$$ - b. 2x 9c. $x^3 9x^2 + 2x$ - e. does not exist ____ 22. Determine the limit (if it exists). $$\lim_{x \to 0} \frac{12(1-\cos x)}{x^2}$$ - a. 6 - b. 48 - c. 10 - d. 24 - e. does not exist ____ 23. Determine the limit (if it exists). $$\lim_{x \to 0} \frac{\sin x(1 - \cos x)}{2x^8}$$ - a. 8 - b. 1 - c. 0 - d. 2 - e. does not exist ____ 24. Determine the limit (if it exists). $$\lim_{x \to 0} \frac{\sin^4 x}{x^3}$$ - a 1 - b. 0 - c. 2 - d. ∞ - e. does not exist ____ 25. Find $\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$ where f(x)
= 4x - 3. - a. 1 - b. 4 - c. -3 - d. 0 - e. Limit does not exist. # **2.3 Evaluating Limits Analytically Answer Section** | 1. | ANS: E | PTS: 1 | DIF: | Easy | REF: | Section 2.3 | |------|------------------------|---------------------------------------|-----------------------|-------------------|------|-------------| | OBJ: | Evaluate a limit using | | | | MSC: | Skill | | 2. | ANS: C | PTS: 1 | DIF: | Easy | REF: | Section 2.3 | | OBJ: | Evaluate a limit usin | | | | MSC: | Skill | | 3. | ANS: D | PTS: 1 | DIF: | Med | REF: | Section 2.3 | | OBJ: | Evaluate a limit usin | | | | MSC: | Skill | | 4. | ANS: D | PTS: 1 | DIF: | Med | REF: | Section 2.3 | | OBJ: | Evaluate a limit usin | | | _ | MSC: | Skill | | 5. | ANS: B | PTS: 1 | DIF: | Easy | REF: | Section 2.3 | | OBJ: | Evaluate a limit usin | | | | MSC: | Skill | | 6. | ANS: D | PTS: 1 | DIF: | Med | REF: | Section 2.3 | | OBJ: | Evaluate a limit usin | | | | MSC: | Skill | | 7. | ANS: B | PTS: 1 | DIF: | Med | REF: | Section 2.3 | | OBJ: | Evaluate the limit of | | D.1.D. | | MSC: | Skill | | 8. | ANS: A | PTS: 1 | DIF: | Med | REF: | Section 2.3 | | OBJ: | Evaluate the limit of | _ | | | MSC: | Skill | | 9. | ANS: C | PTS: 1 | DIF: | Med | REF: | Section 2.3 | | OBJ: | Evaluate the limit of | - | | 3.6.1 | MSC: | Skill | | 10. | ANS: B | PTS: 1 | DIF: | Med | REF: | Section 2.3 | | | Evaluate the limit of | _ | | 3.6.1 | MSC: | Skill | | 11. | ANS: D | PTS: 1 | DIF: | Med | REF: | Section 2.3 | | OBJ: | Evaluate the limit of | _ | | 3.6.1 | MSC: | Skill | | 12. | ANS: D | PTS: 1 | DIF: | Med | REF: | Section 2.3 | | OBJ: | Evaluate the limit of | | - | N. 1. | MSC: | Skill | | 13. | ANS: E | PTS: 1 | DIF: | Med | REF: | Section 2.3 | | OBJ: | Evaluate the limit of | | | M. 1 | MSC: | Skill | | 14. | ANS: D | PTS: 1 | DIF: | Med | REF: | Section 2.3 | | OBJ: | Evaluate the limit of | | - | 3.7.1 | MSC: | Skill | | 15. | ANS: B | PTS: 1 | DIF: | Med | REF: | Section 2.3 | | | Evaluate the limit of | | - | 3.6.1 | MSC: | Skill | | 16. | ANS: B | PTS: 1 | DIF: | Med | REF: | Section 2.3 | | OBJ: | | | - | 3.6.1 | MSC: | Skill | | 17. | ANS: C | PTS: 1 | DIF: | Med | REF: | Section 2.3 | | | Evaluate the limit of | | _ | 3.6.1 | MSC: | Skill | | 18. | ANS: B | PTS: 1 | DIF: | Med | REF: | Section 2.3 | | | Evaluate the limit of | the function and si | implify it to an ider | itical function e | | | | | ntinuity point | DTC 1 | DIE | N. 1. | MSC: | Skill | | 19. | ANS: A | PTS: 1 | DIF: | Med | REF: | Section 2.3 | | OBJ: | | | • | M. 1 | MSC: | Skill | | 20. | ANS: D | PTS: 1 | DIF: | Med | REF: | Section 2.3 | | OBJ: | Evaluate the limit of | · · · · · · · · · · · · · · · · · · · | · · | N. 1. | MSC: | Skill | | 21. | ANS: B | PTS: 1 | DIF: | Med | REF: | Section 2.3 | | OBJ: | Evaluate the limit of | • | • | Mad | MSC: | Skill | | 22. | ANS: A | PTS: 1 | DIF: | Med | REF: | Section 2.3 | | ODJ: | Evaluate the limit of | i a runction analytic | any | | MSC: | Skill | # 90 Chapter 2: Limits and Their Properties | 23. | ANS: | E | PTS: | 1 | DIF: | Med | REF: | Section 2.3 | | | |------|---|----------|-----------------|----------|------|-----|------|-------------|--|--| | OBJ: | Evaluate the | limit of | a function anal | ytically | 7 | | MSC: | Skill | | | | 24. | ANS: | В | PTS: | 1 | DIF: | Med | REF: | Section 2.3 | | | | OBJ: | 3J: Evaluate the limit of a function analytically MSC: Skil | | | | | | | | | | | 25. | ANS: | В | PTS: | 1 | DIF: | Med | REF: | Section 2.3 | | | | OBJ: | Evaluate the l | limit of | a difference qu | otient | | | MSC: | Skill | | | ## 2.4 Continuity and One-Sided Limits ### **Multiple Choice** Identify the choice that best completes the statement or answers the question. Use the graph as shown to determine the following limits, and discuss the continuity 1. of the function at x = 3. - $\lim f(x)$ - (ii) $\lim_{x \to 3^{-}} f(x)$ (iii) $\lim_{x \to 3} f(x)$ - a. 1,1,1, not continuous - b. 2,2,2, continuous - c. 4,4,4, not continuous - d. 2, 2, 2, not continuous - e. 1,1,1, continuous - ____ 2. Use the graph as shown to determine the following limits, and discuss the continuity of the function at x = -4. - (i) $\lim_{x \to -4^+} f(x)$ (ii) $\lim_{x \to -4^-} f(x)$ (iii) $\lim_{x \to -4} f(x)$ a. 3, 3, 3, continuous 92 - b. 2, 2, 2, not continuous - c. 3, 3, 3, not continuous - d. -4, -4, -4, continuous - e. 2, 2, 2, continuous Use the graph to determine the following limits, and discuss the continuity of the function at x = -3. - $\lim f(x)$ - (ii) $\lim_{x \to -3^-} f(x)$ (iii) $\lim_{x \to -3} f(x)$ - a. 1, -1, does not exist, not continuous - b. 1, 0, does not exist, not continuous - c. 0, 1, does not exist, not continuous - d. -3, 0, does not exist, not continuous - e. 0, 1, 0, continuous Find the limit (if it exists). 4. $$\lim_{x \to 11^+} \frac{11 - x}{x^2 - 121}$$ - c. Limit does not exist. - 22 ____ 5. Find the limit (if it exists). $$\lim_{x \to 36^{-}} \frac{\sqrt{x-6}}{x-36}$$ - a. N - b. $-\frac{1}{12}$ - c. $\frac{1}{72}$ - d. $\frac{1}{12}$ - e. Limit does not exist. ____ 6. Find the limit (if it exists). $$\lim_{x \to 1^{-}} f(x), \text{ where } f(x) = \begin{cases} x^{3} + 10, & x < 1 \\ x + 10, & x \ge 1 \end{cases}$$ - a. Limit does not exist. - b. r - c. 10 - d. 11 - e. 30 _____ 7. Find the limit (if it exists). Note that f(x) = [|x|] represents the greatest integer function. $$\lim_{x \to -6^+} \left(-3\left[|x| \right] - 8 \right)$$ - a. 13 - b. -10 - c. 10 - d. -13 - e. does not exist _____ 8. Find the limit (if it exists). Note that f(x) = [|x|] represents the greatest integer function. $$\lim_{x \to 5^+} \left(2x - [|x|] \right)$$ - а. б - b. Limit does not exist. - c. 5 - d. 0 - e. 4 _ 9. Discuss the continuity of the function $f(x) = \frac{x^2 - 4}{x - 2}$. - a. f(x) is discontinuous at x = -2. - b. f(x) is discontinuous at x = -2, 2. - c. f(x) is discontinuous at x = 2. - d. f(x) is continuous for all real x. - e. f(x) is continuous at x = 4. ____ 10. Find the x-values (if any) at which the function $f(x) = 13x^2 - 15x - 15$ is not continuous. Which of the discontinuities are removable? - a. x=4, removable - b. x=0, removable - c. $x = \frac{15}{26}$, not removable. - d. continuous everywhere - e. $x = \frac{15}{26}$, removable. ____ 11. Find the x-values (if any) at which $$f(x) = \frac{x}{x^2 - 2x}$$ is not continuous. - a. f(x) is not continuous at x = 0 and f(x) has a removable discontinuity at x = 0. - b. f(x) is not continuous at x = 0, 2 and both the discontinuities are nonremovable. - c. f(x) is not continuous at x = 2 and f(x) has a removable discontinuity at x = 2. - d. f(x) is not continuous at x = 0, 2 and f(x) has a removable discontinuity at x = 0. - e. f(x) is continuous for all real x. _____ 12. Find the x-values (if any) at which the function $$f(x) = \frac{x}{x^2 - 100}$$ is not continuous. Which of the discontinuities are removable? - a. 10 and -10, removable - b. discontinuous everywhere - c. continuous everywhere - d. 10 and -10, not removable - e. 0, removable ____ 13. Find the x-values (if any) at which the function $$f(x) = \frac{x+2}{x^2+6x+8}$$ is not continuous. Which of the discontinuities are removable? - a. no points of discontinuity - b. x = -2 (not removable), x = -4 (removable) - c. x = -2 (removable), x = -4 (not removable) - d. no points of continuity - e. x = -2 (not removable), x = -4 (not removable) _____ 14. Find the x-values (if any) at which $$f(x) = \frac{|x-3|}{x-3}$$ is not continuous. - a. f(x) is not continuous at x = 3 and the discontinuity is nonremovable. - b. f(x) is not continuous at x = 0 and the discontinuity is removable. - c. f(x) is continuous for all real x. - d. f(x) is not continuous at x = 3 and the discontinuity is removable. - e. f(x) is not continuous at x = 0, -3 and x = 0 is a removable discontinuity. ____ 15. Find the constant a such that the function $$f(x) = \begin{cases} -4 \cdot \frac{\sin x}{x}, & x < 0 \\ a + 7x, & x \ge 0 \end{cases}$$ is continuous on the entire real line. - a. 1 - b. -7 c. 7 16. Find the constant a such that the function $$f(x) = \begin{cases} 6, & x \le -5 \\ ax + b, & -5 < x < 1 \\ -6, & x \ge 1 \end{cases}$$ is continuous on the entire real line. - a. $\alpha = 2, b = 0$ - b. a = 2, b = -4 - c. a = -2, b = -4 - d. a = -2, b = 4 - e. a = 2, b = 4 Find the value of c guaranteed by the Intermediate Value Theorem. ____ 17. $$f(x) = x^2 - 2x + 8, [2, 6], f(c) = 11$$ ____ 18. Find the value of c guaranteed by the Intermediate Value Theorem. $$f(x) = \frac{x^2 - 5x}{x - 3}, \left[\frac{9}{2}, 18\right], f(c) = 6$$ - a. 11 - b. 2 - c. 1 - d. 9 - e. 10 ____ 19. A long distance phone service charges \$0.35 for the first 10 minutes and \$0.1 for each additional minute or fraction thereof. Use the greatest integer function to write the cost C of a call in terms of time t (in minutes). a. $$C = \begin{cases} 0.35 & 0 < t \le 10 \\ 0.35 + 0.1 [|t-10|] & t > 10, t \text{ is not an integer} \\ 0.35 + 0.1 (t-9) & t > 10, t \text{ is an integer} \end{cases}$$ b. $$C = \begin{cases} 0.35 & 0 < t \le 10 \\ 0.35 + 0.1 (t-10) & t > 10 \end{cases}$$ c. $$C = \begin{cases} 0.35 & 0 < t \le 10 \\ 0.35 + 0.1 [|t-9|] & t > 10 \end{cases}$$ d. $$C = \begin{cases} 0.35 & 0 < t \le 10 \\ 0.35 + 0.1 [|t-9|] & t > 10 \end{cases}$$ e. $$C = \begin{cases} 0.35 & 0 < t \le 10 \\ 0.35 + 0.1 [|t-10|] & t > 10 \end{cases}$$ e. $$C = \begin{cases} 0.35 & 0 < t \le 10 \\ 0.35 + 0.1 [|t-9|] & t > 10, t \text{ is not an integer} \end{cases}$$ $$0.35 + 0.1 [|t-9|] & t > 10, t \text{ is not an integer} \end{cases}$$ $$0.35 + 0.1 [|t-10| & t > 10, t \text{ is an integer} \end{cases}$$ Find all values of c such that f is continuous on $(-\infty, \infty)$. 20. $$f(x) = \begin{cases} 4 - x^2, & x \le c \\ x, & x > c \end{cases}$$ - a. c = 3b. c = 0c. $\frac{-1 + \sqrt{17}}{2}$ - d. $\frac{1+\sqrt{17}}{2}$, $\frac{1-\sqrt{17}}{2}$ - e. $\frac{-1+\sqrt{17}}{2}$,
$\frac{-1-\sqrt{17}}{2}$ # **2.4 Continuity and One-Sided Limits Answer Section** | 1. | ANS: | A | PTS: | 1 | DIF: | Med | REF: Section 2.4 | |------|-----------------|----------|-------------------|----------|------------------|------------|------------------| | OBJ: | Estimate a lin | nit and | points of discor | ntinuity | from a graph | | MSC: Skill | | 2. | ANS: | В | PTS: | 1 | DIF: | Med | REF: Section 2.4 | | OBJ: | Estimate a lin | nit and | points of discor | ntinuity | from a graph | | MSC: Skill | | 3. | ANS: | C | PTS: | 1 | DIF: | Med | REF: Section 2.4 | | OBJ: | Estimate a lin | nit and | points of discor | ntinuity | from a graph | | MSC: Skill | | 4. | ANS: | D | PTS: | 1 | DIF: | Easy | REF: Section 2.4 | | OBJ: | Evaluate one- | sided li | imits | | | | MSC: Skill | | 5. | ANS: | D | PTS: | 1 | DIF: | Med | REF: Section 2.4 | | OBJ: | Evaluate one- | sided li | imits | | | | MSC: Skill | | 6. | ANS: | D | PTS: | 1 | DIF: | Med | REF: Section 2.4 | | OBJ: | Evaluate one- | sided li | imits | | | | MSC: Skill | | 7. | ANS: | A | PTS: | 1 | DIF: | Med | REF: Section 2.4 | | OBJ: | Evaluate one- | sided li | imits | | | | MSC: Skill | | 8. | ANS: | C | PTS: | 1 | DIF: | Med | REF: Section 2.4 | | OBJ: | Evaluate one- | sided li | imits | | | | MSC: Skill | | 9. | ANS: | C | PTS: | 1 | DIF: | Easy | REF: Section 2.4 | | OBJ: | Identify the d | iscontii | nuities of a func | tion if | any exist | • | MSC: Skill | | 10. | ANS: | D | PTS: | 1 | DIF: | Med | REF: Section 2.4 | | OBJ: | Identify the re | emovab | le discontinuiti | es of a | function | | MSC: Skill | | 11. | ANS: | D | PTS: | 1 | DIF: | Easy | REF: Section 2.4 | | OBJ: | • | emovab | le discontinuiti | es of a | function | | MSC: Skill | | 12. | ANS: | D | PTS: | 1 | DIF: | Med | REF: Section 2.4 | | OBJ: | - | | le discontinuiti | es of a | function | | MSC: Skill | | 13. | ANS: | C | PTS: | 1 | DIF: | Med | REF: Section 2.4 | | OBJ: | • | | le discontinuiti | | | | MSC: Skill | | 14. | ANS: | A | PTS: | 1 | DIF: | Med | REF: Section 2.4 | | OBJ: | • | | le discontinuiti | | | | MSC: Skill | | 15. | ANS: | Е | PTS: | 1 | DIF: | Med | REF: Section 2.4 | | OBJ: | | | - | | a function is co | | MSC: Skill | | 16. | ANS: | С | PTS: | 1 | DIF: | Med | REF: Section 2.4 | | OBJ: | • | | - | | a function is co | | MSC: Skill | | 17. | ANS: | В | PTS: | 1 | DIF: | Easy | REF: Section 2.4 | | OBJ: | • | alue of | c guaranteed by | y the In | termediate Valı | ie Theorem | MSC: Skill | | 18. | ANS: | D | PTS: | 1 | DIF: | Med | REF: Section 2.4 | | OBJ: | Identify the va | alue of | c guaranteed by | y the In | termediate Valu | ie Theorem | MSC: Skill | | 19. | ANS: | E | PTS: | 1 | DIF: | Med | REF: Section 2.4 | | OBJ: | Create function | ons in a | pplications | | | | MSC: Application | | 20. | ANS: | E | PTS: | 1 | DIF: | Med | REF: Section 2.4 | | OBJ: | Identify the va | alue of | a parameter to | ensure | a function is co | ntinuous | MSC: Skill | | | | | | | | | | #### 2.5 Infinite Limits #### **Multiple Choice** Identify the choice that best completes the statement or answers the question. Determine whether $f(x) = \frac{x^{10}}{x^2 - 9}$ approaches ∞ or $-\infty$ as x approaches -3 from the left and from the right by completing the tables below. | х | -3.5 | -3.1 | -3.01 | -3.001 | |------|------|------|-------|--------| | f(x) | | | | | | х | -2.999 | -2.99 | -2.9 | -2.5 | | |------|--------|-------|------|------|--| | f(x) | | | | | | a. $$\lim_{x \to a} f(x) = -\infty$$, $\lim_{x \to a} f(x) = \infty$ b. $$\lim_{x \to \infty} f(x) = \infty$$, $\lim_{x \to \infty} f(x) = -\infty$ $$x \to -3^ x \to -3^+$$ c. $$\lim_{x \to 0} f(x) = \infty$$, $\lim_{x \to 0} f(x) = \infty$ a. $$\lim_{x \to -3^{-}} f(x) = -\infty, \quad \lim_{x \to -3^{+}} f(x) = \infty$$ $$x \to -3^{-} \qquad x \to -3^{+}$$ b. $$\lim_{x \to -3^{-}} f(x) = \infty, \quad \lim_{x \to -3^{+}} f(x) = -\infty$$ $$x \to -3^{-} \qquad x \to -3^{+}$$ c. $$\lim_{x \to -3^{-}} f(x) = \infty, \quad \lim_{x \to -3^{+}} f(x) = \infty$$ $$x \to -3^{-} \qquad x \to -3^{+}$$ d. $$\lim_{x \to -3^{-}} f(x) = -\infty, \quad \lim_{x \to -3^{+}} f(x) = -\infty$$ $$x \to -3^{-} \qquad x \to -3^{+}$$ Find all the vertical asymptotes (if any) of the graph of the function $f(x) = \frac{5}{\left(x-3\right)^2}.$ a. $$x = -3$$ b. $$x = 5$$ c. $$x = 3, -3$$ d. $$x = 3$$ e. no vertical asymptotes Find the vertical asymptotes (if any) of the function $f(x) = \frac{x^2 - 4}{x^2 + 3x + 2}$. 3. a. $$x = 2$$ b. $$x = -1$$ c. $$x = 1$$ d. $$x = -2$$ e. $$x = -2$$ ____ 4. Find all the vertical asymptotes (if any) of the graph of the function $$f(x) = \frac{1+x}{x^2(1-x)}.$$ a. $$x = -1$$ b. $$x = 1$$ c. $$x = 0$$ d. $$x = 1, x = 0$$ e. no vertical asymptotes _____ 5. Find all the vertical asymptotes (if any) of the graph of the function $f(x) = \frac{x^3 + 8}{x + 2}$. a. $$x = -2$$ b. $$x = 8$$ c. $$x = 2$$ d. $$x = 2, -2$$ e. no vertical asymptotes ____ 6. Find all vertical asymptotes (if any) of the function $f(x) = \frac{x^2 + 4x + 3}{x^3 - 4x^2 - x + 4}$. a. $$x = 4, 1$$ b. $$x = 4, 1, -1$$ c. $$x = -4, -1$$ d. $$x = 1$$ e. $$x = -1$$ ____ 7. Find the vertical asymptotes (if any) of the function $f(x) = \tan(15x)$. a. $$x = \frac{k}{15} \pi (k = 0, \pm 1, \pm 2,...)$$ b. $$x = \frac{2k+1}{30} \pi (k = 0, \pm 1, \pm 2,...)$$ c. $$x = \frac{2k}{15} \pi (k = 0, \pm 1, \pm 2, ...)$$ d. $$x = \frac{2k+1}{15} \pi (k = 0, \pm 1, \pm 2,...)$$ e. no vertical asymptotes 8. Find the limit. $$\lim_{x \to 14^+} \frac{x-3}{x-14}$$ - a. 1 - b. −∞ - c. 0 - d. ∞ - e. -1 9. Find the limit. $$\lim_{x \to -10} \frac{x^2 + 10x}{\left(x^2 + 100\right)(x + 10)}$$ - c. 20 - d. -10 - e. -20 ____ 10. Find the limit. $$\lim_{x \to 0^{-}} \left(x^2 - \frac{1}{x} \right)$$ - a. 1 - b. 0 - c. -1 - d. -∞ - e. 😠 Find the following limit if it exists: $\lim \ln(x-3)$. Use $\pm \infty$ when appropriate. 11. $x \rightarrow 3^{+}$ $$x \rightarrow 3$$ - a. co - b. 3 - c. 1 - d. −∞ - e. does not exist ____ 12. Find the limit (if it exists). lim xtan xx $$x o \frac{1}{2}$$ - a. -co - b. $\frac{1}{2}$ - c. 0 - d. ထ - e. Limit does not exist _____ 13. Use a graphing utility to graph the function $f(x) = \frac{x^2 - 2x + 4}{x^3 + 8}$ and determine the one-sided limit $\lim_{x \to -2^+} f(x)$. - a. -co - b. 🛭 - c. 0 - d. 12 - e. 8 ____ 14. Use a graphing utility to graph the function $f(x) = \csc \frac{\pi x}{2}$ and determine the following one-sided limit. $\lim_{x \to 2^{-}} f(x)$ - a. -co - b. 2 - c –2 - d. ∞ - e. 0 _____ 15. A petrol car is parked 35 feet from a long warehouse (see figure). The revolving light on top of the car turns at a rate of $\frac{1}{2}$ revolution per second. The rate at which the light beam moves along the wall is $r = 35\pi \sec^2 \theta \, \text{ft/sec}$. Find the rate r when θ is $\frac{\pi}{6}$. - a. $r = \frac{140}{3}$ ft / sec - b. $r = \frac{70\sqrt{3}\,\pi}{3}\,\text{ft/sec}$ - c. $r = \frac{70\sqrt{3}}{3} \text{ ft / sec}$ - $r = \frac{140\,\pi}{3}\,\text{ft/sec}$ - e. $r = \frac{70\pi}{3}$ ft / sec ____ 16. A petrol car is parked 65 feet from a long warehouse (see figure). The revolving light on top of the car turns at a rate of $\frac{1}{2}$ revolution per second. The rate at which the light beam moves along the wall is $r = 65 \pi \sec^2 \theta \, \text{ft/sec}$. Find the limit of r as $\theta \to (\pi/2)^-$. - a. co - b. 65π - c. [- d. 65 - e. −∞ ____ 17. A 30-foot ladder is leaning against a house (see figure). If the base of the ladder is pulled away from the house at a rate of 2 feet per second, the top will move down the wall at a rate of $r = \frac{2x}{\sqrt{900 - x^2}}$ ft/sec, where x is the distance between the base of the ladder and the house. Find the rate r when x is 18 feet. a. $$r = \frac{3}{2}$$ ft/sec b. $r = \frac{4}{3}$ ft/sec c. $r = \frac{48}{5}$ ft/sec b. $$r = \frac{4}{3}$$ ft/sec c. $$r = \frac{48}{5}$$ ft/sec d. $$r = \frac{2}{3}$$ ft/sec e. $$r = \frac{3}{4}$$ ft/sec A 25-foot ladder is leaning against a house (see figure). If the base of the ladder is pulled away from the house at a rate of 2 feet per second, the top will move down the wall at a rate of $r = \frac{2x}{\sqrt{625 - x^2}}$ ft / sec where x is the distance between the base of the ladder and the house. Find the limit of r as $x \to 25^-$. - b. 50 - c. 0 - d. ∞ - 25 # 2.5 Infinite Limits Answer Section | 1. | ANS: | В | PTS: | 1 | DIF: | Med | REF: | Section 2.5 | | | |-------|---------------------------------------|------------|----------------|---------|----------------|----------|------|-------------|--|--| | OBJ: | Evaluate an i | MSC: | Skill | | | | | | | | | 2. | ANS: | D | PTS: | 1 | DIF: | Easy | REF: | Section 2.5 | | | | OBJ: | Identify the v | ertical a | asymptotes (if | any) of | the graph of a | function | MSC: | Skill | | | | 3. | ANS: | В | PTS: | 1 | DIF: | Med | REF: | Section 2.5 | | | | OBJ: | Identify the v | vertical a | asymptotes (if | any) of | the graph of a | function | MSC: | Skill | | | | 4. | ANS: | D | PTS: | 1 | DIF: | Med | REF: | Section 2.5 | | | | OBJ: | Identify the v | function | MSC: | Skill | | | | | | | | 5. | ANS: | E | PTS: | 1 | DIF: | Med | REF: | Section 2.5 | | | | OBJ: | Identify the v | ertical a | asymptotes (if | any) of | the graph of a | function | MSC: | Skill | | | | 6. | ANS: | A | PTS: | 1 | DIF: | Med | REF: | Section 2.5 | | | | OBJ: | Identify the v | vertical a | asymptotes (if | any) of | the graph of a | function | MSC: | Skill | | | | 7. | ANS: | В | PTS: | 1 | DIF: | Med | REF: | Section 2.5 | | | | OBJ: | Identify the v | function | MSC: | Skill | | | | | | | | 8. | ANS: | D | PTS: | 1 | DIF: | Med | REF: | Section 2.5 | | | | OBJ: | Evaluate one | -sided li | mits | | | | MSC: | Skill | | | | 9. | ANS: | В | PTS: | 1 | DIF: | Med | REF: | Section 2.5 | | | | OBJ: | Evaluate the | limit of | a function | | | | MSC: | Skill | | | | 10. | ANS: | E | PTS: | 1 | DIF: | Med | REF: | Section 2.5 | | | | OBJ: |
Evaluate one | -sided li | mits | | | | MSC: | Skill | | | | 11. | ANS: | D | PTS: | 1 | DIF: | Med | REF: | Section 2.5 | | | | OBJ: | Evaluate limi | | MSC: | Skill | | | | | | | | 12. | ANS: | E | PTS: | 1 | DIF: | Med | REF: | Section 2.5 | | | | OBJ: | Identify a lin | nit that d | loes not exist | | | | MSC: | Skill | | | | 13. | ANS: | В | PTS: | 1 | DIF: | Med | REF: | Section | | | | 2.OBJ | :Estimate one | -sided li | mits from a gr | raph | | | MSC: | Skill | | | | 14. | ANS: | D | PTS: | 1 | DIF: | Med | REF: | Section 2.5 | | | | OBJ: | Estimate one | | MSC: | Skill | | | | | | | | 15. | ANS: | D | PTS: | 1 | DIF: | Easy | REF: | Section 2.5 | | | | OBJ: | Evaluate fund | ctions in | applications | | | | MSC: | Application | | | | 16. | ANS: | A | PTS: | 1 | DIF: | Med | REF: | Section 2.5 | | | | OBJ: | Evaluate limit | MSC: | Application | | | | | | | | | 17. | ANS: | A | PTS: | 1 | DIF: | Easy | REF: | Section 2.5 | | | | OBJ: | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | 18. | ANS: | D | PTS: | 1 | DIF: | Med | REF: | Section 2.5 | | | | | Evaluate lim | its in apı | plications | | | | MSC: | Application | | | | | | 1 1 | • | | | | | | | | ### 3.1 The Derivative and the Tangent Line Problem #### **Multiple Choice** Identify the choice that best completes the statement or answers the question. ____ 1. Find the slope m of the line tangent to the graph of the function f(x) = 2 - 7x at the point (-1, 9). - a. m = -7 - b. m = -2 - c. m=2 - d. m = 7 - e. m = -9 ____ 2. Find the slope m of the line tangent to the graph of the function $g(x) = 9 - x^2$ at the point (4, -7). - a. m = 4 - b. m = 9 - c. m = -8 - d. m = -7 - e. m = -18 ____ 3. Find the derivative of the function g(x) = -2 by the limit process. - a. g'(x) = 2 - b. g'(x) = 2x - c. g'(x) = -2x - d. g'(x) = 0 - e. g'(x) = -2 ____ 4. Find the derivative of the function $h(s) = 7 + \frac{6}{7}s$ by the limit process. - a. h'(s) = 7 - b. $h'(s) = 7s + \frac{6}{7}s^2$ - c. $h'(s) = \frac{6}{7}$ - d. $h'(s) = \frac{55}{7}$ - e. $h'(s) = 7s + \frac{6}{7}$