Full Download: http://downloadlink.org/product/solutions-manual-for-trigonometry-8th-edition-by-mckeague-ibsn-978130565222

Chapter 2 Right Triangle Trigonometry

2.1 Definition II: Right Triangle Trigonometry

EVEN SOLUTIONS

- 2. Using Definition II and Figure 8, we would refer to *a* as the side opposite *A*, *b* as the side adjacent to *A*, and *c* as the hypotenuse.
- 4. a. cosine (ii) b. cosecant (iii) c. cotangent (i)
- **6**. Using the Pythagorean Theorem, first find *a*:

$$a^{2} + 8^{2} = 17^{2}$$

$$a^{2} + 64 = 289$$

$$a^{2} = 225$$
Using $a = 15, b = 8$, and $c = 17$, write the six trigonometric functions of A :
 $\sin A = \frac{a}{c} = \frac{15}{17}$
 $\cos A = \frac{b}{c} = \frac{8}{17}$
 $\tan A = \frac{a}{b} = \frac{15}{8}$
 $\csc A = \frac{c}{a} = \frac{17}{15}$
 $\sec A = \frac{c}{b} = \frac{17}{8}$
 $\cot A = \frac{b}{a} = \frac{8}{15}$
Using the Pythagorean Theorem, first find c :
 $5^{2} + 2^{2} = c^{2}$
 $25 + 4 = c^{2}$
 $c^{2} = 29$
 $c = \sqrt{29}$
Using $a = 5, b = 2$, and $c = \sqrt{29}$, write the six trigonometric functions of A :
 $\sin A = \frac{a}{c} = \frac{5}{\sqrt{29}} = \frac{5\sqrt{29}}{29}$
 $\cos A = \frac{b}{c} = \frac{2}{\sqrt{29}} = \frac{2\sqrt{29}}{29}$
 $\tan A = \frac{a}{b} = \frac{5}{2}$
 $\csc A = \frac{c}{a} = \frac{\sqrt{29}}{5}$
 $\sec A = \frac{c}{b} = \frac{\sqrt{29}}{2}$
 $\cot A = \frac{b}{a} = \frac{2}{5}$
Using the Pythagorean Theorem, first find c :
 $5^{2} + (\sqrt{11})^{2} = c^{2}$

$$+(\sqrt{11})^{2} = c^{2}$$
$$25+11 = c^{2}$$
$$c^{2} = 36$$
$$c = 6$$

Chapter 2

8.

10.

Page 55

Problem Set 2.1

© 2017 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Full all chapters instant download please go to Solutions Manual, Test Bank site: downloadlink.org

Using a = 5, $b = \sqrt{11}$, and c = 6, write the six trigonometric functions of A:

$$\sin A = \frac{a}{c} = \frac{5}{6} \qquad \qquad \cos A = \frac{b}{c} = \frac{\sqrt{11}}{6} \qquad \qquad \tan A = \frac{a}{b} = \frac{5}{\sqrt{11}} = \frac{5\sqrt{11}}{11}$$
$$\csc A = \frac{c}{a} = \frac{6}{5} \qquad \qquad \sec A = \frac{c}{b} = \frac{6}{\sqrt{11}} = \frac{6\sqrt{11}}{11} \qquad \qquad \cot A = \frac{b}{a} = \frac{\sqrt{11}}{5}$$

Using the Pythagorean Theorem, first find *a*: $a^2 + a^2 = 4^2$ 12.

$$a^{2} + 3^{2} = 4^{2}$$
$$a^{2} + 9 = 16$$
$$a^{2} = 7$$
$$a = \sqrt{2}$$

 $a = \sqrt{7}$ Using $a = \sqrt{7}$, b = 3, and c = 4, find the three trigonometric functions of A:

$$\sin A = \frac{a}{c} = \frac{\sqrt{7}}{4}$$
 $\cos A = \frac{b}{c} = \frac{3}{4}$ $\tan A = \frac{a}{b} = \frac{\sqrt{7}}{3}$

Now use the Cofunction Theorem to find the three trigonometric functions of *B*:

$$\sin B = \cos A = \frac{3}{4}$$
 $\cos B = \sin A = \frac{\sqrt{7}}{4}$ $\tan B = \cot A = \frac{b}{a} = \frac{3}{\sqrt{7}} = \frac{3\sqrt{7}}{7}$

14. Using the Pythagorean Theorem, first find c:

$$3^{2} + 1^{2} = c^{2}$$
$$9 + 1 = c^{2}$$
$$c^{2} = 10$$
$$c = \sqrt{10}$$

$$c = \sqrt{10}$$
Using $a = 3, b = 1$, and $c = \sqrt{10}$, find the three trigonometric functions of A:

$$\sin A = \frac{a}{c} = \frac{3}{\sqrt{10}} = \frac{3\sqrt{10}}{10}$$

$$\cos A = \frac{b}{c} = \frac{1}{\sqrt{10}} = \frac{\sqrt{10}}{10}$$

$$\tan A = \frac{a}{b} = \frac{3}{1} = 3$$

Now use the Cofunction Theorem to find the three trigonometric functions of *B*:

$$\sin B = \cos A = \frac{1}{\sqrt{10}} = \frac{\sqrt{10}}{10} \qquad \qquad \cos B = \sin A = \frac{3}{\sqrt{10}} = \frac{3\sqrt{10}}{10} \qquad \qquad \tan B = \cot A = \frac{b}{a} = \frac{1}{3}$$

16. Using the Pythagorean Theorem, first find c:

$$1^{2} + (\sqrt{5})^{2} = c^{2}$$
$$1 + 5 = c^{2}$$
$$c^{2} = 6$$
$$c = \sqrt{6}$$

Using a = 1, $b = \sqrt{5}$, and $c = \sqrt{6}$, find the three trigonometric functions of *A*:

$$\sin A = \frac{a}{c} = \frac{1}{\sqrt{6}} = \frac{\sqrt{6}}{6} \qquad \qquad \cos A = \frac{b}{c} = \frac{\sqrt{5}}{\sqrt{6}} = \frac{\sqrt{30}}{6} \qquad \qquad \tan A = \frac{a}{b} = \frac{1}{\sqrt{5}} = \frac{\sqrt{5}}{5}$$

Now use the Cofunction Theorem to find the three trigonometric functions of B:

$$\sin B = \cos A = \frac{\sqrt{5}}{\sqrt{6}} = \frac{\sqrt{30}}{6}$$
 $\cos B = \sin A = \frac{1}{\sqrt{6}} = \frac{\sqrt{6}}{6}$ $\tan B = \cot A = \frac{b}{a} = \sqrt{5}$

Chapter 2

Page 56

Problem Set 2.1

18. Using the Pythagorean Theorem, first find c:

$$x^{2} + x^{2} = c^{2}$$
$$c^{2} = 2x^{2}$$
$$c = \sqrt{2} x$$

Using a = x, b = x, and $c = \sqrt{2} x$, find the three trigonometric functions of *A*:

$$\sin A = \frac{a}{c} = \frac{x}{\sqrt{2}x} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \qquad \cos A = \frac{b}{c} = \frac{x}{\sqrt{2}x} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \qquad \tan A = \frac{a}{b} = \frac{x}{x} = 1$$

Now use the Cofunction Theorem to find the three trigonometric functions of B:

$$\sin B = \cos A = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$
 $\cos B = \sin A = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$ $\tan B = \cot A = \frac{b}{a} = \frac{x}{x} = 1$

20. The coordinates of point B are B(8,6). Using the Pythagorean Theorem, first find c:

$$6^{2} + 8^{2} = c^{2}$$

$$36 + 64 = c^{2}$$

$$c^{2} = 100$$

$$c = 10$$
Using $a = 6, b = 8$, and $c = 10$, find the three trigonometric functions of A:

$$\sin A = \frac{a}{c} = \frac{6}{10} = \frac{3}{5}$$

$$\cos A = \frac{b}{c} = \frac{8}{10} = \frac{4}{5}$$
Since $b \le c$, $\frac{c}{b} \ge 1$. Since $\sec \theta = \frac{c}{b} \ge 1$, it is impossible for $\sec \theta = \frac{1}{2}$.

$$\int_{0}^{2} = \frac{4}{5} \qquad \tan A = \frac{a}{b} = \frac{6}{8} = \frac{3}{4}$$

r cos r sec r

22.

Since $b \le c$, $\frac{c}{b} \ge 1$ and can be as large as possible. Since $\sec \theta = \frac{c}{b}$, $\sec \theta$ can be as large as possible. 24.

- Using the Cofunction Theorem, $\cos 70^\circ = \sin 20^\circ$. **26**.
- 28. Using the Cofunction Theorem, $\cot 22^\circ = \tan 68^\circ$.
- Using the Cofunction Theorem, $\csc y = \sec(90^\circ y)$. **30**.
- Using the Cofunction Theorem, $\sin(90^\circ y) = \cos y$. 32.

34. Complete the table, using the ratio identity
$$\sec x = \frac{1}{\cos x}$$
:
$$\frac{x}{\cos x} = \frac{1}{\sqrt{3}} = \frac{2\sqrt{3}}{\sqrt{3}} = \frac{2\sqrt{3}}{\sqrt{3}} = \frac{2\sqrt{3}}{\sqrt{3}} = \frac{2\sqrt{3}}{\sqrt{2}} = \sqrt{2} =$$

36. Simplifying the expression:
$$5\sin^2 60^\circ = 5\left(\frac{\sqrt{3}}{2}\right)^2 = 5 \cdot \frac{3}{4} = \frac{15}{4}$$

38. Simplifying the expression:
$$\cos^3 60^\circ = \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

40. Simplifying the expression:
$$(\sin 60^\circ + \cos 60^\circ)^2 = \left(\frac{\sqrt{3}}{2} + \frac{1}{2}\right)^2 = \left(\frac{\sqrt{3}+1}{2}\right)^2 = \frac{4+2\sqrt{3}}{4} = \frac{2+\sqrt{3}}{2}$$

Chapter 2

Page 57

Problem Set 2.1

42.	Simplifying the expression: $(\sin 45^\circ - \cos 45^\circ)^2 = \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}\right)^2 = 0^2 = 0$
44 .	Simplifying the expression: $\tan^2 45^\circ + \tan^2 60^\circ = 1^2 + (\sqrt{3})^2 = 1 + 3 = 4$
46 .	Simplifying the expression: $6\cos x = 6\cos 30^\circ = 6\Box \frac{\sqrt{3}}{2} = 3\sqrt{3}$
48 .	Simplifying the expression: $-2\sin(90^\circ - y) = -2\sin(90^\circ - 45^\circ) = -2\sin 45^\circ = -2\Box \frac{\sqrt{2}}{2} = -\sqrt{2}$
50 .	Simplifying the expression: $5\sin 2y = 5\sin(2\Box 45^\circ) = 5\sin 90^\circ = 5\Box 1 = 5$
52.	Simplifying the expression: $2\cos(90^\circ - z) = 2\cos(90^\circ - 60^\circ) = 2\cos 30^\circ = 2\Box \frac{\sqrt{3}}{2} = \sqrt{3}$
54.	Finding the exact value: $\csc 30^\circ = \frac{1}{\sin 30^\circ} = \frac{1}{\frac{1}{2}} = 2$
56 .	Finding the exact value: $\sec 60^\circ = \frac{1}{\cos 60^\circ} = \frac{1}{\frac{1}{2}} = 2$
58.	Finding the exact value: $\cot 30^\circ = \frac{\cos 30^\circ}{\sin 30^\circ} = \frac{\sqrt{3}/2}{\frac{1}/2} = \sqrt{3}$
60.	Finding the exact value: $\csc 45^\circ = \frac{1}{\sin 45^\circ} = \frac{1}{\frac{1}{\sqrt{2}}} = \sqrt{2}$
62 .	Finding the exact value: $\sec 90^\circ = \frac{1}{\cos 90^\circ} = \frac{1}{0}$, which is undefined
64 .	Finding the exact value: $\cot 0^\circ = \frac{\cos 0^\circ}{\sin 0^\circ} = \frac{1}{0}$, which is undefined
66 .	First find <i>a</i> using the Pythagorean Theorem: $3.68^2 + b^2 = 5.93^2$
	$b^2 = 5.93^2 - 3.68^2$
	$b^2 = 21.6225$
	b = 4.65 Now find sin A and cos A:
	$\sin A = \frac{a}{c} = \frac{3.68}{5.93} \approx 0.62$ $\cos A = \frac{b}{c} = \frac{4.65}{5.93} \approx 0.78$
	c 5.93 c 5.93 Using the Cofunction Theorem:
68 .	$\sin B = \cos A \approx 0.78$ $\cos B = \sin A \approx 0.62$ First find <i>c</i> using the Pythagorean Theorem:
	$13.64^2 + 4.77^2 = c^2$
	$c^2 = 208.8025$
	c = 14.45 Now find sin A and cos A:
	$\sin A = \frac{a}{c} = \frac{13.64}{14.45} \approx 0.94 \qquad \qquad \cos A = \frac{b}{c} = \frac{4.77}{14.45} \approx 0.33$
	Using the Cofunction Theorem:
	$\sin B = \cos A \approx 0.33 \qquad \qquad \cos B = \sin A \approx 0.94$

Page 58

Problem Set 2.1

70. Since CG = CD = 3, using the Pythagorean Theorem: $(CG)^{2} + (CD)^{2} = (DG)^{2}$ $3^2 + 3^2 = (DG)^2$ $9 + 9 = (DG)^2$ $(DG)^2 = 18$ $DG = \sqrt{18} = 3\sqrt{2}$ Now use the Pythagorean Theorem with ΔDGE : $(DG)^{2} + (GE)^{2} = (DE)^{2}$ $\left(3\sqrt{2}\right)^2 + 3^2 = \left(DE\right)^2$ $18 + 9 = (DE)^2$ $(DE)^2 = 27$ $DE = \sqrt{27} = 3\sqrt{3}$ Now, let θ represent the angle formed by diagonals *DE* and *DG*. Therefore: $\sin \theta = \frac{GE}{DE} = \frac{3}{3\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3} \qquad \cos \theta = \frac{DG}{DE} = \frac{3\sqrt{2}}{3\sqrt{3}} = \frac{\sqrt{2}}{\sqrt{3}} = \frac{\sqrt{6}}{3}$ 72. Let CG = CD = x, using the Pythagorean Theorem: $(CG)^{2} + (CD)^{2} = (DG)^{2}$ $x^{2} + x^{2} = (DG)^{2}$ $(DG)^2 = 2x^2$ $DG = \sqrt{2x^2} = \sqrt{2}x$ Now use the Pythagorean Theorem with ΔDGE : $(DG)^2 + (GE)^2 = (DE)^2$ $\left(\sqrt{2}x\right)^2 + x^2 = \left(DE\right)^2$ $2x^2 + x^2 = (DE)^2$ $(DE)^2 = 3x^2$

$$DE = \sqrt{3}x^2 = \sqrt{3}$$

Now, let θ represent the angle formed by diagonals *DE* and *DG*. Therefore:

$$\sin \theta = \frac{GE}{DE} = \frac{x}{\sqrt{3}x} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3} \qquad \cos \theta = \frac{DG}{DE} = \frac{\sqrt{2}x}{\sqrt{3}x} = \frac{\sqrt{2}}{\sqrt{3}} = \frac{\sqrt{6}}{3}$$

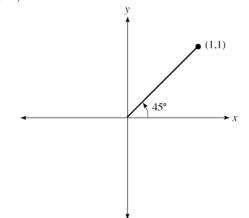
74. Using the distance formula:

$$\sqrt{(x-1)^2 + (2-5)^2} = (\sqrt{13})^2$$
$$(x-1)^2 + 9 = 13$$
$$(x-1)^2 = 4$$
$$x-1 = -2, 2$$
$$x = -1, 3$$

Chapter 2

Problem Set 2.1

76. A point on the terminal side is (1,1). Drawing the angle in standard position:



- **78**.
- A coterminal angle to -210° is 150° . Since sin $35^{\circ} = \cos (90^{\circ} 35^{\circ}) = \cos 55^{\circ}$, the correct answer is d. **80**.

82. Simplifying the expression:
$$4\cos^2 30^\circ + 2\sin 30^\circ = 4\left(\frac{\sqrt{3}}{2}\right)^2 + 2\left(\frac{1}{2}\right) = 4\Box\frac{3}{4} + 1 = 3 + 1 = 4$$
. The correct answer is c.

ODD SOLUTIONS

1.	triangle measure	3.	complement		
5.	$a = \sqrt{c^2 - b^2}$	Pythagorean Theorem 7.	$c = \sqrt{a^2 + b^2}$	Pythagorean The	eorem
	$=\sqrt{(5)^2-(3)^2}$	Substitute known values	$=\sqrt{(2)^{2}+(1)^{2}}$	Substitute know	n values
	$=\sqrt{25-9}$	Simplify	$=\sqrt{4+1}$	Simplify	
	$=\sqrt{16}=4$		$=\sqrt{5}$	_	
	$\sin A = \frac{a}{c} = \frac{4}{5}$	$\cot A = \frac{b}{a} = \frac{3}{4}$		$=\frac{a}{c}=\frac{2}{\sqrt{5}}=\frac{2\sqrt{5}}{5}$	$\cot A = \frac{b}{a} = \frac{1}{2}$
	$\cos A = \frac{b}{c} = \frac{3}{5}$	$\sec A - \frac{c}{b} = \frac{5}{3}$	$\cos A$	$=\frac{b}{c}=\frac{1}{\sqrt{5}}=\frac{\sqrt{5}}{5}$	$\sec A = \frac{c}{b} = \frac{\sqrt{5}}{1}$
	$\tan A = \frac{a}{b} = \frac{4}{3}$ $c = \sqrt{a^2 + b^2}$	$\csc A = \frac{c}{a} = \frac{5}{4}$	tan A	$=\frac{a}{b}=\frac{2}{1}=2$	$\csc A = \frac{c}{a} = \frac{\sqrt{5}}{2}$
9.		Pythagorean Theorem 11.	$b = \sqrt{c^2 - a^2}$	Pythagorean The	eorem
	$=\sqrt{\left(2\right)^2+\left(\sqrt{5}\right)^2}$	Substitute known values	$=\sqrt{(6)^2-(5)^2}$	$\overline{)^2}$ Substitute know	n values
	$=\sqrt{4+5}$	Simplify	$=\sqrt{36-25}$	Simplify	
	$=\sqrt{9}=3$	_	$=\sqrt{11}$		
	$\sin A = \frac{a}{c} = \frac{2}{3}$	$\cot A = \frac{b}{a} = \frac{\sqrt{5}}{2}$		$=\frac{a}{c}=\frac{5}{6}$	$\sin B = \frac{b}{c} = \frac{\sqrt{11}}{6}$
	$\cos A = \frac{b}{c} = \frac{\sqrt{5}}{3}$	$\sec A = \frac{c}{b} = \frac{3}{\sqrt{5}} = \frac{3\sqrt{5}}{5}$	$\cos A$	$=\frac{b}{c}=\frac{\sqrt{11}}{6}$	$\cos B = \frac{a}{c} = \frac{5}{6}$
	$\tan A = \frac{a}{b} = \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5}$	$\frac{5}{2} \qquad \csc A = \frac{c}{a} = \frac{3}{2}$	tan A	$=\frac{a}{b}=\frac{5}{\sqrt{11}}=\frac{5\sqrt{11}}{11}$	$\tan B = \frac{b}{a} = \frac{\sqrt{11}}{5}$

Chapter 2

Page 60

Problem Set 2.1

13.
$$c = \sqrt{a^2 + b^2}$$
 Pythagorean Theorem $\sin A = \frac{a}{c} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$ $\sin B = \frac{b}{c} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$
 $= \sqrt{(1)^2 + (1)^2}$ Substitute known values $\cos A = \frac{b}{c} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$ $\cos B = \frac{a}{c} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$
 $= \sqrt{1+1}$ Simplify $\tan A = \frac{a}{b} = \frac{1}{1} = 1$ $\tan B = \frac{b}{a} = \frac{1}{1} = 1$
 $= \sqrt{2}$
15. $b = \sqrt{c^2 - a^2}$ Pythagorean Theorem $\sin A = \frac{a}{c} = \frac{6}{10} = \frac{3}{5}$ $\sin B = \frac{b}{c} = \frac{8}{10} = \frac{4}{5}$
 $= \sqrt{100^2 - 6^2}$ Substitute known values $\cos A = \frac{b}{c} = \frac{8}{10} = \frac{4}{5}$ $\cos B = \frac{a}{c} - \frac{10}{10} = \frac{3}{5}$
 $= \sqrt{100 - 36}$ Simplify $\tan A = \frac{a}{b} = \frac{3}{4}$ $\tan B = \frac{b}{a} = \frac{8}{6} = \frac{4}{3}$
 $= \sqrt{44} = 8$
17. $a = \sqrt{c^2 - b^2}$ Pythagorean Theorem 19. The coordinates of B are (4, 3).
 $= \sqrt{(2x)^2 - (x)^2}$ Substitute known values $a = 3, b = 4, c = 5$
 $= \sqrt{4x^2 - x^2}$ Simplify $\sin A = \frac{a}{c} = \frac{3}{5}$
 $= \sqrt{3x^2}$ $\cos A = \frac{b}{c} = \frac{4}{5}$
 $= x\sqrt{3}$ $\tan A = \frac{b}{a} = \frac{2}{3}$
 $= \sqrt{3x^2}$ $\cos B = \frac{a}{c} = \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2}$
 $\tan A = \frac{a}{b} = \frac{3}{4}$
11. $\cos a = \frac{a\sqrt{3}}{2x} = \sqrt{3}$ $\tan B = \frac{b}{c} = \frac{x}{2x} = \frac{1}{2}$
 $\cos A = \frac{b}{c} = \frac{x}{2x} = \sqrt{3}$ $\tan B = \frac{b}{a} = \frac{x}{\sqrt{3}} = \frac{\sqrt{3}}{3}$
21. $\cos B = \frac{adj side}{hyp} = \frac{3}{1}$ For this to be true, the adjacent side of a right triangle.
23. $\tan A = \frac{a}{b} = \frac{x\sqrt{3}}{x} = \sqrt{3}$ $\tan B = \frac{b}{a} = \frac{x}{\sqrt{3}} = \frac{\sqrt{3}}{3}$
21. $\cos (90^2 - 10^2) = \cos 80^2$ 27. $\tan 8^2 - \cos(90^2 - 8^2) = \cot 8^2$
29. $\sin x^2 = \cos(90^2 - x^2)$ 31. $\tan(90^2 - x^2) = \cot x^2$
33. $\csc x = \frac{1}{1/2} = -2$ $\csc 45^2 = \frac{1}{1/\sqrt{2}} = \sqrt{2}$
 $\csc 0^2 = \frac{1}{1/2} = -2$ $\csc 90^2 = \frac{1}{1} = 1$
35. $4 \sin 30^2 = 4(\frac{1}{2}) = 2$

Page 61

Problem Set 2.1

37.
$$(2 \cos 30')^2 = \left[2\left(\frac{\sqrt{3}}{2}\right)\right]^2 = (\sqrt{3})^2 = 3$$

39. $\sin^2 60^\circ + \cos^2 60^\circ = \left(\frac{\sqrt{3}}{2}\right)^2 + \left(\frac{1}{2}\right)^2$
 $= \frac{3}{4} + \frac{1}{4}$
 $= \frac{4}{4}$
 $= 1$
41. $\sin^2 45^\circ - 2 \sin 45^\circ \cos 45^\circ + \cos^2 45^\circ = \left(\frac{\sqrt{2}}{2}\right)^2 - 2\left(\frac{\sqrt{2}}{2}\right)\left(\frac{\sqrt{2}}{2}\right) + \left(\frac{\sqrt{2}}{2}\right)^2$
 $= \frac{2}{4} - 2\left(\frac{2}{4}\right) + \frac{2}{4} = 0$
43. $(\tan 45^\circ + \tan 60^\circ)^2 = (1 + \sqrt{3})^2$
 $= (1 + \sqrt{3})(1 + \sqrt{3})$
 $= 1 + 2\sqrt{3} + 3 = 4 + 2\sqrt{3}$
45. $2 \sin 30^\circ - 2\left(\frac{1}{2}\right)$
 $= 1$
 $= 4 \cos 30^\circ$
 $= 4\left(\frac{\sqrt{3}}{2}\right) = 2\sqrt{3}$
49. $-3 \sin 2(30^\circ) = -3 \sin 60^\circ$
 $= -3\left(\frac{\sqrt{3}}{2}\right)$
 $= -3\left(\frac{\sqrt{3}}{2}\right)$
 $= -3\frac{\sqrt{3}}{2}$
 $= 2\cos(3x - 45^\circ) = 2\cos(3 \cdot 30^\circ - 45^\circ)$
 $= -3\frac{\sqrt{3}}{2}$
 $= 2\cos(90^\circ - 45^\circ)$
 $= -\frac{3\sqrt{3}}{2}$
 $= 2\cos(90^\circ - 45^\circ)$
 $= 2 \cos(90^\circ - 45^\circ)$
 $= 2 \sin(90^\circ - 45^\circ)$
 $= 2 \cos(90^\circ - 45^\circ)$
 $= 2 \sqrt{2} - \sqrt{2} = \sqrt{2}$
Substitute value from Table 1
 $= \frac{\sqrt{2}}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$
 $= 1$ Simplify

© 2017 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Chapter 2

=1

Simplify

Page 62

Problem Set 2.1

59.
$$\sec 45^{\circ} = \frac{1}{\cos 45^{\circ}}$$

 $= \frac{1}{1/\sqrt{2}}$
 $= \sqrt{2}$
 $= \sqrt{2}$
61. $\cot 60^{\circ} = \frac{\cos 60^{\circ}}{\sin 60^{\circ}}$
 $= \frac{1}{\sqrt{3}/2}$
 $= \sqrt{2}$
 $= \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$
63. $\csc 90^{\circ} = \frac{1}{\sin 90^{\circ}}$
 $= \frac{1}{1} = 1$
Substitute values and simplify
65. $a = \sqrt{c^{2} - b^{2}}$
 $= \sqrt{(9.62)^{2} - (8.88)^{2}}$
 $= \sqrt{(9.62)^{2} - (8.88)^{2}}$
 $= \sqrt{13.69}$
 $= \sqrt{(9.62)^{2} - (8.88)^{2}}$
 $= \sqrt{13.69}$
 $= 3.70$
67. $c = \sqrt{a^{2} + b^{2}}$
 $= \sqrt{19.44}^{2} + (5.67)^{2}$
 $= \sqrt{19.44}^{2} + (5.67)^{2}$
 $= \sqrt{2} + b^{2}$
 $= 20.25$
69. $CH = \sqrt{(CD^{2}) + (DH)^{2}}$
 $= \sqrt{5^{2} + 5^{2}}$
 $= \sqrt{50} = 5\sqrt{2}$
 $= \sqrt{5\sqrt{2}} = 5\sqrt{3}$
 $= \frac{5}{5\sqrt{3}}$
 $= \frac{\sqrt{3}}{3}$
71. $CH = \sqrt{(CD^{2}) + (DH)^{2}}$
 $= \sqrt{2x^{2} + x^{2}}$
 $= \sqrt{2x^{2}}$
 $= x\sqrt{2}$
 $= x\sqrt$

Ratio identity

Substitute values from Table 1

 $\frac{2}{\sqrt{2}} = \frac{\sqrt{3}}{3}$ Simplify

mplify

$$\sin A = \frac{a}{c} = \frac{3.70}{9.62} = 0.38$$
$$\cos A = \frac{b}{c} = \frac{8.88}{9.62} = 0.92$$
$$\sin B = \frac{b}{c} = \frac{8.88}{9.62} = 0.92$$
$$\cos B = \frac{a}{c} = \frac{3.70}{9.62} = 0.38$$

Chapter 2

Page 63

Problem Set 2.1

$$\sin \theta = \frac{FH}{CF} \qquad \qquad \cos \theta = \frac{CH}{CF}$$
$$= \frac{x}{x\sqrt{3}} \qquad \qquad = \frac{\sqrt{3}}{3} \qquad \qquad = \frac{\sqrt{2}}{\sqrt{3}} or \frac{\sqrt{6}}{3}$$
$$r = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad \qquad \text{Distance formula}$$
$$= \sqrt{[3 - (-1)]^2 + [-2 - (-4)]^2} \qquad \qquad \text{Substitute known values}$$

$$= \sqrt{4^{2} + 2^{2}} = \sqrt{16 + 4} = \sqrt{20} = 2\sqrt{5}$$

Simplify

The terminal side is the line y = -x. Some points in quadrant II on the line y = -x are (-1,1), (-2,2), and (-3,3). 75.

77.
$$-135^{\circ} + 360^{\circ} = 225^{\circ}$$

73.

 $\sin A = \frac{a}{c} = \frac{16}{20} = \frac{4}{5}$ The answer is c. 79.

81. Statement a is false because
$$\sin 30^\circ = \frac{1}{2}$$
.

2.2 Calculators and Trigonometric Functions of an Acute Angle

EVEN SOLUTIONS

- If $\theta = 7.25^{\circ}$ in decimal degrees, then the 7 represents the number of degrees, the 2 represents the number of tenths of 2. a degree, and the 5 represents the number of hundredths of a degree.
- On a calculator, the SIN⁻¹, COS⁻¹, and TAN⁻¹ keys allow us to find an angle given the value of a trigonometric 4. function.
- Adding the angles: $11^{\circ}41' + 32^{\circ}16' = 43^{\circ}57'$ 6.
- Adding the angles: $63^{\circ}38' + 24^{\circ}52' = 87^{\circ}90' = 88^{\circ}30'$ 8.
- Adding the angles: $77^{\circ}21' + 26^{\circ}44' = 104^{\circ}5'$ 10.
- Subtracting the angles: $90^{\circ} 62^{\circ}25' = 89^{\circ}60' 62^{\circ}25' = 27^{\circ}35'$ 12.
- Subtracting the angles: $180^{\circ} 132^{\circ}39' = 179^{\circ}60' 132^{\circ}39' = 47^{\circ}21'$ 14.
- 16. Subtracting the angles: $89^{\circ}38' - 28^{\circ}58' = 88^{\circ}98' - 28^{\circ}58' = 60^{\circ}40'$
- 18. Converting to degrees and minutes: $83.6^{\circ} = 83^{\circ} + 0.6^{\circ} = 83^{\circ} + 0.6(60') = 83^{\circ}36'$
- Converting to degrees and minutes: $78.5^{\circ} = 78^{\circ} + 0.5^{\circ} = 78^{\circ} + 0.5(60') = 78^{\circ}30'$ 20.
- 22. Converting to degrees and minutes: $43.85^{\circ} = 43^{\circ} + 0.85^{\circ} = 43^{\circ} + 0.85(60') = 43^{\circ}51'$
- Converting to degrees and minutes: $8.3^\circ = 8^\circ + 0.3^\circ = 8^\circ + 0.3(60') = 8^\circ 18'$ 24.

26. Converting to decimal degrees:
$$74^{\circ}54' = 74^{\circ} + 54' = 74^{\circ} + \left(\frac{54}{60}\right)^{\circ} = 74.9^{\circ}$$

- Converting to decimal degrees: $21^{\circ}15' = 21^{\circ} + 15' = 21^{\circ} + \left(\frac{15}{60}\right)^{\circ} = 21.25^{\circ}$ **28**.
- Converting to decimal degrees: $39^{\circ}10' = 39^{\circ} + 10' = 39^{\circ} + \left(\frac{10}{60}\right)^{\circ} \approx 39.17^{\circ}$ 30.

32. Converting to decimal degrees:
$$78^{\circ}37' = 78^{\circ} + 37' = 78^{\circ} + \left(\frac{37}{60}\right)^{\circ} = 78.62^{\circ}$$

- 34. Calculating the value: $\cos 79.2^{\circ} \approx 0.1874$
- Calculating the value: $\sin 4^{\circ} \approx 0.0698$ 36.

Chapter 2

Page 64

Problem Set 2.2

38. Calculating the value: $\tan 41.88^{\circ} \approx 0.8966$

- **40**. Calculating the value: $\cot 29^\circ = \frac{1}{\tan 29^\circ} \approx 1.8040$
- 42. Calculating the value: $\sec 18.7^\circ = \frac{1}{\cos 18.7^\circ} \approx 1.0557$
- **44**. Calculating the value: $\csc 77.77^{\circ} = \frac{1}{\sin 77.77^{\circ}} \approx 1.0232$
- 46. Calculating the value: $\sin 75^{\circ}50' = \sin \left(75\frac{5}{6}\right)^{\circ} \approx 0.9696$

48. Calculating the value:
$$\tan 45^{\circ}19' = \tan \left(45\frac{19}{60}\right)^{\circ} \approx 1.0111$$

50. Calculating the value:
$$\cos 6^{\circ}4' = \cos \left(6\frac{1}{15} \right)^{\circ} \approx 0.9944$$

52. Calculating the value:
$$\csc 48^\circ 48' = \csc \left(48\frac{48}{60}\right)^\circ = \csc 48.8^\circ = \frac{1}{\sin 48.8^\circ} \approx 1.3291$$

1				
	x	$\csc x$	sec x	$\cot x$
	0°	error (undefined)	1	error (undefined)
	15°	3.8637	1.0353	3.7321
:	30°	2	1.1547	1.7321
·•	45°	1.4142	1.4142	1
	60°	1.1547	2	0.5774
	75°	1.0353	3.8637	0.2679
	90°	1	error (undefined)	error (undefined)

56. Finding the angle $\theta: \theta = \sin^{-1}(0.7139) \approx 45.6^{\circ}$

Completing the table

58. Finding the angle $\theta: \theta = \cos^{-1}(0.0945) \approx 84.6^{\circ}$

60. Finding the angle θ : $\theta = \tan^{-1}(6.2703) \approx 80.9^{\circ}$

62. Since
$$\sec \theta = 8.0101$$
, $\cos \theta = \frac{1}{8.0101}$, so $\theta = \cos^{-1} \left(\frac{1}{8.0101} \right) \approx 82.8^{\circ}$.

64. Since
$$\csc \theta = 4.2319$$
, $\sin \theta = \frac{1}{4.2319}$, so $\theta = \sin^{-1} \left(\frac{1}{4.2319} \right) \approx 13.7^{\circ}$

66. Since
$$\cot \theta = 7.0234$$
, $\tan \theta = \frac{1}{7.0234}$, so $\theta = \tan^{-1} \left(\frac{1}{7.0234} \right) \approx 8.1^{\circ}$.

68. Finding the angle $\theta: \theta = \sin^{-1}(0.9459) \approx 71.0672^\circ = 71^\circ + 0.0672(60') = 71^\circ 4'$

70. Finding the angle
$$\theta: \theta = \tan^{-1}(2.4652) \approx 67.9202^\circ = 67^\circ + 0.9202(60') = 67^\circ 55$$

72. Since
$$\sec \theta = 1.9102$$
, $\cos \theta = \frac{1}{1.9102}$.
Finding the angle $\theta: \theta = \cos^{-1} \left(\frac{1}{1.9102}\right) \approx 58.4323^\circ = 58^\circ + 0.4323(60') = 58^\circ 26^\circ$

- 74. Calculating the values: $\sin 13^\circ \approx 0.2250$ and $\cos 77^\circ \approx 0.2250$
- 76. Calculating the values: $\sec 6.7^{\circ} \approx 1.0069$ and $\csc 83.3^{\circ} \approx 1.0069$
- **78**. Calculating the values: $\tan 35^{\circ}15' = \tan 35.25^{\circ} \approx 0.7067$ and $\cot 54^{\circ}45' = \cot 54.75^{\circ} \approx 0.7067$
- 80. Calculating the value: $\cos^2 58^\circ + \sin^2 58^\circ = 1$
- 82. To calculate *B*, $B = \sin^{-1}(4.321)$, which results in an error message. Since, for any angle *B*, $\sin B \le 1$, it is impossible to find an angle *B* such that $\sin B = 4.321$.

Chapter 2

54.

Page 65

Problem Set 2.2

84. To calculate $\cot 0^\circ$, we would find $\tan 0^\circ = 0$ then find the reciprocal. This results in an error message. Since $\frac{1}{0}$ is an undefined value, $\cot 0^\circ$ is undefined.

86 .	a.	Completing the table:	x	3°	2.5°	2°	1.5°	1°	0.5	0	0°	
00.			$\cot x$	19.1	22.9	28.6	38.2	57.3	114	.6 und	lefined	
	b.	Completing the table:	x	0.6°	0.5°	0.4	° 0.	3° ().2°	0.1°	0°	
	D.		$\cot x$	95.5	114.6	143.	2 191	.0 2	86.5	573.0	undefi	ned

88. Using $\alpha = 36.597^{\circ}$ and h = 5 in the shadow angle formula: $\tan \theta = (\sin 36.597^{\circ})(\tan(5 \cdot 15^{\circ})) \approx 2.2250$

$$\theta = \tan^{-1}(2.2250) \approx 65.8^{\circ}$$

90. First find the value of *r*: $r = \sqrt{\left(-\sqrt{3}\right)^2 + 1^2} = \sqrt{3+1} = \sqrt{4} = 2$

Finding the three trigonometric functions using $x = -\sqrt{3}$, y = 1, and r = 2:

$$\sin\theta = \frac{y}{r} = \frac{1}{2} \qquad \qquad \cos\theta = \frac{x}{r} = -\frac{\sqrt{3}}{2} \qquad \qquad \tan\theta = \frac{y}{x} = -\frac{1}{\sqrt{3}} = -\frac{\sqrt{3}}{3}$$

92. Let (-1,-1) be a point on the terminal side of -135° . First find the value of r: $r = \sqrt{1^2 + (-1)^2} = \sqrt{1+1} = \sqrt{2}$ Finding the three trigonometric functions using x = -1, y = -1, and $r = \sqrt{2}$:

$$\sin \theta = \frac{y}{r} = \frac{-1}{\sqrt{2}} = -\frac{\sqrt{2}}{2} \qquad \qquad \cos \theta = \frac{x}{r} = \frac{-1}{\sqrt{2}} = -\frac{\sqrt{2}}{2} \qquad \qquad \tan \theta = \frac{y}{x} = \frac{-1}{-1} = 1$$

94. Since $\tan \theta = -\frac{3}{4}$ and θ terminates in quadrant II (where x < 0 and y > 0), choose x = -4 and y = 3. Finding *r*:

$$r = \sqrt{(-4)^2 + 3^2} = \sqrt{16 + 9} = \sqrt{25} = 5$$

ding the remaining trigonometric functions using $x = -4$, $y = 3$, and $r = 5$:

$$\sin \theta = \frac{y}{r} = \frac{3}{5}$$

$$\cos \theta = \frac{x}{r} = -\frac{4}{5}$$

$$\cot \theta = \frac{x}{y} = -\frac{4}{3}$$

$$\csc \theta = \frac{r}{y} = \frac{5}{3}$$

$$\sec \theta = \frac{r}{x} = -\frac{5}{4}$$

96. Since $\sec \theta > 0$, x > 0. Thus for $\tan \theta < 0$, we must have y < 0. Thus the terminal side of θ lies in quadrant IV.

98. Converting to decimal degrees:
$$76^{\circ}36' = 76^{\circ} + 36' = 76^{\circ} + \left(\frac{36}{60}\right)^{\circ} = 76.6^{\circ}$$
. The correct answer is b.

100. Since $\cot \theta = x$, $\tan \theta = \frac{1}{x}$. Then $\theta = \tan^{-1}\left(\frac{1}{x}\right)$. The correct answer is a.

ODD SOLUTIONS

Fin

1.	minutes, seconds	3.	value, angle	•
5.	37° 45'	7.	51° 55'	
	+26° 24 '		+37° 45'	
	$63^{\circ} 69' = 64^{\circ} 9'$ since $60' = 1^{\circ}$		88°100' =	89° 40'
9.	61° 33'	11.	90° =	89° 60'
	+45°16'		-34°12'	- 34°12'
	106° 49'			55° 48'

Chapter 2

Page 66

Problem Set 2.2

13.	$180^{\circ} = 179^{\circ}60'$ Change 1° to 60'	15.
	-120°17' -120° 17'	
	59° 43'	
17.	$35.4^{\circ} = 35^{\circ} + 0.4(60)^{\circ}$	19.
	= 35° + 24'	
	= 35° 24'	
21.	$92.55^{\circ} = 92^{\circ} + 0.55(60)'$	23.
	$=92^{\circ}+33'$	
	$=92^{\circ}33'$	
25.	$45^{\circ}12' = 45 + \frac{12}{60}$	27.
	= 45.2°	
29.	$17^{\circ} 20' = 17 + \frac{20}{60}$	31.
	$60 = 17.33^{\circ}$	
33.	Scientific Calculator: 27.2 sin	
55.	Graphing Calculator: sin (27.2) ENTER	
	Answer to 4 places: 0.4571	
35.	Scientific Calculator: 18 cos	
	Graphing Calculator: cos (18) ENTER	
	Answer to 4 places: 0.9511	
37.	Scientific Calculator: 87.32 tan	
	Graphing Calculator: tan (87.32) <i>ENTER</i>	
	Answer to 4 places: 21.3634	
39.	$\cot 31^\circ = \frac{1}{\tan 31^\circ}$	
	Scientific Calculator: 31 $\tan 1/x$	
	Graphing Calculator: $tan(31)x^{-1}ENTER$	
	Answer: 1.6643	
41.	$\sec 48.2^{\circ} = \frac{1}{\cos 48.2^{\circ}}$	
	Scientific Calculator: 48.2 $\cos \frac{1}{x}$	
	Graphing Calculator: $\cos(48.2)$	
	Answer: 1.5003	
43.	$\csc 14.15^{\circ} = \frac{1}{\sin 14.15^{\circ}}$	
	Scientific Calculator: 14.15 $\sin 1/x$	
	Graphing Calculator: $sin(14.15)$ x^{-1} ENTER	
	Answer: 4.0906	

15.
$$76^{\circ} 24' = 75^{\circ} 84'$$

 $-22^{\circ} 34' -22^{\circ} 34'$
19. $16.25^{\circ} = 16^{\circ} + 0.25(60)'$
 $= 16^{\circ} + 15'$
 $= 16^{\circ} 15'$
23. $19.9^{\circ} = 19^{\circ} + 0.9(60)'$
 $= 19^{\circ} + 54'$
 $= 19^{\circ} 54'$
27. $62^{\circ} 36' = 62 + \frac{36}{60}$
 $= 62.6^{\circ}$
31. $48^{\circ} 27' = 48 + \frac{27}{60}$
 $= 48.45^{\circ}$

 $24^{\circ} 30' = 24 + \frac{30}{60} = 24.5^{\circ}$ 45. Scientific Calculator: 24.5 cos Graphing Calculator: cos (24.5) ENTER Answer: 0.9100 $42^{\circ}15' = 42 + \frac{15}{60}$ 47. = 42.25° Scientific Calculator: 42.25 tan Graphing Calculator: tan (42.25) ENTER Answer: 0.9083 $56^{\circ} 40' = 56 + \frac{40}{60} = 56.67^{\circ}$ 49. Scientific Calculator: 56.67 sin Graphing Calculator: sin (56.67) ENTER Answer: 0.8355 $45^{\circ}54' = 45 + \frac{54}{60}$ 51. = 45.9° $\sec 45.9^{\circ} = \frac{1}{\cos 45.9^{\circ}}$ Scientific Calculator: $45.9 \cos \frac{1}{x}$ Graphing Calculator: $\cos\left(45.9\right) x^{-1}$ ENTER Answer: 1.4370 Use your calculator to find the values of the sine, cosine, and tangent of each angle: 53. х $\sin x$ $\cos x$ tan x 0 0 0° 1 0.2588 0.9659 0.2679 15° 0.5774 0.5 0.8660 30° 0.7071 0.7071 1 45° 0.8660 1.7321 0.5 60° 0.9659 0.2588 3.7321 75° 1 0 Error (undefined) 90° Scientific Calculator: 0.9770 inv cos 55. Graphing Calculator: 2nd cos (0.9770) ENTER Answer: 12.3° Scientific Calculator: 0.6873 inv tan 57. Graphing Calculator: 2nd tan (0.6873) ENTER Answer: 34.5° Scientific Calculator: 0.9813 inv sin 59. Graphing Calculator: 2nd sin (0.9813) ENTER Answer: 78.9°

Chapter 2

61.sec
$$\theta = 1.0191$$
Scientific Calculator: $1 \pm 1.0191 = \boxed{mv}$ cos $\frac{1}{\cos\theta} = 1.0191$ Graphing Calculator: $2md \cos (1 \pm 1.0191) ENTER$ $\cos\theta = \frac{1}{1.0191}$ Answer: $11.1'$ 63. $\csc \theta = 1.8214$ Scientific Calculator: $2md \sin (1 \pm 1.8214 \pm 1.8214) ENTER$ $\frac{1}{\sin\theta} = 1.8214$ Graphing Calculator: $2md \sin (1 \pm 1.8214) ENTER$ $\sin\theta = \frac{1}{1.8214}$ Answer: $33.3'$ 65. $\cot \theta = 0.6873$ Scientific Calculator: $2md \tan (1 \pm 0.6873 \pm 1.8214) ENTER$ $\frac{1}{\tan \theta} = 0.6873$ Graphing Calculator: $2md \tan (1 \pm 0.6873) \pm 1.8214) ENTER$ $\tan \theta = \frac{1}{0.6873}$ Answer: $55.5'$ 67.Scientific Calculator: $2md \tan (1 \pm 0.6873) \pm 1.8214) ENTER$ $\tan \theta = \frac{1}{0.6873}$ Answer: $55.5'$ 67.Scientific Calculator: $2md \cos (1 - 9.19) \times 60 \pm 1.8214) \pm 1.8214 \pm 1.8$

Page 69

75.	To calculate sec 34.5°	$=\frac{1}{\cos 34.5^{\circ}}:$	
	Scientific Calculator:		
	Graphing Calculattor:	$\cos(34.5)$ x ⁻¹ EN	TER
	To calculate csc 55.5°	$=\frac{1}{\sin 55.5^{\circ}}:$	
	Scientific Calculator:	55.5 sin $1/x$	
	Graphing Calculattor:	$\sin(55.5)x^{-1}ENT$	TER
	Both answers should b		
77.	Scientific Calculator:	4.5 tan	
	Graphing Calculattor:	tan (4.5) <i>ENTER</i>	
	To calculate cot 85.5°	$=\frac{1}{\tan 85.5^\circ}:$	
	Scientific Calculator:	85.5 tan $1/x$	
	Graphing Calculattor:	$\tan(85.5)x^{-1}EN$	TER
	Both answers should b	be 0.0787.	
79.	Scientific Calculator:	$37 \cos x^2 + 37 \sin x$	x^2 =
	Graphing Calculator:	$\cos(37)x^2 + \sin^2$	$1 (37) x^2 ENTER$
	Answer should be 1.		
81.	Scientific Calculator:	1.234 <i>inv</i> sin	
	Graphing Calculator:	2nd sin 1.234 ENTER	2
	-	¯	an angle can never be greater than 1.
83.	Scientific Calculator:		
	Graphing Calculattor:	tan (90) <i>ENTER</i>	
		or message. The tangent	
87.	$\tan\theta = \sin\alpha\tan(h\cdot 15^\circ)$) where $\alpha = 35.282^{\circ}$ and	h = 2
	$\tan\theta = \sin(35.282^\circ)\tan\theta$	$\ln(2\cdot 15^\circ)$	
	=.333478	· · ·	
	$\theta = \tan^{-1} (.333478)$)	
	$\theta = 18.4^{\circ}$		_
89.	(x,y) = (3,-2)		$\sin\theta = \frac{y}{r} = \frac{-2}{\sqrt{13}} = -\frac{2\sqrt{13}}{13}$
	x = 3 and $y = -2$		$\cos\theta = \frac{x}{r} = \frac{3}{\sqrt{13}} = \frac{3\sqrt{13}}{13}$
	$r = \sqrt{3^2 + (-2)^2}$		$\tan \theta = \frac{y}{r} = \frac{-2}{3} = -\frac{2}{3}$
	$=\sqrt{9+4}=\sqrt{13}$		<i>x</i> 3 3
	$-\sqrt{2+4} = \sqrt{12}$		

Problem Set 2.2

91. A point on the terminal side of an angle of 90° in standard position is (0, 1), where x = 0, y = 1, and r = 1. $\sin 90^{\circ} = \frac{y}{r} = \frac{1}{1} = 1$ $\cos 90^{\circ} = \frac{x}{r} = \frac{0}{1} = 0$ $\tan 90^\circ = \frac{y}{x} = \frac{1}{0}$ is undefined $\cos\theta = -\frac{5}{13}$ and θ is in QIII. In QIII, both x and y are negative. 93. $\cos\theta = \frac{x}{r} = \frac{-5}{13}$ $\sin\theta = \frac{y}{r} = \frac{-12}{13} = -\frac{12}{13}$ x = -5 and r = 13 $\tan \theta = \frac{y}{x} = \frac{-12}{-5} = \frac{12}{5}$ $\cot \theta = \frac{x}{y} = \frac{-5}{-12} = \frac{5}{12}$ $x^2 + y^2 = r^2$ $(-5)^2 + y^2 = 13^2$ $\sec \theta = \frac{r}{x} = \frac{13}{-5} = -\frac{13}{5}$ $25 + y^2 = 169$ $\csc \theta = \frac{r}{v} = \frac{13}{-12} = -\frac{13}{12}$ $v^2 = 144$ $v = \pm 12$ y = -12 because θ is in QIII 95. The $\sin\theta$ is positive in QI and QII. The $\cos\theta$ is negative in QII and QIII. Therefore, θ must lie in QII. 97. 67°22' _ 66° 82' Change 1° to 60' -34° 30' -34° 30' 32° 52'

The answer is d.

2.3 Solving Right Triangles

EVEN SOLUTIONS

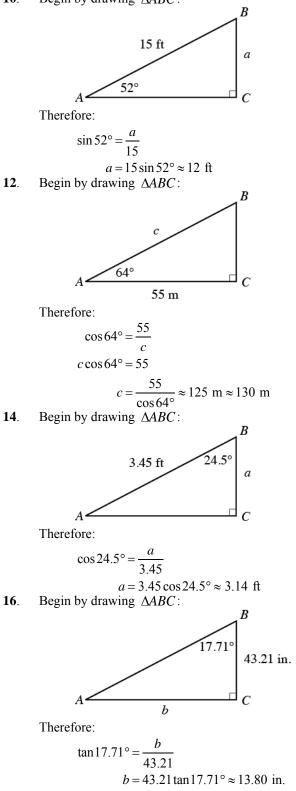
- 2. If the sides of a triangle are accurate to three significant digits, then angles should be measured to the nearest tenth of a
 - degree, or the nearest ten minutes.
- 4. In general, round answers so that the number of significant digits in your answer matches the number of significant digits in the least significant number given in the problem.
- 6. a. three

8.

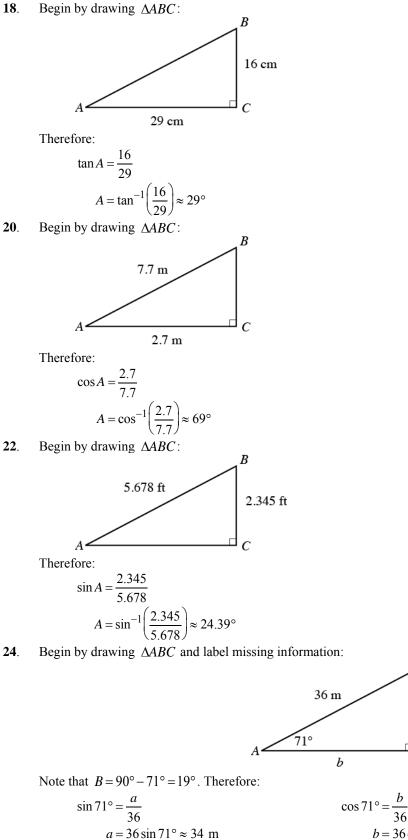
- **b**. three
- c. five
- **d**. three
- **a**. five
- **b**. five
- c. five
- d. seven

Chapter 2

Page 71



Problem Set 2.3



В

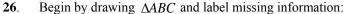
а

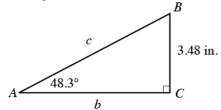
С

Chapter 2

Page 73

Problem Set 2.3

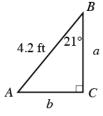




Note that $B = 90^{\circ} - 48.3^{\circ} = 41.7^{\circ}$. Therefore: $\sin 48.3^{\circ} = \frac{3.48}{c}$ $c \sin 48.3^{\circ} = 3.48$ $c = \frac{3.48}{\sin 48.3^{\circ}} \approx 4.66$ in. Begin by drawing $\triangle ABC$ and label missing information: $\cos 48.3^{\circ} = \frac{b}{4.66}$ $b = 4.66 \cos 48.3^{\circ} \approx 3.10$ in.

Note that
$$B = 90^{\circ} - 66^{\circ}54' = 89^{\circ}60' - 66^{\circ}54' = 23^{\circ}6'$$
. So:
 $\cos 66^{\circ}54' = \frac{88.22}{c}$
 $c \cos 66^{\circ}54' = 88.22$
 $c = \frac{88.22}{\cos 66^{\circ}54'} \approx 224.9$ cm
 $a = 88.22 \tan 66^{\circ}54' \approx 206.8$ cm

30. Begin by drawing $\triangle ABC$ and label missing information:

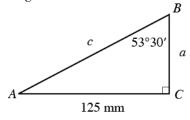


Note that $A = 90^{\circ} - 21^{\circ} = 69^{\circ}$. Therefore:

$$\cos 69^\circ = \frac{b}{4.2}$$
$$b = 4.2 \cos 69^\circ \approx 1.5 \text{ ft}$$

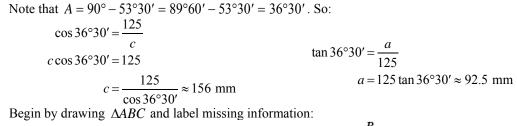
 $\sin 69^\circ = \frac{a}{4.2}$ $a = 4.2 \sin 69^\circ \approx 3.9 \text{ ft}$

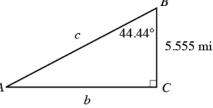
32. Begin by drawing $\triangle ABC$ and label missing information:



28.

Page 74





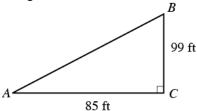
 $\tan 45.56^\circ = \frac{5.555}{b}$

Note that $A = 90^{\circ} - 44.44^{\circ} = 45.56^{\circ}$. Therefore: $\sin 45.56^{\circ} = \frac{5.555}{c}$ $c \sin 45.56^{\circ} = 5.555$

in 45.56° = 5.555

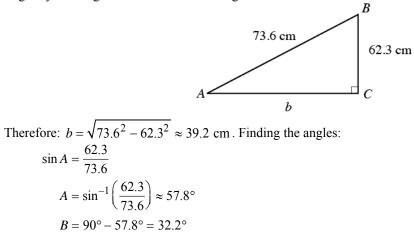
$$c = \frac{5.555}{\sin 45.56^\circ} \approx 7.780 \text{ mi}$$
 $b \tan 45.56^\circ = 5.555$
 $b = \frac{5.555}{\tan 45.56^\circ} \approx 5.447 \text{ mi}$

36. Begin by drawing $\triangle ABC$ and label missing information:



Therefore:
$$c = \sqrt{85^2 + 99^2} \approx 130$$
 ft. Finding the angles:
 $\tan A = \frac{99}{85}$
 $A = \tan^{-1} \left(\frac{99}{85}\right) \approx 49^\circ$
 $B = 90^\circ - 49^\circ - 41^\circ$

38. Begin by drawing $\triangle ABC$ and label missing information:



Chapter 2

34.

Page 75

Problem Set 2.3

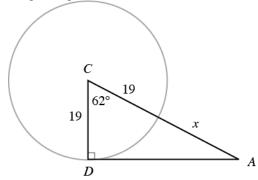
40. Since the right triangle is a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle, its height is 2.0. Therefore:

44.

$$\tan A = \frac{2.0}{3.0}$$

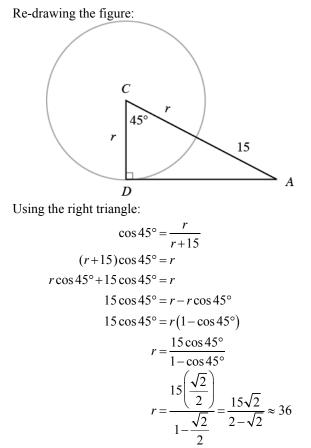
$$A = \tan^{-1} \left(\frac{2.0}{3.0} \right) \approx 34^{\circ}$$

42. Re-drawing the figure:

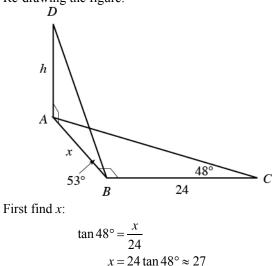


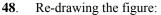
Using the right triangle:

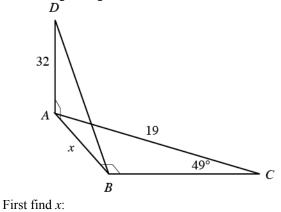
$$\cos 62^\circ = \frac{19}{19+x}$$
$$(19+x)\cos 62^\circ = 19$$
$$19+x = \frac{19}{\cos 62^\circ}$$
$$x = \frac{19}{\cos 62^\circ} - 19 \approx 21$$



46. Re-drawing the figure:







 $\sin 49^\circ = \frac{x}{19}$ $x = 19\sin 49^\circ \approx 14$

Chapter 2

Page 76

Problem Set 2.3

Now find *h*:

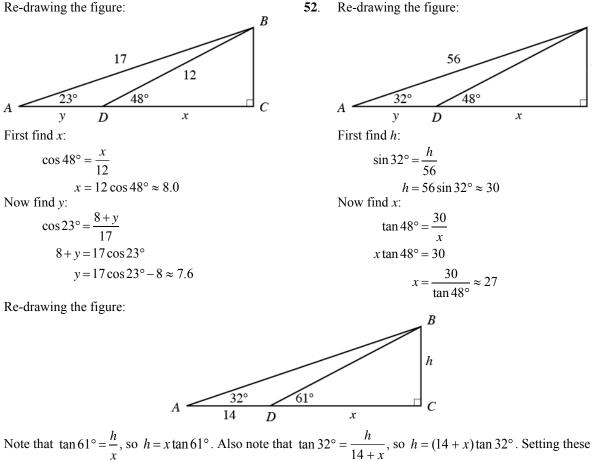
$$\tan 53^\circ = \frac{h}{47}$$
$$h = 27 \tan 53^\circ \approx 35$$

50. Re-drawing the figure: Now find ∠*ABD* : $\tan \angle ABD = \frac{32}{14}$ $\angle ABD = \tan^{-1}\left(\frac{32}{14}\right) \approx 66^{\circ}$ Re-drawing the figure:

В

h

С



two expressions equal:

54.

 $x \tan 61^\circ = (14 + x) \tan 32^\circ$ $x \tan 61^\circ = 14 \tan 32^\circ + x \tan 32^\circ$ $x \tan 61^\circ - x \tan 32^\circ = 14 \tan 32^\circ$ $x(\tan 61^\circ - \tan 32^\circ) = 14 \tan 32^\circ$ $x = \frac{14\tan 32^{\circ}}{\tan 61^{\circ} - \tan 32^{\circ}} \approx 7.4$

Since GC = CD = 3.00, using the Pythagorean Theorem: $GD = \sqrt{3^2 + 3^2} = \sqrt{18} = 3\sqrt{2}$. Therefore: **56**. $\tan \angle GDE = \frac{GE}{GE} = \frac{3}{\sqrt{2}} = \frac{1}{\sqrt{2}}$

$$GD \quad 3\sqrt{2} \quad \sqrt{2}$$
$$\angle GDE = \tan^{-1} \left(\frac{1}{\sqrt{2}}\right) \approx 35.3^{\circ}$$

Chapter 2

Problem Set 2.3

58. First find $\angle CAB$:

nd
$$\angle CAB$$
:
 $\tan(\angle CAB) = \frac{66}{54}$
 $\angle CAB = \tan^{-1}\left(\frac{66}{54}\right) \approx 50.71^{\circ}$
Now find $\angle EAB$:
 $\tan(\angle EAB) = \frac{78}{54}$
 $\angle EAB = \tan^{-1}\left(\frac{78}{54}\right) \approx 55.30^{\circ}$

Therefore: $\angle CAE = \angle EAB - \angle CAB = 55.30^{\circ} - 50.71^{\circ} \approx 4.6^{\circ}$

60. Let *O* represent the center of the goal.

First find
$$\angle OAD$$
:
 $\tan(\angle OAD) = \frac{6}{54}$
 $\angle OAD = \tan^{-1}\left(\frac{6}{54}\right) \approx 6.34^{\circ}$
Now find $\angle OAF$:
 $\tan(\angle OAF) = \frac{12}{54}$
 $\angle OAF = \tan^{-1}\left(\frac{12}{54}\right) \approx 12.53^{\circ}$

Therefore: $\angle DAF = \angle OAF - \angle OAD = 12.53^{\circ} - 6.34^{\circ} \approx 6.2^{\circ}$ Since $\angle CAE$ is also 6.2°, the sum of the angles is 12.4°.

- **62**. Since 12.4° is much greater than 4.6°, the chance of scoring is much better from the center than from the corner of the penalty area.
- **64**. From Example 5, we have:

$$\cos 135^{\circ} = \frac{139 - h}{125}$$
$$-\frac{1}{\sqrt{2}} = \frac{139 - h}{125}$$
$$-\frac{125}{\sqrt{2}} = 139 - h$$
$$h = 139 + \frac{125}{\sqrt{2}} \approx 227.4$$

The rider is approximately 230 ft above the ground.

66. First note that the distance from the ground to the low point of Colossus is 174 - 165 = 9 ft. The radius is 82.5 ft. Since x + h = 82.5 + 9 = 91.5, x = 91.5 - h. Therefore:

$$\cos \theta = \frac{x}{82.5} = \frac{91.5 - h}{82.5}$$

91.5 - h = 82.5 cos θ
h = 91.5 - 82.5 cos θ

a. Substituting $\theta = 150^{\circ}$: $h = 91.5 - 82.5 \cos 150^{\circ} \approx 163$ ft

b. Substituting $\theta = 240^{\circ}$: $h = 91.5 - 82.5 \cos 240^{\circ} \approx 133$ ft

- c. Substituting $\theta = 315^{\circ}$: $h = 91.5 82.5 \cos 315^{\circ} \approx 33.2$ ft
- 68. First note that the distance from the ground to the low point of the High Roller is 550 520 = 30 ft. The radius is 260 ft. Since x+h=260+30=290, x=290-h. Therefore:

$$\cos\theta = \frac{x}{260} = \frac{290 - h}{260}$$
$$290 - h = 260\cos\theta$$
$$h = 290 - 260\cos\theta$$

Substituting $\theta = 110^{\circ}$: $h = 290 - 260 \cos \theta$ ft ≈ 379 ft ≈ 380 ft

70. Entering the functions $Y_1 = -\frac{7}{640}(X-80)^2 + 70$ and $Y_2 = \tan^{-1}\left(\frac{Y_1}{X}\right)$, complete the table:

X	10	5	1	0.5	0.1	0.01
$\overline{Y_1}$	16.4063	8.4766	1.7391	0.8723	0.1749	0.0175
$\overline{Y_2}$	58.6°	59.5°	60.1°	60.2°	60.2°	60.3°

Based on these results, it appears the angle between the cannon and the horizontal is approximately 60.3°.

Chapter 2

Page 78

Problem Set 2.3

72. Since $\csc B = 5$, $\sin B = \frac{1}{5}$, so $\sin^2 B = \left(\frac{1}{5}\right)^2 = \frac{1}{25}$.

74. Finding $\cos^2 A : \cos^2 A = 1 - \sin^2 A = 1 - \left(\frac{3}{4}\right)^2 = 1 - \frac{9}{16} = \frac{7}{16}$

So $\cos A = \pm \frac{\sqrt{7}}{4}$. Since A terminates in quadrant II, where x < 0, $\cos A < 0$. Thus $\cos A = -\frac{\sqrt{7}}{4}$.

76. First find $\sin \theta$ (note $\sin \theta < 0$ since θ terminates in quadrant IV):

$$\sin\theta = -\sqrt{1 - \cos^2\theta} = -\sqrt{1 - \frac{1}{5}} = -\sqrt{\frac{4}{5}} = -\frac{2}{\sqrt{5}} = -\frac{2\sqrt{5}}{5}$$

Now find the other four trigonometric ratios using x = 1, y = -2, and $r = \sqrt{5}$:

$$\sec \theta = \frac{r}{x} = \sqrt{5}$$
 $\csc \theta = \frac{r}{y} = -\frac{\sqrt{5}}{2}$ $\tan \theta = \frac{y}{x} = -2$ $\cot \theta = \frac{x}{y} = -\frac{1}{2}$

78. Since $\csc \theta = -2$, $\sin \theta = -\frac{1}{2}$. Now find $\cos \theta$ (note that $\cos \theta < 0$ since θ terminates in quadrant III):

$$\cos\theta = -\sqrt{1 - \sin^2\theta} = -\sqrt{1 - \left(-\frac{1}{2}\right)^2} = -\sqrt{1 - \frac{1}{4}} = -\sqrt{\frac{3}{4}} = -\frac{\sqrt{3}}{2}$$

Now find the other three trigonometric ratios using $x = -\sqrt{3}$, y = -1, and r = 2:

$$\sec \theta = \frac{r}{x} = -\frac{2}{\sqrt{3}} = -\frac{2\sqrt{3}}{3} \qquad \qquad \tan \theta = \frac{y}{x} = \frac{-1}{-\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3} \qquad \qquad \cot \theta = \frac{x}{y} = \frac{-\sqrt{3}}{-1} = \sqrt{3}$$

80. Finding side *b*:

$$\cos A = \frac{b}{c}$$
$$\cos 58^\circ = \frac{b}{15}$$
$$b = 15 \cos 58^\circ \approx$$

The correct answer is c.

82. Let x represent the height of the rider above the center of the wheel (which is 51.5 feet above the ground). Since the point of the rider is 50° above the horizontal, we have:

$$\sin 50^{\circ} = \frac{h - 51.5}{45}$$

h - 51.5 = 45 sin 50°
h = 51.5 + 45 sin 50° ≈ 86 ft

The correct answer is c.

ODD SOLUTIONS

1.left, right, first nonzero, not
a. 2 b. 3 c. 2 d. 23.sides, angles
7.5.a. 2 b. 3 c. 2 d. 27.a. 4 b. 6 c. 4 d. 49.
$$\cos 42^\circ = \frac{b}{89}$$
Cosine relationship $b = 89 \cos 42^\circ$ Multiply both sides by 89 $= 89(0.7431)$ Substitute value for $\cos 42^\circ$ $= 66 \,\mathrm{cm}$ Answer rounded to 2 significant digits

7.9 ft

Chapter 2

11.	$\sin 34^\circ = \frac{22}{c}$	Sine relationship
	$c\sin 34^\circ = 22$	Multiply both sides by c
	$c = \frac{22}{\sin 34^{\circ}}$	Divide both sides by $\sin 34^{\circ}$
	$c = \frac{22}{0.5592}$ $c = 39 \mathrm{m}$	Substitute value for $\sin 34^{\circ}$
	$c = 39 \mathrm{m}$	Answer rounded to 2 significant digits
13.	$\sin 16.9^{\circ} = \frac{b}{7.55}$	Sine relationship
	$b = 7.55 \sin 16.9^{\circ}$	Multiply both sides by 7.55
	= 7.55(0.2907)	Substitute value for cos 24.5°
	$= 2.19 \mathrm{cm}$	Answer rounded to 3 significant digits
15.	$\tan 55.33^\circ = \frac{12.34}{a}$	Tangent relationship
	$a \tan 55.33^\circ = 12.34$	Multiply both sides by <i>a</i>
	$a = \frac{12.34}{\tan 55.33^{\circ}}$	Divide both sides by tan 55.33°
	$a = \frac{12.34}{1.4458}$	Substitute value for tan 55.33°
	a = 8.535 yd	Answer rounded to 4 significant digits
17.	$\tan B = \frac{32.4}{42.3}$	Tangent relationship
	42.3 = 0.7659	Divide
	$B=\tan^{-1}(0.7659)$	Use calculator to find angle
	$B = 37.5^{\circ}$	Answer rounded to the nearest tenth of a degree
19.	$\sin B = \frac{9.8}{12}$	Sine relationship
	= 0.8166	Divide
	$B = \cos^{-1}(0.8166)$	Use calculator to find angle
	= 55°	Answer rounded to the nearest degree
21.	$\cos B = \frac{23.32}{45.54}$	Cosine relationship
	45.54 = 0.5120	Divide 23.32 by 45.54
	$B = \cos^{-1}(0.5120)$	Use calculator to find angle
	= 59.20°	Answer rounded to the nearest hundredth of a degree
23.	First, we find $\angle B$:	$\angle B = 90^\circ - \angle A = 90^\circ - 25^\circ = 65^\circ$
	Next, we find side <i>a</i> :	
	$\sin 25^\circ = \frac{a}{24}$	Sine relationship
	$a = 24 \sin 25^{\circ}$	Multiply both sides by 24
	a = 10 m	Answer rounded to 2 significant digits
	Last, we find side b :	
	$\cos 25^\circ = \frac{b}{24}$	Cosine relationship
	$b = 24 \sin 25^{\circ}$	Multiply both sides by 24
	$b = 22 \mathrm{m}$	Answer rounded to 2 significant digits

Page 80

Problem Set 2.3

25. First, we find $\angle B$:

27.

29.

$$\angle B = 90^{\circ} - \angle A$$

= 90° - 32.6° = 57.4°

Next, we find side *c*: $\sin 32.6^\circ = \frac{43.4}{c}$ Sine relationship $c = \frac{43.4}{\sin 32.6^\circ}$ Multiply both sides by c then divide by $\sin 32.6^{\circ}$ = 80.6 in Answer rounded to 3 significant digits Last, we find side b: $\tan 57.4^{\circ} = \frac{b}{43.4}$ Tangent relationship $b = 43.4 \tan 57.4^{\circ}$ Multiply both sides by 43.4 = 67.9 in Answer rounded to 2 significant digits First, we find $\angle B$: $\angle B = 90^{\circ} - \angle A$ $=90^{\circ} - 10^{\circ} 42'$ = 79°18' Next, we find side *a*: $\tan 10^{\circ} 42' = \frac{a}{5.932}$ Tangent relationship $\tan 10.7^{\circ} = \frac{a}{5.932}$ Change angle to decimal degrees $a = 5.932 \tan 10.7^{\circ}$ Multiply both sides by 5.932 $a = 1.121 \,\mathrm{cm}$ Answer rounded to 4 significant digits Last, we find side *c*: $\cos 10.7^{\circ} = \frac{5.932}{c}$ $c = \frac{5.932}{\cos 10.7^{\circ}}$ Cosine relationship Multiply both sides by c then divide by $\cos 10.7^{\circ}$ c = 6.037 cm Answer rounded to 4 significant digits $\angle A = 90^{\circ} - 76^{\circ}$ First, we find $\angle A$: $= 14^{\circ}$ Next, we find side *a*: $\cos 76^\circ = \frac{a}{5.8}$ Cosine relationship $a = 5.8 \cos 76^{\circ}$ Multiply both sides by 5.8 = 1.4 ftAnswer rounded to 2 significant digits Last, we find side b:

 $\sin 76^\circ = \frac{b}{5.8}$ $b = 5.8 \sin 76^\circ = 5.6 \,\text{ft}$

Multiply both sides by 5.8 and round to 2 significant digits

Sine relationship

31. First, we find
$$\angle A$$
:

33.

35.

$$\angle A = 90^{\circ} - \angle B$$

= 90° - 26°30'
= 63°30'

	$= 63^{\circ}30'$
Next, we find side <i>a</i> :	
$\tan 26^{\circ}30' = \frac{324}{a}$	Tangent relationship
$\tan 26.5^\circ = \frac{324}{a}$	Change angle to decimal degrees
$a = \frac{324}{\tan 26.5^{\circ}}$	Multiply both sides by <i>a</i> then divide by $\tan 26.5^{\circ}$
a = 650 mm	Answer rounded to 3 significant digits
Last, we find side <i>c</i> :	
$\sin 26.5^{\circ} = \frac{324}{c}$	Sine relationship
$c = \frac{324}{\sin 26.5^\circ}$	Multiply both sides by c then divide by $\sin 26.5^{\circ}$
= 726 mm	Answer rounded to 3 significant digits
First, we find $\angle A$:	$\angle A = 90^{\circ} - 23.45^{\circ}$ = 66.55°
Next, we find side <i>b</i> :	= 00.55
$\tan 23.45^{\circ} = \frac{b}{5.432}$	Tangent relationship
$b = 5.432 \tan 23.45^{\circ}$	Multiply both sides by 5.432
= 2.356 mi	Answer rounded to 4 significant digits
Last, we find side <i>c</i> :	
$\cos 23.45^\circ = \frac{5.432}{c}$	Cosine relationship
$c = \frac{c}{\frac{5.432}{\cos 23.45^{\circ}}}$	Multiply both sides by c and then divide by $\cos 23.45^{\circ}$
= 5.921 mi	Answer rounded to 4 significant digits
First, we find $\angle A$:	
$\tan A = \frac{37}{87}$	Tangent relationship
= 0.4253	Divide 37 by 87
$A = \tan^{-1}(0.4253)$	Use calculator to find angle
= 23°	Answer rounded to nearest degree
Next, we find $\angle B$:	
$\angle B = 90^\circ - \angle A = 90^\circ - 23^\circ = 6$	7°
Last, we find c :	
$c^2 = 37^2 + 87^2$ = 1369 + 7569	Pythagorean Theorem Simplify
= 8938	Simplify
$c = \pm 95$	Take square root of both sides
$=95\mathrm{ft}$	c must be positive

Chapter 2

37.	First, we find $\angle A$:	
	$\cos A = \frac{377.3}{588.5}$	Cosine relationship
	588.5 = 0.6411	Divide
	$A = \cos^{-1}(0.6411)$	Use calculator to find angle
	= 50.12°	Answer rounded to nearest hundredth of a degree
	Next, we find $\angle B$:	$\angle B = 90^\circ - \angle A$
	,	$=90^{\circ}-50.12^{\circ}$
		= 39.88°
	Last, we find side <i>a</i> :	
	$a^2 + 377.3^2 = 588.5^2$	Pythagorean Theorem
	$a^2 = 203,976.96$	Subtract and simplify
	$a = \pm 451.6$ = 451.6 in	Take square root of both sides <i>a</i> must be positive
39.	Using $\triangle BCD$, we find <i>BD</i> :	<i>a</i> must be positive
	$\sin 30^\circ = \frac{BD}{6.0}$	Sine relationship
		-
	$BD = 6.0 \sin 30^{\circ}$ $= 3$	Multiply both sides by 6 Exact answer
	Next, we find $\angle A$	
	$\sin A = \frac{3}{4.0}$	Sine relationship
	4.0 = 0.75	Divide
	$A = \sin^{-1}(0.75)$	Use calculator to find angle
	$A = 49^{\circ}$	Answer rounded to the nearest degree
41.	$\sin 31^\circ = \frac{12}{r+12}$	Sine relationship
	$(x+12)\sin 31^\circ = 12$	Multiply both sides by $x + 12$
	$x+12 = \frac{12}{\sin 31^\circ}$	Divide both sides by $\sin 31^{\circ}$
		Subtract 12 from both sides and round to 2 significant digits
43.	$\cos 65^\circ = \frac{r}{r+22}$	Sine relationship
	$r = (r+22)\cos 65^\circ$	Multiply both side by $r + 22$
	$r = r\cos 65^\circ + 22\cos 65^\circ$	Use distributive property
r-r	$\cos 65^\circ = 22\cos 65^\circ$	Subtract $r \cos 65^\circ$ from both sides
r(1-	$\cos 65^\circ = 22 \cos 65^\circ$	Factor left side
	$r = \frac{22\cos 65^{\circ}}{1-\cos 65^{\circ}}$	Divide both sides by $1 - \cos 65^{\circ}$
	=16	Answer rounded to 2 significant digits

45. Using $\triangle ABC$, we find side x: $\tan 62^\circ = \frac{x}{42}$ Tangent relationship $x = 42 \tan 62^\circ$ Multiply both sides by 42 = 79Answer rounded to 2 significant digits Next, using $\triangle ABD$, we find side h: $\tan 27^\circ = \frac{h}{x}$ Tangent relationship $=\frac{h}{79}$ Substitute value for *x* $h = 79 \tan 27^{\circ}$ Multiply both sides by 79 h = 40Answer rounded to 2 significant digits 47. Using $\triangle ABC$, we find side *x*: $\sin 41^\circ = \frac{x}{32}$ Sine relationship $x = 32\sin 41^\circ$ Multiply both sides by 32 = 21Answer rounded to 2 significant digits Next, using $\triangle ABD$, we find $\angle ABD$: $\tan \angle ABD = \frac{h}{x}$ $= \frac{19}{21}$ Tangent relationship Substitute known values = 0.9047Divide 19 by 21 $\angle ABD = \tan^{-1}(0.9047)$ Use calculator to find angle $\angle ABD = 42^{\circ}$ Answer rounded to the nearest degree 49. Using $\triangle BCD$, we find side *x*: $\cos 58^\circ = \frac{x}{14}$ Cosine relationship $x = 14 \cos 58^{\circ}$ Multiply both sides by 14 Answer rounded to 2 significant digits x = 7.4Next, using $\triangle ABC$, we find y: $\cos 41^\circ = \frac{x+y}{18}$ Cosine relationship $x + y = 18 \cos 41^{\circ}$ Multiply both sides by 18 x + y = 13.58Evaluate right side 7.4 + y = 13.58Substitute value for *x* $y = 6.18 \approx 6.2$ Subtract 7.4 from both sides and round to 2 significant digits

Problem Set 2.3

51. Using $\triangle ABC$, we find side h: $\sin 41^\circ = \frac{h}{28}$ Sine relationship $h = 28 \sin 41^{\circ}$ Multiply both sides by 28 Answer rounded to 2 significant digits =18Next, using $\triangle BCD$, we find side x: $\tan 58^\circ = \frac{h}{2}$ Tangent relationship $\tan 58^\circ = \frac{18}{x}$ Substitute value found for h $x = \frac{18}{\tan 58^\circ} = 11$ Solve for x and round to 2 significant digits 53. Since h is in both $\triangle ABC$ and $\triangle BCD$, we will solve for h in the two triangles: In $\triangle BCD$, $\tan 57^\circ = \frac{h}{x}$ Tangent relationship $h = x \tan 57^{\circ}$ Multiply both sides by xIn $\triangle ABC$, $\tan 43^\circ = \frac{h}{x+y}$ Tangent relationship $h = (x + y) \tan 43^\circ$ Multiply both sides by x + y $h = (x+11) \tan 43^{\circ}$ Substitute value for *y* Therefore, $x \tan 57^\circ = (x+11) \tan 43^\circ$ Property of equality $x \tan 57^{\circ} = x \tan 43 + 11 \tan 43^{\circ}$ **Distribution Property** $x \tan 57^{\circ} - x \tan 43^{\circ} = 11 \tan 43^{\circ}$ Subtract $x \tan 43^\circ$ from both sides $x(\tan 57^\circ - \tan 43^\circ) = 11\tan 43^\circ$ Factor left side $x = \frac{11\tan 43^{\circ}}{\tan 57^{\circ} - \tan 43^{\circ}} = 17$ Divide both sides by $\tan 57^\circ - \tan 43^\circ$ 55. From Problem 69 in Problem Set 2.1, we found that $\sin\theta = \frac{1}{\sqrt{3}}$ = 0.5774 $\theta = \sin^{-1}(0.5774) = 35.3^{\circ}$ From Problem 69 in Problem Set 2.1, we found that 57. $\cos\theta = \frac{\sqrt{2}}{\sqrt{3}}$ = 0.8165 $\theta = \cos^{-1}(0.8165) = 35.3^{\circ}$ We know that EC = DF = 6 ft, EB = 78 ft, CB = 72 ft, DB = 60 ft, and $\angle FAB = 45^\circ$. 59. $\tan \angle CAB = \frac{72}{54}$ $\angle CAB = \tan^{-1} \frac{72}{54}$ $\tan \angle DAB = \frac{60}{54}$ $\angle DAB = \tan^{-1}\frac{60}{54}$ $\tan \angle EAB = \frac{78}{54}$ $\angle EAB = \tan^{-1}\frac{78}{54}$ $\angle EAB = 55.3^{\circ}$ $\angle CAB = 53.1^{\circ}$ $\angle DAB = 48.0^{\circ}$ $\angle DAF = \angle DAB - \angle FAB$ $\angle EAC = \angle EAB - \angle CAB$ and $=48.0^{\circ}-45^{\circ}=3.0^{\circ}$ $= 55.3^{\circ} - 53.1^{\circ} = 2.2^{\circ}$ Therefore, the sum of the angles is 5.2° .

Chapter 2

Page 85

Problem Set 2.3

63.
$$\cos 120^{\circ} = \frac{x}{125} = \frac{139 - h}{125}$$

 $125 \cos 120^{\circ} = 139 - h$
 $h = 139 - 125 \cos 120^{\circ}$ Solve for h
 $= 200 \text{ ft}$ Round to 2 significant digits
65. $r = 98.5$
a. $h = 12 + 98.5 + x$
 $\cos 60.0^{\circ} = \frac{x}{98.5}$
 $x = 98.5 \cos 60.0^{\circ}$
 $= 49.25$
 $h = 12 + 98.5 + 49.25$
 $= 159.8 \approx 160 \text{ ft}$
b. $h = 12 + 98.5 + x$
 $\cos 30.0^{\circ} = \frac{x}{98.5}$
 $x = 98.5 \cos 30.0^{\circ}$
 $= 85.3$
 $h = 12 + 98.5 + 12 = 110.5$
 $h = 110.5 - x$
 $\cos 45.0^{\circ} = \frac{x}{98.5}$
 $x = 98.5 \cos 45.0^{\circ}$
 $= 69.7$
 $h = 110.5 - 69.7$
 $= 40.8 \text{ ft}$
67. The radius of the London Eye is $\frac{135}{2} = 67.5$.
 $\cos \theta = \frac{67.5 - 44.5}{67.5}$
 $\theta = \cos^{-1}(0.6592)$
 $\theta = 70.1^{\circ}$
71. $\sec \theta = 2$
 $\cos \theta = \frac{1}{\sec \theta}$ Reciprocal identity
 $= \frac{1}{2}$ Substitute known value
 $\cos^2 \theta = (\frac{1}{2})^2 = \frac{1}{4}$ Square both sides

Ψ х 60.0 Т 120.0° h 98.5 12 30.Ø х 150.0° h 98.5 12 \int_{0}^{x} 45 h12

Chapter 2

73.	$\cos\theta = -\sqrt{1-\sin^2\theta}$	Pythagorean iden	tity, θ in QIII	
	$=-\sqrt{1-\left(-\frac{2}{3}\right)^2}=-\sqrt{1-\left(-\frac{2}{3}\right)^2}$	$1 - \frac{4}{9}$		
	$=-\sqrt{\frac{5}{9}}=-\frac{\sqrt{5}}{3}$			
75.	$\cos\theta = -\sqrt{1-\sin^2\theta}$	Pythagorean iden	tity, θ in QII	
	$=-\sqrt{1-\left(\frac{\sqrt{3}}{2}\right)^2}$	Substitute known	value	
	$=-\sqrt{1-\frac{3}{4}}$	Simplify		
	$=-\sqrt{\frac{1}{4}}=-\frac{1}{2}$			
	$\tan \theta = \frac{\sin \theta}{\cos \theta}$ Ratio	identity	$\csc \theta = \frac{1}{\sin \theta}$	Reciprocal identity
	$\tan \theta = \frac{\sin \theta}{\cos \theta} \qquad \text{Ratio}$ $= \frac{\sqrt{3}/2}{-1/2} \qquad \text{Subst}$	itute known values	$=\frac{1}{\sqrt{3}/2}=\frac{2}{\sqrt{3}}=\frac{2\sqrt{3}}{3}$	
	$=-\sqrt{3}$ Simp		N 572 N 5 5	
	$\sec\theta = \frac{1}{\cos\theta}$ Recip	procal identity	$\cot\theta = \frac{1}{\tan\theta}$	Reciprocal identity
	$=\frac{1}{-1/2}=-2$		$=\frac{1}{-\sqrt{3}}=-\frac{1}{\sqrt{3}}=-\frac{\sqrt{3}}{3}$	
77.	$\cos\theta = \frac{1}{\sec\theta}$	Reciprocal identity	$\tan\theta = \frac{\sin\theta}{\cos\theta}$	Ratio identity
	$=-\frac{1}{2}$	Substitute known value	$\sqrt{3}/2$	Substitute values
	$\sin\theta = -\sqrt{1 - \cos^2\theta}$	Pythagorean identity, 6	P in QIII $=\sqrt{3}$	
		Substitute value for $\cos \theta$	$\cot\theta = \frac{1}{\tan\theta}$	Reciprocal identity
	$=-\sqrt{1-\frac{1}{4}}=-\sqrt{\frac{3}{4}}$	Simplify	$=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$	
	$=-\frac{\sqrt{3}}{2}$		$\csc \theta = \frac{1}{\sin \theta}$	Reciprocal identity
			$=\frac{1}{-\sqrt{3}/2}=-\frac{2}{\sqrt{3}}=-$	$\frac{\sqrt{3}}{3}$
81 .	$\tan B = \frac{35}{58}$		$-\sqrt{3}/2$ $\sqrt{3}$	J
	$B = 31^{\circ}$			
	The answer is b.			

Problem Set 2.3

2.4 Applications

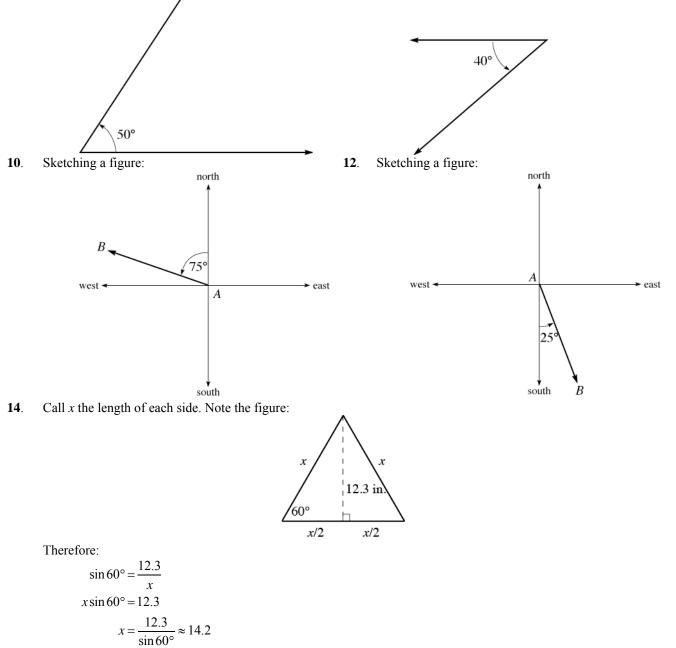
EVEN SOLUTIONS

2. If an observer positioned at the vertex of an angle views an object in the direction of the non-horizontal side of the angle, then this side is called the line of sight of the observer.

8.

Sketching a figure:

- 4. The bearing of a line is always measured as an angle from the north or south rotating toward the east or west.
- 6. Sketching a figure:

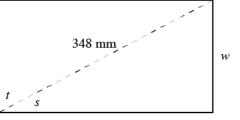


The length of each side is 14.2 in.

Chapter 2

Problem Set 2.4

16. Call *w* the length of the shorter side (width), and *s*, *t* the required angles. Note the figure:



Find w using the Pythagorean Theorem: $2\pi a^2$

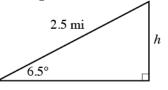
$$278^{2} + w^{2} = 348^{2}$$

 $w^{2} = 348^{2} - 278^{2} = 43820$
 $w \approx 209$
Now find angles *s* and *t*:
 $\cos s = \frac{278}{348}$

$$s = \cos^{-1}\left(\frac{278}{348}\right) \approx 37.0^{\circ}$$

$$t = 90^{\circ} - 37.0^{\circ} = 53.0^{\circ}$$

The shorter side is 209 mm, and the two angles are 37.0° and 53.0° . **18**. Let *h* represent the height of the hill. Draw the figure:

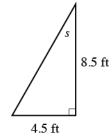


Therefore:

$$\sin 6.5^\circ = \frac{h}{2.5}$$

$$h = 2.5 \sin 6.5^\circ \approx 0.28$$

The hill is approximately 0.28 mi high, which is approximately 1,480 feet. 20. Let *s* represent the angle between the ladder and the wall. Draw the figure:



Therefore:

$$\tan s = \frac{4.5}{8.5}$$
$$s = \tan^{-1} \left(\frac{4.5}{8.5}\right) \approx 28^{\circ}$$

The angle between the ladder and the wall is approximately 28°.

Chapter 2

Problem Set 2.4

22. Let *h* represent the height of the building. Draw the figure:

Therefore:

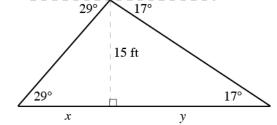
$$\tan 73.4^\circ = \frac{h}{37.5}$$

 $h = 37.5 \tan 73.4$

$$h = 37.5 \tan 73.4^{\circ} \approx 126$$

The height of the building is approximately 126 feet.

24. Draw the figure with the associated labels:



The sum x + y represents the width of the sand pile. Using the two triangles:

$$\tan 29^\circ = \frac{15}{x}$$

$$x \tan 29^\circ = 15$$

$$x = \frac{15}{\tan 29^\circ} \approx 27.1$$

$$\tan 17^\circ = \frac{15}{y}$$

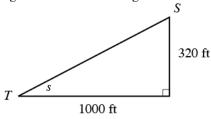
$$y \tan 17^\circ = 15$$

$$y = \frac{15}{\tan 17^\circ} \approx 49.1$$

The width of the sand pile is therefore $27.1 + 49.1 \approx 76$ feet.

26. a. First note that $\frac{5}{8}$ in $=\frac{5}{8} \cdot 1600 = 1000$ ft, which is the horizontal distance between Stacey and Travis.

- **b**. There are 8 contour intervals between Stacey and Travis, which corresponds to a vertical distance of $8 \cdot 40 = 320$ ft.
- **c**. Let *s* represent the elevation angle. Construct the triangle:



Therefore:

$$\tan s = \frac{320}{1000} = 0.32$$

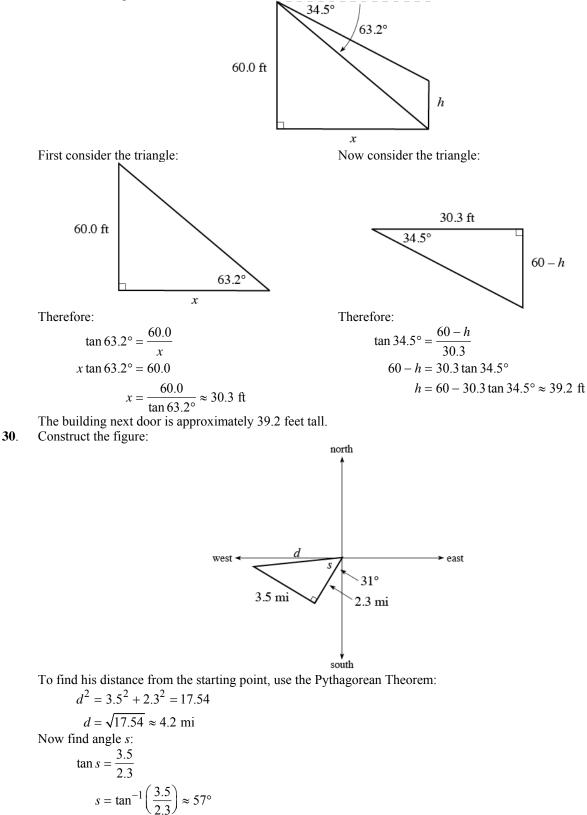
$$s = \tan^{-1}(0.32) \approx 17.7^{\circ}$$

The elevation angle from Travis to Stacey is approximately 17.7°.

Chapter 2

Page 90

Problem Set 2.4



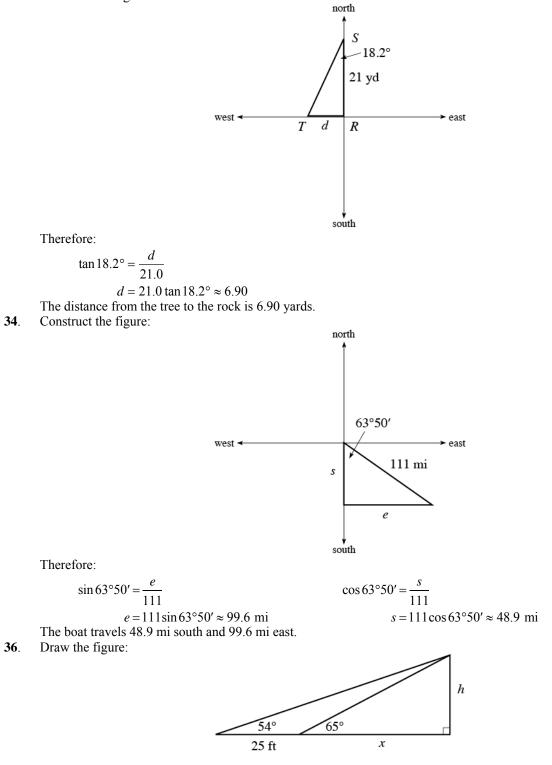
His bearing is S 88° W.

Chapter 2

Page 91

Problem Set 2.4

32. Construct the figure:



Problem Set 2.4

From the smaller triangle:

$$\tan 65^\circ = \frac{h}{x}$$
$$x \tan 65^\circ = h$$
$$x = \frac{h}{\tan 65^\circ}$$

From the larger triangle:

$$\tan 54^\circ = \frac{h}{25+x}$$

$$(25+x)\tan 54^\circ = h$$

$$25+x = \frac{h}{\tan 54^\circ}$$

$$x = \frac{h}{\tan 54^\circ} - 25$$

Setting these two expressions equal: h = h

$$\frac{h}{\tan 65^\circ} = \frac{h}{\tan 54^\circ} - 25$$
$$h \cot 65^\circ = h \cot 54^\circ - 25$$
$$h \cot 65^\circ - h \cot 54^\circ = -25$$
$$h (\cot 65^\circ - \cot 54^\circ) = -25$$
$$h = \frac{25}{\cot 54^\circ - \cot 65^\circ} \approx$$

The height of the obelisk is approximately 96 feet.

38. First find the length *CB*:

$$\tan 12.3^\circ = \frac{426}{CB}$$

$$CB \tan 12.3^\circ = 426$$

$$CB = \frac{426}{\tan 12.3^\circ} \approx 1,954 \text{ ft}$$

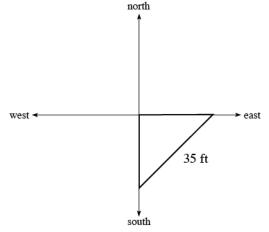
Therefore:

$$\sin \angle BCA = \frac{AB}{CB}$$
$$\sin 57.5^\circ = \frac{AB}{1954}$$
$$AB = 1954 \sin 57.5^\circ \approx 1,650$$

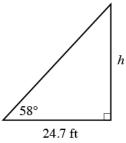
A rescue boat at A will have to travel approximately 1,650 feet to reach any survivors at point B. 40. Construct a figure:

ft

96



First note that each person is $\frac{35}{\sqrt{2}}$ ft \approx 24.7 ft from the base of the tree. Let *h* represent the height of the tree. Now construct the triangle:

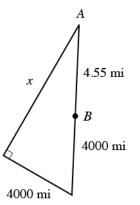


Therefore:

$$\tan 58^\circ = \frac{h}{24.7}$$
$$h = 24.7 \tan \theta$$

 $h = 24.7 \tan 58^\circ \approx 40$ ft The tree is approximately 27 feet tall.

42. Construct the figure (not drawn to scale):



Using the Pythagorean Theorem:

$$x^{2} + 3960^{2} = 3964.55^{2}$$

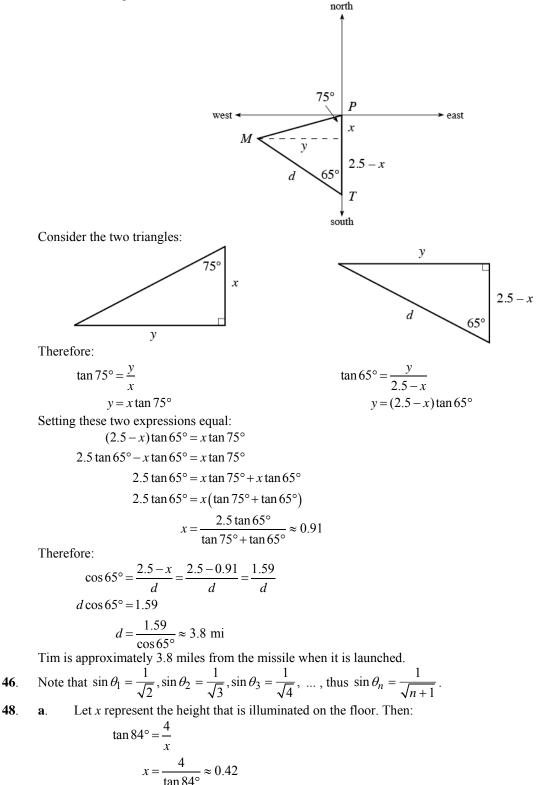
$$x^{2} + 15,681,600 = 15,717,656.7$$

$$x^{2} = 36,056.7$$

$$x \approx 190$$

The plane is 190 miles from the horizon. Now find angle A:

$$\sin A = \frac{3960}{3964.55}$$
$$A = \sin^{-1} \left(\frac{3960}{3964.55} \right) \approx 87.3^{\circ}$$



The illuminated area is then: $(0.42)(6.5) \approx 2.7 \text{ ft}^2$.

Chapter 2

Page 95

b. Following the procedure from part **a**:

$$\tan 37^\circ = \frac{4}{x}$$
$$x = \frac{4}{\tan 37^\circ} \approx 5.3$$

The illuminated area is then: $(5.31)(6.5) \approx 34.5 \text{ ft}^2$. The area is much larger on the winter day.

50. Simplifying:
$$\frac{1}{\sin\theta} - \sin\theta = \frac{1}{\sin\theta} - \sin\theta \cdot \frac{\sin\theta}{\sin\theta} = \frac{1 - \sin^2\theta}{\sin\theta} = \frac{\cos^2\theta}{\sin\theta}$$

1

52. Working from the left side: $\cos\theta\csc\theta\tan\theta = \cos\theta \cdot \frac{1}{\sin\theta} \cdot \frac{\sin\theta}{\cos\theta} = \frac{\sin\theta\cos\theta}{\sin\theta\cos\theta} = 1$

54. Working from the left side: $(1 - \cos\theta)(1 + \cos\theta) = 1 - \cos\theta + \cos\theta - \cos^2\theta = 1 - \cos^2\theta = \sin^2\theta$

56. Working from the left side:
$$1 - \frac{\cos \theta}{\sec \theta} = 1 - \frac{\cos \theta}{\frac{1}{\cos \theta}} = 1 - \cos^2 \theta = \sin^2 \theta$$

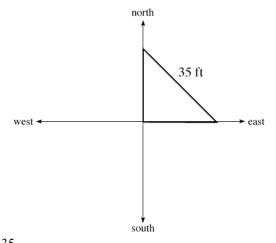
58. Let *h* represent the height of the flagpole. Then:

$$\tan 74.3^\circ = \frac{h}{22.5}$$

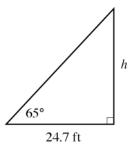
$$h = 22.5 \tan 74.3^{\circ} \approx 80.0$$

The flagpole is 80.0 feet tall. The correct answer is d.

60. Construct a figure:



First note that each person is $\frac{35}{\sqrt{2}}$ ft \approx 24.7 ft from the base of the tree. Let *h* represent the height of the tree. Now construct the triangle:



Therefore:

$$\tan 65^\circ = \frac{h}{24.7}$$

$$h = 24.7 \tan 65^\circ \approx 53$$
 ft

The tree is approximately 53 feet tall. The correct answer is a.

Chapter 2

Page 96

Problem Set 2.4

ODD SOLUTIONS

1. elevation, depression 3. north-south For problems 5 through 11, see diagrams in textbook answer section. T1

To find the h vight *l* e the Pyth 13.

15. To find the height,
$$h$$
, we can use the Pythagorean Theorem:
 $h^{2} + (16)^{2} = (42)^{2}$
 $h^{2} + 256 = 1,764$
 $h^{2} = 1,508$
 $h = \pm \sqrt{1,508} = 39 \text{ cm}$
To find angle θ , we can use the cosine ratio:
 $\cos \theta = \frac{16}{42}$
 $\theta = \cos^{-1} \left(\frac{16}{42}\right) = 68^{\circ}$
15. Consider the right triangle with sides of 25.3 cm and 5.2 cm (one-half of the diameter):
 $\tan \theta = \frac{25.3}{5.2}$
 $= 4.8654$
The angle the side makes with the base is 78.4° .
 $\theta = \tan^{-1}(4.8654)$
 $= 78.4^{\circ}$
17. To find the length of the escalator, x , we use the sine ratio:
 $\sin 33^{\circ} = \frac{21}{0.5446} = 39 \text{ ft}$
The length of the escalator is 39 feet.
19. $\sin \theta = \frac{432}{72.5}$
 $= 0.5959$
 $\theta = \sin^{-1}(0.5959)$
 $= 36.6^{\circ}$
The angle the rope makes with the pole is 36.6°
19. We use the tangent ratio to find the angle of elevation to the sun, θ :
 $\tan \theta = \frac{73.0}{51.0}$
 $= 1.4313$

The angle of elevation to the sun is 55.1° .

 $\theta = \tan^{-1}(1.4313)$

= 55.1°

Problem Set 2.4

21 ft

73.0 ft

θ

51.0 ft

 $\tan 11^\circ = \frac{x}{150}$ 23. $x = 150 \tan 11^{\circ} = 29 \text{ cm}$ 11° 150 150 $\tan 12^\circ = \frac{y}{150}$ $y = 150 \tan 12^{\circ}$ $= 32 \, \text{cm}$ The vertical dimension of the mirror is x + y or 61 cm. 25. **a.** horizontal distance = 0.50(1,600) = 800 ft **b.** vertical distance = (number of contour intervals)(40) =5(40)=200 ft**c.** $\tan \theta = \frac{\text{vertical distance}}{\text{horizontal distance}}$ $=\frac{200}{800}$ = 0.25 $\theta = \tan^{-1}(0.25)$ =14° $\tan 59^\circ = \frac{9.8}{y}$ 27. $y = \frac{9.8}{\tan 59^{\circ}} = \frac{9.8}{1.6643} = 5.9$ $\tan 47^\circ = \frac{9.8}{\tan 59^\circ}$ $x = y \tan 47^{\circ}$ v = 5.9(1.0724) = 6.3 ft The vertical dimension of the door is 6.3 feet. We use the Pythagorean Theorem to find the distance *x*: 29. $x^2 = 25^2 + 18^2$ = 625 + 324= 949 x = 31 miWe use the tangent relationship to find angle θ : x $\tan\theta = \frac{18}{25} = 0.72$ $\theta = \tan^{-1}(0.72)$

To find the bearing we add $42^{\circ} + 36^{\circ} = 78^{\circ}$. The boat is 31 miles from the harbor entrance and its bearing is N 78°E.

= 36°

Problem Set 2.4

9.8

x

31. $\tan 65^{\circ} = \frac{x}{18}$ $x = 18 \tan 65^{\circ}$ = 18 (2.1445)= 39 miThe distance from Lompoc to Buellton is 39 miles.

33. We will call the west distance, *x* and the north distance, *y*:

 $\sin 37^{\circ} 10' = \frac{x}{79.5} \qquad \qquad \cos 37^{\circ} 10' = \frac{y}{79.5}$ $x = 79.5 \sin 37^{\circ} 10' \qquad \qquad y = 79.5 \cos 37^{\circ} 10'$ $= 48.0 \text{ mi} \qquad \qquad = 63.4 \text{ mi}$ The boat has traveled 48.0 miles west and 63.4 miles north.

35. In
$$\triangle ABC$$
, $\tan 42.17^{\circ} = \frac{h}{x+33}$
 $h = (x+33) \tan 42.17^{\circ}$
In $\triangle BCD$, $\tan 47.5^{\circ} = \frac{h}{x}$
 $h = x \tan 47.5^{\circ}$

Therefore, $x \tan 47.5^{\circ} = (x + 33) \tan 42.17^{\circ}$

 $x \tan 47.5^{\circ} = x \tan 42.17^{\circ} + 33 \tan 42.17^{\circ}$

 $x \tan 47.5^\circ - x \tan 42.17^\circ = 33 \tan 42.17^\circ$

 $x(\tan 47.5^\circ - \tan 42.17^\circ) = 33 \tan 42.17^\circ$

$$z = \frac{33 \tan 42.17^{\circ}}{\tan 47.5^{\circ} - \tan 42.17^{\circ}} = 161 \, \text{ft}$$

The person at point A is 161 feet from the base of the antenna.

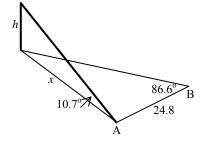
37. $\tan 86.6^\circ = \frac{x}{24.8}$

$$x = 24.8 \tan 86.6^{\circ}$$

= 24.8 (16.8319)
= 417.431
$$\tan 10.7^{\circ} = \frac{h}{x}$$

$$h = x \tan 10.7^{\circ}$$

= (417.431)(0.18895)
= 78.9 ft
The tree is 78.9 feet high.



Ν

Nipomo

18

Lompoc

42.17°

33

Buellton

7.10

х

.5°

x

D

79.5

39. First, we will find each person's distance from the pole, *x*, using the Pythagorean Theorem:

 $x^{2} + x^{2} = 25^{2}$ $2x^{2} = 625$ $x^{2} = 312.5$ x = 17.678 ft

Next, we will find the height of the pole, *h*, using the tangent relationship:

$$\tan 56^\circ = \frac{h}{17.678}$$

 $h = 17.678 \tan 56^\circ$
 $= 26 \text{ ft}$

The height of the pole is 26 feet.

41.

$$\sin 76.6^{\circ} = \frac{r}{r+112}$$

$$r = (r+112)\sin 76.6^{\circ}$$

$$r = r\sin 76.6^{\circ} + 112\sin 76.6^{\circ}$$

$$r(1-\sin 76.6^{\circ}) = 112\sin 76.6^{\circ}$$

$$r\left(1-\sin 76.6^{\circ}\right) = 112\sin 76.6^{\circ}$$

$$r = \frac{112\sin 76.6^{\circ}}{1-\sin 76.6^{\circ}}$$

$$= \frac{112(0.9728)}{1-0.9728}$$

$$= \frac{108.9509}{0.02722}$$

$$= 4,000 \text{ mi}$$

The radius of the earth is 4,000 miles.43. We want to find *x* and *y* in terms of *h*

$$\tan 53^\circ = \frac{h}{x} \qquad \qquad \tan 31^\circ = \frac{h}{y}$$
$$x \tan 53^\circ = h \qquad \qquad y \tan 31^\circ = h$$
$$x = \frac{h}{\tan 53^\circ} \qquad \qquad y = \frac{h}{\tan 31^\circ}$$

We know that x + y = 15. Therefore,

$$\frac{h}{\tan 53^{\circ}} + \frac{h}{\tan 31^{\circ}} = 15$$

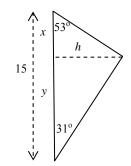
$$h\left(\frac{1}{\tan 53^{\circ}} + \frac{1}{\tan 31^{\circ}}\right) = 15$$

$$h\left(0.7536 + 1.6643\right) = 15$$

$$2.4179h = 15$$

$$h = \frac{15}{2.4179} = 6.2 \text{ mi}$$

The ship is 6.2 miles from the shore.



Chapter 2

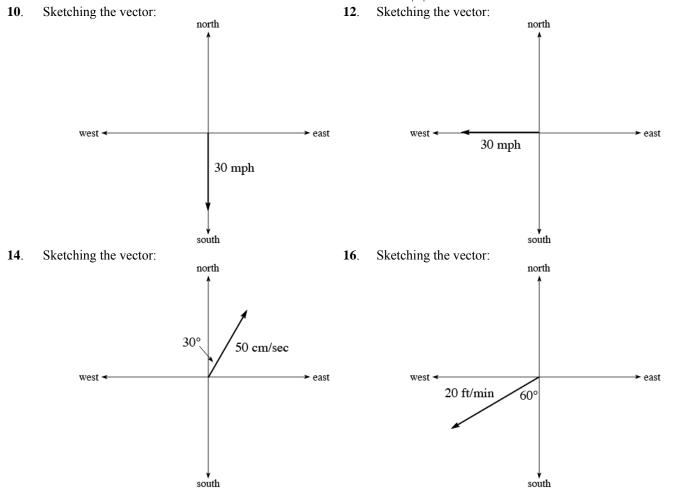
45.
$$\tan \theta_{1} = \frac{1}{1}$$
$$\tan \theta_{2} = \frac{1}{\sqrt{2}}$$
$$\tan \theta_{3} = \frac{1}{\sqrt{3}}$$
$$= 1$$
$$= 0.7071$$
$$= 0.5774$$
$$\theta_{1} = \tan^{-1}(1)$$
$$\theta_{2} = \tan^{-1}(0.7071)$$
$$\theta_{3} = \tan^{-1}(0.5774)$$
$$\theta_{1} = 45.00^{\circ}$$
$$\theta_{2} = 35.26^{\circ}$$
$$\theta_{3} = 30.00^{\circ}$$

49.
$$(\sin \theta - \cos \theta)^{2} = (\sin \theta - \cos \theta)(\sin \theta - \cos \theta)$$
$$= \sin^{2} \theta - 2\sin \theta \cos \theta + \cos^{2} \theta$$
$$= \sin^{2} \theta + \cos^{2} \theta - 2\sin \theta \cos \theta$$
$$= 1 - 2\sin \theta \cos \theta$$
For the equation of the equation equation of the equation of the equation equation equation equation equation equation the equation equation equation equation equation the equation equa

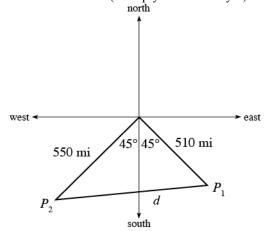
2.5 Vectors: A Geometric Approach

EVEN SOLUTIONS

- 2. Two vectors are equivalent if they have the same magnitude and direction.
- 4. A vector is in standard position if the tail of the vector is placed at the origin of a rectangular coordinate system.
- 6. If V makes and angle θ with the positive x-axis when in standard position, then $|\mathbf{V}_x| = |\mathbf{V}| \cos \theta$ and $|\mathbf{V}_y| = |\mathbf{V}| \sin \theta$.
- 8. If a constant force **F** is applied to an object and moves the object in a straight line a distance *d* at an angle θ with the force, then the work performed by the force is found by multiplying $|\mathbf{F}| \cos \theta$ and *d*.



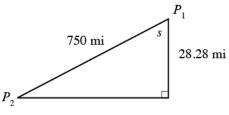
18. Construct the figure for their position after 2 hours (multiply their rates by 2):



Using the Pythagorean Theorem: $d = \sqrt{550^2 + 510^2} \approx 750$ miles

To find the bearing from P_1 to P_2 , first find the vertical (north-south) change in their positions. This is given by:

 $550 \sin 45^\circ - 510 \sin 45^\circ \approx 28.28$ miles Construct the triangle:



Therefore:

$$\cos s = \frac{28.28}{750}$$
$$s = \cos^{-1} \left(\frac{28.28}{750}\right) \approx 87.8^{\circ}$$

The bearing from P_1 to P_2 is S 87.8° W.

20. Computing the magnitudes of V_x and V_y :

20.20

$$|\mathbf{V}_x| = 17.6 \cos 72.6^\circ \approx 5.26$$

 $|\mathbf{V}_y| = 17.6 \sin 72.6^\circ \approx 16.8$

22. Computing the magnitudes of \mathbf{V}_x and \mathbf{V}_y :

$$|\mathbf{V}_x| = 383 \cos 12^{\circ} 20' \approx 374$$

 $|\mathbf{V}_x| = 383 \sin 12^{\circ} 20' \approx 81.8$

$$|\mathbf{v}_y| = 383 \sin 12 \ 20 \approx 81.8$$

24. Computing the magnitudes of \mathbf{V}_x and \mathbf{V}_y :

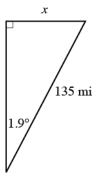
$$\begin{vmatrix} \mathbf{V}_x \end{vmatrix} = 84\cos 90^\circ = 0$$
$$\begin{vmatrix} \mathbf{V}_y \end{vmatrix} = 84\sin 90^\circ = 84$$

26. Using the Pythagorean Theorem: $|\mathbf{V}| = \sqrt{54.2^2 + 14.5^2} \approx 56.1$

28. Using the Pythagorean Theorem:
$$|\mathbf{V}| = \sqrt{2.2^2 + 8.8^2} \approx 9.1$$

Chapter 2

Problem Set 2.5



Therefore:

$$\sin 1.9^\circ = \frac{x}{135}$$

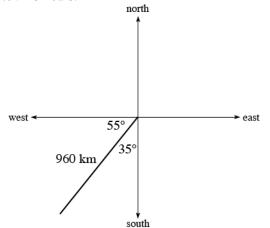
 $x = 135 \sin 1.9^\circ \approx 4.48$ miles

The plane will be approximately 4.48 miles off course.

32. Computing the magnitudes of V_x and V_y :

$$\begin{vmatrix} \mathbf{V}_x \end{vmatrix} = 1,800\cos 55^\circ = 1,032\frac{\text{ft}}{\text{sec}} \approx 1,000\frac{\text{ft}}{\text{sec}} \\ \begin{vmatrix} \mathbf{V}_y \end{vmatrix} = 1,800\sin 55^\circ \approx 1,474\frac{\text{ft}}{\text{sec}} \approx 1,500\frac{\text{ft}}{\text{sec}} \end{vmatrix}$$

- **34**. The horizontal distance traveled is $1.5 \Box 1,032 = 1,548$ feet $\approx 1,500$ feet.
- **36**. Draw the figure corresponding to t = 3 hours:



The west and south distances are given by:

west: $960 \cos 55^\circ \approx 550 \text{ km}$

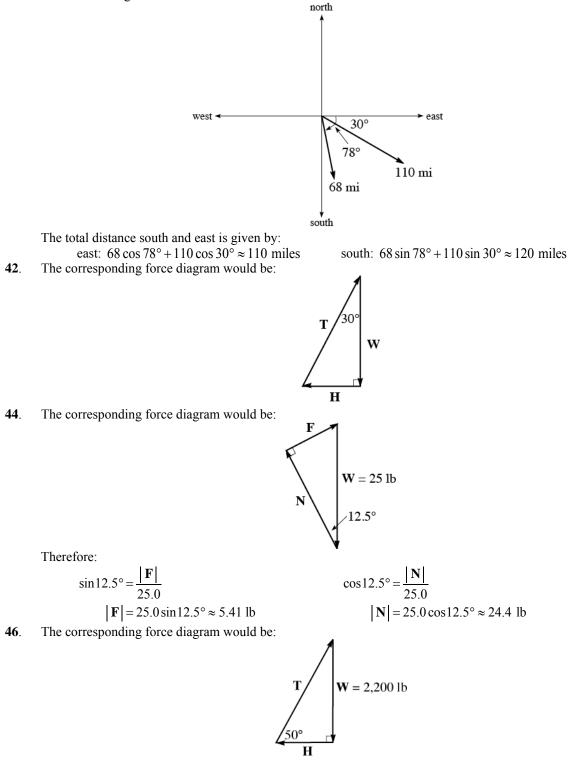
south: $960 \sin 55^\circ \approx 790$ km

38. Using the Pythagorean Theorem: $|\mathbf{V}| = \sqrt{16.5^2 + 24.3^2} \approx 29.4$ ft/sec The elevation angle is given by:

$$\tan \theta = \frac{24.3}{16.5}$$
$$\theta = \tan^{-1} \left(\frac{24.3}{16.5} \right) \approx 55.8^{\circ}$$

Chapter 2

Problem Set 2.5



Chapter 2

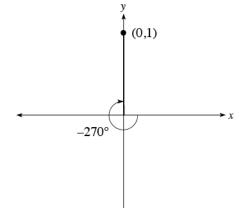
Therefore:

$$\sin 50^{\circ} = \frac{2,200}{|\mathbf{T}|} \qquad \qquad \tan 50^{\circ} = \frac{2,200}{|\mathbf{H}|} \\ |\mathbf{T}|\sin 50^{\circ} = 2,200 \qquad \qquad |\mathbf{H}| \tan 50^{\circ} = 2,200 \\ |\mathbf{T}| = \frac{2,200}{\sin 50^{\circ}} \approx 2,900 \text{ lb} \qquad \qquad |\mathbf{H}| = \frac{2,200}{\tan 50^{\circ}} \approx 1,800 \text{ lb} \end{aligned}$$

48. The horizontal portion of the force is given by: $|\mathbf{F}_x| = |\mathbf{F}| \cos 35^\circ = 15 \cos 35^\circ$ lb The work is then given by: Work = $(15 \cos 35^\circ)(52) \approx 640$ ft-lb

50. The horizontal portion of the force is given by: $|\mathbf{F}_x| = |\mathbf{F}| \cos 15^\circ = 85 \cos 15^\circ$ lb The work is then given by: Work = $(85 \cos 15^\circ)(110) \approx 9,000$ ft-lb

52. Drawing the angle in standard position:



Since r = 1, $\sin(-270^\circ) = 1$, $\cos(-270^\circ) = 0$, and $\tan(-270^\circ)$ is undefined.

54. Choose
$$(-1,1)$$
 as a point on the terminal side of θ . Then $r = \sqrt{(-1)^2 + 1^2} = \sqrt{2}$. Therefore:

$$\sin\theta = \frac{y}{r} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$
 $\cos\theta = \frac{x}{r} = -\frac{1}{\sqrt{2}} = -\frac{\sqrt{2}}{2}$

56. Since $\cos \theta = \frac{x}{r} = -\frac{3}{5} = -\frac{6}{10}$, choose x = -6 and r = 10. Now find y: $(-6)^2 + y^2 = 10^2$ $36 + y^2 = 100$ $y^2 = 64$ $y = \pm 8$ 58. Using the Pythagorean Theorem: $|\mathbf{V}| = \sqrt{9.6^2 + 2.3^2} \approx 9.9$

Finding the angle:

$$\tan \theta = \frac{2.3}{9.6}$$
$$\theta = \tan^{-1} \left(\frac{2.3}{9.6}\right) \approx 13^{\circ}$$

The correct answer is c.

60. The horizontal portion of the force is given by: $|\mathbf{F}_x| = |\mathbf{F}| \cos 35^\circ = 28 \cos 35^\circ$ lb The work is then given by: Work = $(28 \cos 35^\circ)(150) \approx 3,400$ ft-lb The correct answer is b.

Chapter 2

Page 106

Problem Set 2.5

ODD SOLUTIONS

resultant, diagonal 1. scalar, vector 3. horizontal, component, vertical, component 5. zero, static equilibrium 7. For problems 9 through 15, see textbook answer section for diagrams. The first hour, the distance traveled is 17. (9.50 mph)(1 hr) = 9.50 milesThe next hour and a half, the distance traveled is (8.00 mph)(1.5 hr) = 12.0 miles9.50 mi 52.5 We will use the Pythagorean Theorem to find *x*: 12.0 mi $x^2 = 9.50^2 + 12.0^2$ $x^2 = 234.25$ x x = 15.3 mi We will use the tangent ratio to find θ and then add 37.5°: $\tan\theta = \frac{12.0}{9.50}$ =1.2632 $\theta = \tan^{-1}(1.2632)$ = 51.6° $51.6^{\circ} + 37.5^{\circ} = 89.1^{\circ}$ The balloon is 15.3 miles from its starting point. The bearing is N 89.1° E. $|V_{x}| = |V| \cos \theta$ 19. $V_{\rm y} = V \sin \theta$ $= 13.8 \cos 24.2^{\circ}$ $= 13.8 \sin 24.2^{\circ}$ =12.6= 5.66 $|V_{x}| = |V| \cos \theta$ $|V_{y}| = |V| \sin \theta$ 21. $= 425 \cos 36^{\circ}10'$ $= 425 \sin 36^{\circ}10'$ $= 425 \cos 36.17^{\circ}$ $= 425 \sin 36.17^{\circ}$ =425(0.8073)=425(0.5901)= 343 =251 $|V_{y}| = |V| \sin \theta$ 23. $|V_{\rm r}| = |V| \cos \theta$ $= 64 \cos 0^{\circ}$ $= 64 \sin 0^{\circ}$ = 64(1) = 64= 64(0) = 0 $|V| = \sqrt{|V_{x}|^{2} + |V_{y}|^{2}}$ 25. 27. $|V| = \sqrt{|V_x|^2 + |V_y|^2}$ $=\sqrt{(35.0)^2+(26.0)^2}$ $=\sqrt{(4.5)^2+(3.8)^2}$ $=\sqrt{1,225+676}$ $=\sqrt{20.25+14.44}$ $=\sqrt{1,901}$ $=\sqrt{34.69}$ = 5.9= 43.629. To find the distance, x, the plane has flown off its course, we can use the sine ratio:

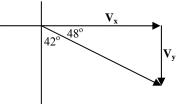
 $\sin 2.8^\circ = \frac{x}{28}$ $x = 28 \sin 2.8^\circ$ = 1.37 miles

Chapter 2

Page 107

Problem Set 2.5

 $V_{y} = V \sin \theta$ 31. $|V_r| = |V| \cos \theta$ $=1,200\cos 45^{\circ}$ $=1,200 \sin 45^{\circ}$ = 1200(0.7071)=1200(0.7071)= 850 feet per second = 850 feet per second 33. In 3 seconds, the bullet travels 3(850 ft/sec) = 2,550 ft. $|V_{\rm x}| = 130 \cos 48^{\circ}$ $|V_{y}| = 130 \sin 48^{\circ}$ 35. = 87= 97The ship has traveled 97 km south and 87 km east. We are given that $|V_x| = 35.0$ and $|V_y| = 15.0$ 37. $\tan \theta = \frac{|V_y|}{|V|}$ $|V| = \sqrt{|V_x|^2 + |V_y|^2}$ $=\sqrt{(35.0)^2+(15.0)^2}$ $=\frac{15.0}{35.0}$ $=\sqrt{1,225+225}$ = 0.4285 $=\sqrt{1,450}$ = 38.1 feet per second $\theta = 23.2^{\circ}$

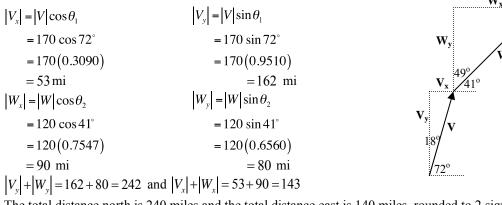


Therefore, the velocity of the arrow is 38.1 feet per second at an elevation of 23.2° .

To find the total distance traveled north, we must find the sum of $|V_y|$ and $|W_y|$ and to find

the total distance traveled east, we must find the sum of $|V_x|$ and $|W_x|$.

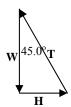
We are given that |V| is 170 mi. at an angle of inclination of 90° – 18° or 72° and also that |W| is 120 mi. at an angle of inclination of 90° – 49° or 41°



The total distance north is 240 miles and the total distance east is 140 miles, rounded to 2 significant digits. |W| = 42.0

39.

$$\cos 45.0^{\circ} = \frac{|W|}{|T|} \qquad \tan 45.0^{\circ} = \frac{|H|}{|W|}$$
$$|T| = \frac{|W|}{\cos 45.0^{\circ}} \qquad |H| = |W| \tan 45.0^{\circ}$$
$$= \frac{42.0}{\cos 45.0^{\circ}} = 42.0 \tan 45.0^{\circ}$$
$$= 59.4 \text{ lb.} = 42.0 \text{ lb.}$$



Chapter 2

Page 108

Problem Set 2.5

43. We are given that
$$|W| = 8.0$$

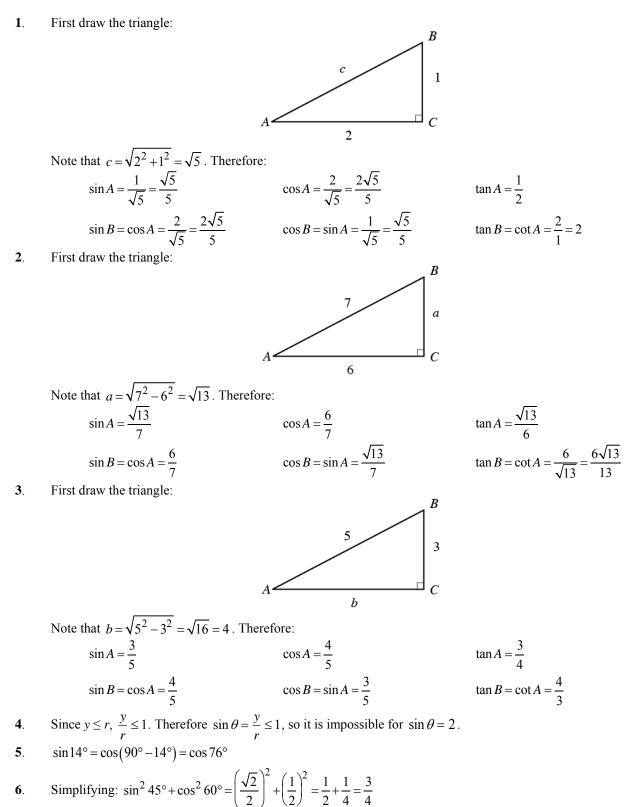
 $\cos 15^{\circ} = \frac{|W|}{|W|}$ $\sin 15^{\circ} = \frac{|F|}{|W|}$
 $|N| = |W| \cos 15^{\circ}$ $|F| = |W| \sin 15^{\circ}$
 $= 8.0 (0.9659)$ $= 8.0 (0.2588)$
 $= 7.7 \text{ pounds}$ $= 2.1 \text{ pounds}$
45. $|W| = 42.0$
 $\sin 52.0^{\circ} = \frac{|F|}{|W|}$
 $|F| = |W| \sin 52.0^{\circ}$
 $= 42.0 \sin 52.0^{\circ}$
 $= 33.1 \text{ lb}$
47. $\theta = 20^{\circ}, |F| = 40 \text{ lb}, \text{ and } d = 75 \text{ ft}$
 $|F_{*}| = |F| \cos \theta$ $\text{Work} = |F_{*}| \cdot d$
 $= 41 \cos 20^{\circ}$ $= (41 \cos 20^{\circ})(75)$
 $= 2900 \text{ ft} \cdot \text{lb}.$
49. $\theta = 30^{\circ}, |F| = 25 \text{ lb}, \text{ and } d = 350 \text{ ft}$
 $|F_{*}| = |F| \cos \theta$ $\text{Work} = |F_{*}| \cdot d$
 $= 25 \cos 30^{\circ}$ $= (25 \cos 30^{\circ})(350)$
 $= 7,600 \text{ ft} \cdot \text{lb}.$
51. $(x, y) = (-1, 1)$
 $x = -1, y = 1 \text{ and } r = \sqrt{2}$
 $\sin 135^{\circ} = \frac{y}{r} = \frac{1}{\sqrt{2}} = -\frac{\sqrt{2}}{2}$
 $\tan 135^{\circ} = \frac{y}{r} = \frac{1}{\sqrt{2}} = -\frac{\sqrt{2}}{2}$
 $\tan 135^{\circ} = \frac{y}{r} = \frac{1}{\sqrt{2}} = -\frac{\sqrt{2}}{2}$
 $\tan 135^{\circ} = \frac{y}{r} = \frac{2\sqrt{5}}{5}$ $\cos \theta = \frac{x}{r} = \frac{1}{\sqrt{5}} = \frac{\sqrt{5}}{5}$
55. $\sin \theta = \frac{y}{r} = \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5}$ $\cos \theta = \frac{x}{r} = \frac{1}{\sqrt{5}} = \frac{\sqrt{5}}{5}$
 $\sin \theta = \frac{y}{r} = \frac{-8}{10}$
 $y = -8 \text{ and } r = 10$
 $x^{2} + y^{2} = r^{2}$
 $x^{2} + (-8)^{2} = 10^{2}$
 $x^{2} + 68 = 100$
 $x^{2} + 36$
 $x = \pm 6$

Chapter 2

Page 109

Problem Set 2.5

Chapter 2 Test



7. Simplifying: $\tan 45^\circ + \cot 45^\circ = 1 + 1 = 2$

Chapter 2

Page 110

Chapter 2 Test

8. Simplifying:
$$\sin^2 60^\circ - \cos^2 30^\circ = \left(\frac{\sqrt{3}}{2}\right)^2 - \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{3}{4} - \frac{3}{4} = 0$$

- 9. Simplifying: $\frac{1}{\csc 30^\circ} = \sin 30^\circ = \frac{1}{2}$
- **10**. Adding: $48^{\circ}31' + 24^{\circ}52' = 72^{\circ}83' = 73^{\circ}23'$
- **11**. Converting to degrees and minutes: $73.2^\circ = 73^\circ + 0.2^\circ = 73^\circ + 0.2(60') = 73^\circ 12'$

12. Converting to decimal degrees:
$$2^{\circ}48' = 2^{\circ} + 48' = 2^{\circ} + \left(\frac{48}{60}\right)^{\circ} = 2.8^{\circ}$$

13. Calculating the value:
$$\sin 24^{\circ}20' = \sin\left(24\frac{1}{3}\right)^{\circ} \approx 0.4120$$

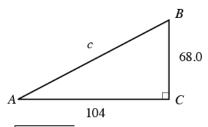
14. Calculating the value: $\cos 48.3^{\circ} \approx 0.6652$

15. Calculating the value:
$$\cot 71^{\circ}20' = \cot\left(71\frac{1}{3}\right)^{\circ} = \frac{1}{\tan\left(71\frac{1}{3}\right)^{\circ}} \approx 0.3378$$

16. Since $\sin \theta = 0.6459$, $\theta = \sin^{-1}(0.6459) \approx 40.2^{\circ}$.

17. Since
$$\sec \theta = 1.923$$
, $\cos \theta = \frac{1}{1.923}$, so $\theta = \cos^{-1} \left(\frac{1}{1.923} \right) \approx 58.7^{\circ}$.

18. First sketch the triangle:

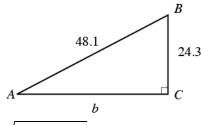


Using the Pythagorean Theorem: $c = \sqrt{104^2 + 68^2} \approx 124$. Therefore:

$$\tan A = \frac{68}{104}$$
$$A = \tan^{-1} \left(\frac{68}{104}\right) \approx 33.2^{\circ}$$

 $B = 90^{\circ} - 33.2^{\circ} = 56.8^{\circ}$

19. First sketch the triangle:



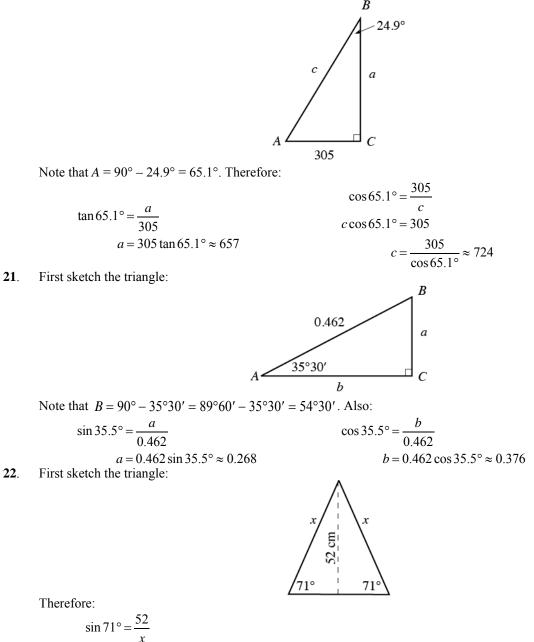
Using the Pythagorean Theorem: $b = \sqrt{48.1^2 - 24.3^2} \approx 41.5$. Therefore:

$$\sin A = \frac{24.3}{48.1}$$
$$A = \sin^{-1} \left(\frac{24.3}{48.1}\right) \approx 30.3^{\circ}$$
$$B = 90^{\circ} - 30.3^{\circ} = 59.7^{\circ}$$

Chapter 2

Page 111

Chapter 2 Test

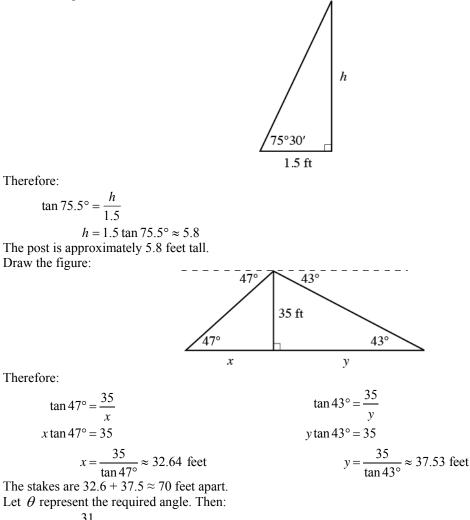


$$\sin 71^\circ = \frac{52}{x}$$
$$x \sin 71^\circ = 52$$
$$x = \frac{52}{\sin 71^\circ} \approx 55 \text{ cm}$$

Chapter 2

24.

25.



 $\tan \theta = \frac{31}{11}$ $\theta = \tan^{-1} \left(\frac{31}{11} \right) \approx 70^{\circ}$

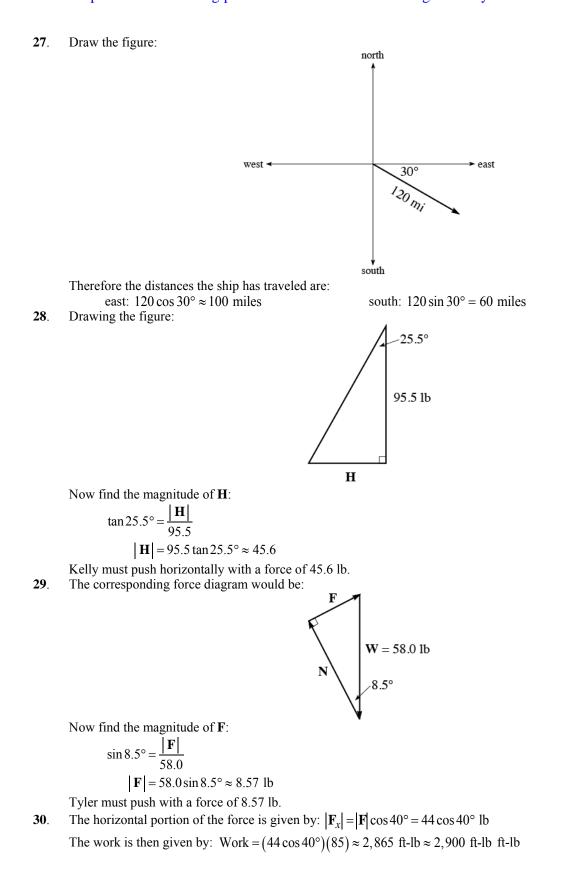
26. The magnitudes are given by:

 $|\mathbf{V}_x| = 850 \cos 52^\circ \approx 523 \text{ ft/sec} \approx 520 \text{ ft/sec}$

$$|\mathbf{V}_y| = 850 \sin 52^\circ \approx 670 \text{ ft/sec}$$

Solutions Manual for Trigonometry 8th Edition by McKeague IBSN 9781305652224

Full Download: http://downloadlink.org/product/solutions-manual-for-trigonometry-8th-edition-by-mckeague-ibsn-978130565222



Chapter 2

Page 114

Chapter 2 Test

© 2017 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Full all chapters instant download please go to Solutions Manual, Test Bank site: downloadlink.org