
Software Engineering 10 – Solutions Manual

©Ian Sommerville 2014

7

2 Software Processes

2.1 Giving reasons for your answer based on the type of system being
developed, suggest the most appropriate generic software process model
that might be used as a basis for managing the development of the
following systems:

• A system to control anti-lock braking in a car
• A virtual reality system to support software maintenance
• A university accounting system that replaces an existing system
• An interactive travel planning system that helps users plan journeys
 with the lowest environmental impact

1. Anti-lock braking system This is a safety-critical system so requires a lot of
up-front analysis before implementation. It certainly needs a plan-driven
approach to development with the requirements carefully analysed. A
waterfall model is therefore the most appropriate approach to use, perhaps
with formal transformations between the different development stages.

2. Virtual reality system This is a system where the requirements will change
and there will be an extensive user interface components. Incremental
development with, perhaps, some UI prototyping is the most appropriate
model. An agile process may be used.

3. University accounting system This is a system whose requirements are
fairly well-known and which will be used in an environment in conjunction
with lots of other systems such as a research grant management system.
Therefore, a reuse-based approach is likely to be appropriate for this.

4. Interactive travel planning system System with a complex user interface but
which must be stable and reliable. An incremental development approach is
the most appropriate as the system requirements will change as real user
experience with the system is gained.

2.3 Consider the integration and configuration process model shown in Figure
2.3. Explain why it is essential to repeat the requirements engineering
activity in the process.

Solutions Manual for Software Engineering 10th Edition by Sommerville IBSN 9780133943030
Full Download: http://downloadlink.org/product/solutions-manual-for-software-engineering-10th-edition-by-sommerville-ibsn-9780133943030/

Full all chapters instant download please go to Solutions Manual, Test Bank site: downloadlink.org

http://downloadlink.org/product/solutions-manual-for-software-engineering-10th-edition-by-sommerville-ibsn-9780133943030/

 Software Engineering 10 – Solutions Manual Introduction

©Ian Sommerville 2014

8

You need to repeat the requirements engineering activity because it is essential to
adapt the system requirements according to the capabilities of the
system/components to be reused. These activities are:

1. An initial activity where you understand the function of the system and set
out broad requirements for what the system should do. These should be
expressed in sufficient detail that you can use them as a basis for deciding of
a system/component satisfies some of the requirements and so can be
reused.

2. Once systems/components have been selected, you need a more detailed
requirements engineering activity to check that the features of the reused
software meet the business needs and to identify changes and additions that
are required.

2.4 Suggest why it is important to make a distinction between developing the
user requirements and developing system requirements in the requirements
engineering process.

There is a fundamental difference between the user and the system requirements
that mean they should be considered separately.

1. The user requirements are intended to describe the system’s functions and
features from a user perspective and it is essential that users understand
these requirements. They should be expressed in natural language and may
not be expressed in great detail, to allow some implementation flexibility.
The people involved in the process must be able to understand the user’s
environment and application domain.

2. The system requirements are much more detailed than the user requirements
and are intended to be a precise specification of the system that may be part
of a system contract. They may also be used in situations where
development is outsourced and the development team need a complete
specification of what should be developed. The system requirements are
developed after user requirements have been established.

2.6 Explain why change is inevitable in complex systems and give examples
(apart from prototyping and incremental delivery) of software process
activities that help predict changes and make the software being developed
more resilient to change.

Systems must change because as they are installed in an environment the
environment adapts to them and this adaptation naturally generates new/different

Software Engineering 10 – Solutions Manual

©Ian Sommerville 2014

9

system requirements. Furthermore, the system's environment is dynamic and
constantly generates new requirements as a consequence of changes to the
business, business goals and business policies. Unless the system is adapted to
reflect these requirements, its facilities will become out-of-step with the facilities
needed to support the business and, hence, it will become less useful.

Examples of process activities that support change are:

1. Recording of requirements rationale so that the reason why a requirement is
included is known. This helps with future change.

2. Requirements traceability that shows dependencies between requirements
and between the requirements and the design/code of the system.

3. Design modeling where the design model documents the structure of the
software.

4. Code refactoring that improves code quality and so makes it more amenable
to change.

2.9 Suggest two advantages and two disadvantages of the approach to process
maturity that is embodied in the SEI’s Capability Maturity Framework.

Advantages of process improvement frameworks

1. The approach provides a means of measuring the state of a process and a
structured approach to introducing process improvements.

2. It is useful as a way of building on the experience of others in process
improvement.

Disadvantages of process improvement frameworks

1. Like any measurement system, there is a tendency to introduce
improvements to improve the measured rating rather than concentrate on
improvements that meet real business goals.

2. The maturity model approach is expensive and bureaucratic to operate. It is
not really suitable for organisations that use agile development.

 Software Engineering 10 – Solutions Manual Introduction

©Ian Sommerville 2014

10

3 Agile Software
Development

3.2 Explain how the principles underlying agile methods lead to the accelerated
development and deployment of software.

The principles underlying agile development are:

1. Individual and interactions over processes and tools. By taking advantages
of individual skills and ability and by ensuring that the development team
know what each other are doing, the overheads of formal communication
and process assurance are avoided. This means that the team can focus on
the development of working software.

2. Working software over comprehensive documentation. This contributes to
accelerated development because time is not spent developing, checking and
managing documentation. Rather, the programmer’s time is focused on the
development and testing of code.

3. Customer collaboration over contract negotiation. Rather than spending
time developing, analyzing and negotiating requirements to be included in a
system contract, agile developers argue that it is more effective to get
feedback from customer’s directly during the development about what is
required. This allows useful functionality to be developed and delivered
earlier than would be possible if contracts were required.

4. Responding to change over following a plan. Agile developers argue
(rightly) that being responsive to change is more effective than following a
plan-based process because change is inevitable whatever process is used.
There is significant overhead in changing plans to accommodate change and
the inflexibility of a plan means that work may be done that is later
discarded.

Software Engineering 10 – Solutions Manual

©Ian Sommerville 2014

11

3.3 Extreme programming expresses user requirements as stories, with each
story written on a card. Discuss the advantages and disadvantages of this
approach to requirements description.

Advantages of stories:
1. They represent real situations that commonly arise so the system will

support the most common user operations.

2. It is easy for users to understand and critique the stories.

3. They represent increments of functionality – implementing a story delivers
some value to the user.

Disadvantages of stories

1. They are liable to be incomplete and their informal nature makes this
incompleteness difficult to detect.

2. They focus on functional requirements rather than non-functional
requirements.

3. Representing cross-cutting system requirements such as performance and
reliability is impossible when stories are used.

4. The relationship between the system architecture and the user stories is
unclear so architectural design is difficult.

3.6 Compare and contrast the Scrum approach to project management with
conventional plan-based approaches as discussed in Chapter 23. Your
comparison should be based on the effectiveness of each approach for
planning the allocation of people to projects, estimating the cost of projects,
maintaining team cohesion and managing changes in project team
membership.

Planning allocation of people to projects

Scrum
Scrum handles people allocation informally. Team members ‘bid’ for features from
the product backlog to implement if they think that their expertise is appropriate.
Alternatively, the tasks can be allocated by the Scrum master.

There is no formal mechanism in Scrum for planning for project members
with very specific expertise to be temporarily allocated to a team. This need must
be identified by the Scrum master and he or she has to discuss how the expertise
can be made available.

Plan-based development

 Software Engineering 10 – Solutions Manual Introduction

©Ian Sommerville 2014

12

A project plan is used to identify the parts of the system to be delivered and these
are specified in the requirements document. The expertise required for each part
can then be identified and the allocation of people to projects planned on that basis.

Estimating project costs

Scrum

Project costs are estimated based on the required delivery date for the software and
people working in the Scrum team. The functionality of the system is adjusted so
that some working system will always be delivered for the original cost estimation.
Of course, this may not be adequate for the customer and they have to become
involved in rescheduling the delivery of the system.

Plan-based development

Project costs are based on an analysis of the functionality specified in the
requirements document as well as the non-functional requirements of the system.
They may be adjusted to reflect team size and delivery schedule. It is normal for
costs to be underestimated and the final project to cost much more than originally
estimated. An average cost for team members is assumed.

Maintaining team cohesion

Scrum

Team member meet daily either face to face or electronically. Extensive informal
discussions and communications are encouraged. Team members negotiate work
to be done from the project backlog. This all leads to a shared feeling of product
ownership and a very cohesive team.

Plan-based development

Team cohesion is the responsibility of the project manager and he or she has to take
explicit actions to encourage this. The general approach relies on formal meetings
that are relatively infrequent and this does not lead to the development of a
cohesive team.

Managing changes in project team membership

Scrum

This is a topic that is rarely discussed in Scrum but is a fundamental problem
because so much information is informal and reliant on people remembering what
has been agreed. When someone leaves, it can be very difficult to bring a
replacement team member up to speed, especially if very little project
documentation is available.

Plan-based development

Software Engineering 10 – Solutions Manual

©Ian Sommerville 2014

13

The project management plan is based around expertise rather than individuals and
project documents should be available. Therefore, if a team member leaves, then a
new team member with comparable expertise can read what has been done and,
after understanding this, should be able to serve as a replacement.

3.8 Why is it necessary to introduce some methods and documentation from
plan-based approaches when scaling agile methods to larger projects that
are developed by distributed development teams.

1. Project planning is often essential when developing software with larger
teams to (a) ensure that the right people are available when they are needed
to be involved in the development process and (b) ensure that the delivery
schedules of different parts of the system developed by different teams are
aligned. This means that if Part A depends on Part B, the schedule should
ensure that Part B is developed before Part A.

2. Requirements analysis and documentation is important to decide how to
distribute the work across teams and to ensure that each team has some
understanding of what other teams are doing.

3. Design documentation especially interface specifications are important so
that teams can develop independently without having access to software that
is under development.

4. Risk management may be required to ensure that all of the teams understand
the risks faced and can organize their work to minimize these risks. Risk
management may also be useful to cope with different delivery schedules
used by different teams.

3.10 It has been suggested that one of the problems of having a user closely
involved with a software development team is that they ‘go native’. That is,
they adopt the outlook of the development team and lose sight of the
needs of their user colleagues. Suggest three ways how you might avoid this
problem and discuss the advantages and disadvantages of each approach.

1. Involve multiple users in the development team. Advantages are you get
multiple perspectives on the problem, better coverage of user tasks and
hence requirements and less likelihood of having an atypical user.
Disadvantages are cost, difficulties of getting user engagement and possible
user conflicts.

 Software Engineering 10 – Solutions Manual Introduction

©Ian Sommerville 2014

14

2. Change the user who is involved with the team. Advantages are, again,
multiple perspectives. Disadvantages are each user takes time to be
productive and possible conflicting requirements from different users.

3. Validate user suggestions with other user representatives. Advantages are
independent check on suggestions; disadvantage is that this slows down the
development process as it takes time to do the checks.

Software Engineering 10 – Solutions Manual

©Ian Sommerville 2014

15

4 Requirements
Engineering

4.2 Discover ambiguities or omissions in the following statement of
requirements for part of a ticket-issuing system:

 An automated ticket machine sells rail tickets. Users select their destination
and input a credit card and a personal identification number. The rail ticket
is issued and their credit card account charged. When the user presses the
start button, a menu display of potential destinations is activated, along
with a message to the user to select a destination and the type of ticket
required. Once a destination has been selected, the ticket price is displayed
and customers are asked to input their credit card. Its validity is checked
and the user is then asked to input their personal identifier (PIN). When the
credit transaction has been validated, the ticket is issued.

Ambiguities and omissions include:

1. Can a customer buy several tickets for the same destination together or must
they be bought one at a time?

2. Can customers cancel a request if a mistake has been made?

3. How should the system respond if an invalid card is input?

4. What happens if customers try to put their card in before selecting a
destination (as they would in ATM machines)?

5. Must the user press the start button again if they wish to buy another ticket
to a different destination?

6. Should the system only sell tickets between the station where the machine is
situated and direct connections or should it include all possible destinations?

 Software Engineering 10 – Solutions Manual Introduction

©Ian Sommerville 2014

16

4.4 Write a set of non-functional requirements for the ticket-issuing system,
setting out its expected reliability and response time.

Possible non-functional requirements for the ticket issuing system include:

1. Between 0600 and 2300 in any one day, the total system down time should
not exceed 5 minutes.

2. Between 0600 and 2300 in any one day, the recovery time after a system
failure should not exceed 2 minutes.

3. Between 2300 and 0600 in any one day, the total system down time should
not exceed 20 minutes.

All these are availability requirements – note that these vary according to the time
of day. Failures when most people are traveling are less acceptable than failures
when there are few customers.

4. After the customer presses a button on the machine, the display should be
updated within 0.5 seconds.

5. The ticket issuing time after credit card validation has been received should
not exceed 10 seconds.

6. When validating credit cards, the display should provide a status message
for customers indicating that activity is taking place.

 This tells the customer that the potentially time consuming activity of
validation is still in progress and that the system has not simply failed.

7. The maximum acceptable failure rate for ticket issue requests is 1: 10000.

Note that this is really ROCOF. I have not specified the acceptable number of
incorrect tickets as this depends on whether or not the system includes trace
facilities that allow customer requests to be logged. If so, a relatively high failure
rate is acceptable as customers can complain and get refunds. If not, only a very
low failure rate is acceptable.

Obviously, these requirements are arbitrary and there are many other
possible answers. You simply have to examine their credibility.

Software Engineering 10 – Solutions Manual

©Ian Sommerville 2014

17

4.6 Suggest how an engineer responsible for drawing up a system requirements
specification might keep track of the relationships between functional and
non-functional requirements.

Keeping track of the relationships between functional and non-functional
requirements is difficult because non-functional requirements are sometimes
system level requirements rather than requirements which are specific to a single
function or group of functions.

One approach that can be used is to explicitly identify system-level non-
functional requirements that are associated with a functional requirement and list
them separately. All system requirements that are relevant for each functional
requirement should be listed. They can be related by including them in a table as
shown below.

Notice that in this example, the system non-functional requirement would normally
take precedence over the timing requirement, which applied to the specific
operation.

Obviously, any sensible answer that provides a way of linking functional and non-
functional requirements is acceptable here.

4.7 Using your knowledge of how an ATM is used, develop a set of use cases
that could serve as a basis for understanding the requirements for an ATM
system.

There are a variety of different types of ATM so, obviously, there is not a definitive
set of use cases that could be produced. However, I would expect to see use cases
covering the principal functions such as withdraw cash, display balance, print
statement, change PIN and deposit cash. The use case description should describe
the actors involved, the inputs and outputs, normal operation and exceptions.

Withdraw cash:

Functional requirement Related non-functional
system requirements

Non-functional
requirements

The system shall provide
an operation which
allows operators to open
the release valve to vent
steam into the
atmosphere.

Safety requirement: No
release of steam shall be
permitted if maintenance
work is being carried out
on any steam generation
plant.

Timing requirement: The
valve must open
completely within 2
seconds of the operator
initiating the action.

 Software Engineering 10 – Solutions Manual Introduction

©Ian Sommerville 2014

18

Actors: Customer, ATM, Accounting system
Inputs: Customer’s card, PIN, Bank Account details
Outputs: Customer’s card, Receipt, Bank account details
Normal operation: The customer inputs his/her card into the machine.

He/she s promoted for a PIN which is entered on the keypad. If correct,
he/she is presented with a menu of options. The Withdraw cash option is
selected. The customer is promoted with a request for the amount of
cash required and inputs the amount. If there are sufficient funds in
his/her account, the cash is dispensed, a receipt if printed and the
account balance is updated. Before the cash is dispensed, the card is
returned to the customer who is prompted by the machine to take their
card.

Exception: Invalid card. Card is retained by machine; Customer advised to
seek advice.

Incorrect PIN. Customer is request to rekey PIN. If incorrect after 3
attempts, card is retained by machine and customer advised to seek
advice.

Insufficient balance Transaction terminated. Card returned to customer.

Display balance:

Actors: Customer, ATM, Accounting system
Inputs: Customer’s card, PIN, Bank Account details
Outputs: Customer’s card
Normal operation: The customer authenticates using card and PIN as in

Withdraw cash and selects the Display Balance option. The current
balance of their account is displayed on the screen. The card is returned
to the customer.

Exception: Invalid card. As in Withdraw cash
Incorrect PIN. As in Withdraw cash

Print statement:

Actors: Customer, ATM, Accounting system
Inputs: Customer’s card, PIN, Bank Account details
Outputs: Customer’s card, Printed statement
Normal operation: The customer authenticates using card and PIN as in

Withdraw cash and selects the Print statement option. The last five
transactions on their account is printed. The card is returned to the
customer.

Exception: Invalid card. As in Withdraw cash
Incorrect PIN. As in Withdraw cash

Change PIN:
Actors: Customer, ATM
Inputs: Customer’s card, PIN
Outputs: Customer’s card

Software Engineering 10 – Solutions Manual

©Ian Sommerville 2014

19

Normal operation: The customer authenticates as in Withdraw cash and
selects the Change PIN option. He/she is prompted twice to input the
new PIN. The PINS input should be the same. The customer’s PIN is
encrypted and stored on the card. Card returned to customer.

Exception: Invalid card. As in Withdraw cash.
Incorrect PIN. As in Withdraw cash.
PINS do not match. The customer is invited to repeat the process to reset

his/her PIN.

Deposit cash:
Actors: Customer, ATM, Accounting system
Inputs: Customer’s card, PIN, Bank Account details, Cash to be

deposited
Outputs: Customer’s card, Receipt
Normal operation: The customer authenticates as in Withdraw cash and

selects the Deposit option. The customer is promoted with a request for
the amount of cash to be deposited and inputs the amount. He or she is
then issued with a deposit envelope in which they should put the cash
then return it to the machine. The customer’s account balance is updated
with the amount deposited but this is marked as uncleared funds and is
not cleared until checked. A receipt is issued and the customer’s card is
returned.

Exception: Invalid card. As in Withdraw cash.
Incorrect PIN. As in Withdraw cash.
No cash deposited within 1 minute of envelope being issued. Transaction

terminated. Card returned to customer.

4.9 When emergency changes have to be made to systems, the system software
may have to be modified before changes to the requirements have been
approved. Suggest a model of a process for making these modifications that
will ensure that the requirements document and the system
implementation do not become inconsistent.

The following diagram shows a change process that may be used to maintain
consistency between the requirements document and the system. The process
should assign a priority to changes so that emergency changes are made but these
changes should then be given priority when it comes to making modifications to
the system requirements. The changed code should be an input to the final change
process but it may be the case that a better way of making the change can be found
when more time is available for analysis.

 Software Engineering 10 – Solutions Manual Introduction

©Ian Sommerville 2014

20

Analyze
change
request

Change
program code

Record code
changes

Update CR
DB

Change
requirements

«DB»
Change Req DB

[emergency
change]

[non-
emergency
change]

Assess
requirements

impact

Resubmit CR
for analysis

«DB»
Change Req DB

Design/
change code

Software Engineering 10 – Solutions Manual

©Ian Sommerville 2014

21

5 System Modeling

5.2 How might you use a model of a system that already exists? Explain why it is
not always necessary for such a system model to be complete and correct.
Would the same be true if you were developing a model of a new system?

You might create and use a model of a system that already exists for the following
reasons:

1. To understand and document the architecture and operation of the existing
system.

2. To act as the focus of discussion about possible changes to that system.

3. To inform the re-implementation of the system.

You do not need a complete model unless the intention is to completely document
the operation of the existing system. The aim of the model in such cases is usually
to help you work on parts of the system so only these need to be modelled.
Furthermore, if the model is used as a discussion focus, you are unlikely to ne
interested in details and so can ignore parts of the system in the model.

This is true, in general, for models of new systems unless a model-based
approach to development is taking place in which case a complete model is
required. The other circumstances where you may need a complete model is when
there is a contractual requirement for such a model to be produced as part of the
system documentation.

5.5 Develop a sequence diagram showing the interactions involved when a
student registers for a course in a university. Courses may have limited
enrolment, so the registration process must include checks that places are
available. Assume that the student accesses an electronic course catalog to
find out about available courses.

A relatively simple diagram is all that is needed here. It is best not to be too fussy
about things like UML arrow styles as hardly anyone can remember the differences
between them.

 Software Engineering 10 – Solutions Manual Introduction

©Ian Sommerville 2014

22

5.6 Look carefully at how messages and mailboxes are represented in the email
system that you use. Model the object classes that might be used in the
system implementation to represent a mailbox and an e-mail message.

:CourseCatalog

lookup ()

Display ()
reportWeather ()

register ()

:Course

Confirm ()

:student

check-availability ()

Mail message

sender:
receiver list:
cc list:
bcc list:
date:
subject:
return path:
routing info:
spam info:
mailer:
message info:
message body:
attachments:
signature:

read ()
reply ()
reply all ()
print ()
forward ()
send ()

Mailbox

name:
pathname:
creation date:
change date:
messages:
unread messages:
flagged messages:
deleted messages:

move message ()
copy message ()
delete message ()
fetch mail ()
create ()
rename ()
delete ()

Software Engineering 10 – Solutions Manual

©Ian Sommerville 2014

23

5.7 Based on your experience with a bank ATM, draw an activity diagram that
models the data processing involved when a customer withdraws cash from
the machine.

Notice that I have not developed the activities representing other services or failed
authentication.

5.10 You are a software engineering manager and your team proposes that
model-driven engineering should be used to develop a new system. What
factors should you take into account when deciding whether or not to
introduce this new approach to software development?

The factors that you have to consider when making this decision include:

1. The expertise of the team in using UML and MDA. (Is expertise already
available or will extensive training be required.)

2. The costs and functionality of the tools available to support MDA. (Are
tools available in house or will they have to be purchased. Are they good
enough for the type of software being developed)

Get customer
info

Authenticate

«system»
Accounting

system

[OK]

[withdrawal]

[other service]

[insufficient]

Present
service
menu

Get amount

Other services

Check
balance

Dispense
cash

Update
balance

Print
receipt

Return card

Return
card

[OK]

«system»
Accounting

system

Authentication
failure

 Software Engineering 10 – Solutions Manual Introduction

©Ian Sommerville 2014

24

3. The likely lifetime of the software that you are developing. (MDA is most
suitable for long-lifetime systems)

4. Requirements for high performance or throughput (MDA relies on code
generation that creates code which may be less efficient than hand written
code)

5. The long term benefits of using MDA (are there real cost savings from this
approach)

6. The enthusiasm of the software developers. (are all team members
committed to this new approach)

Solutions Manual for Software Engineering 10th Edition by Sommerville IBSN 9780133943030
Full Download: http://downloadlink.org/product/solutions-manual-for-software-engineering-10th-edition-by-sommerville-ibsn-9780133943030/

Full all chapters instant download please go to Solutions Manual, Test Bank site: downloadlink.org

http://downloadlink.org/product/solutions-manual-for-software-engineering-10th-edition-by-sommerville-ibsn-9780133943030/

