
Solutions to End-of-Chapter Exercises

Chapter 1: An Introduction to Computer Science

1. There is no one correct answer. Common examples are the instructions for using a voice mail

system, the instructions for opening a mail box lock, and the instructions for doing laundry.

2. A heuristic is a method for finding a reasonably close, “good enough” solution to a problem.

It can be viewed as a rule-of-thumb, a method of approximation, an informal technique, or even

a way to make an “educated guess.” It differs from the concept of an algorithm in that it does

not guarantee to produce an optimal solution, just to make a good faith attempt to locate a

reasonable one. Heuristics are often used when executing an algorithm might be too time-

consuming, and we only need an approximation to the correct answer.

An example of a heuristic for adding two 3-digit numbers, such as 234 + 567, might be:

 1. Set the one and tens digit of both operands to 0

 2. Increase the hundreds digit of the second operand by 1. These two

 steps result in changing the problem to the simpler one 200 + 600.

 3. Add the hundreds digits, resulting in a final “answer” of 800.

Now, of course, this is not the correct answer, which is 801. But the result we get may be close

enough for our needs, and it is certainly a lot easier to add a single column of numbers rather

than three columns of numbers.

3. One may argue that the instruction is not well-ordered, since it is unclear whether one should

enter the channel first or press CHAN first. Also, it may not be effectively computable if you

desire to enter a channel that is out of the DVR’s range.

4. (a) Sequential

 (b) Conditional

 (c) Sequential

 (d) Iterative

5. Step 1: carry = 0, c3 = ??, c2 = ??, c1 = ??, and c0 = ??

 Step 2: i = 0, all others unchanged

 Step 4: c0 = 18, all others unchanged

 Step 5: c0 = 8 and carry = 1, all others unchanged

 Step 6: i = 1, carry = 1, c3 = ??, c2 = ??, c1 = ??, and c0 = 8

 Step 4: c1 = 7, all others unchanged

 Step 5: carry = 0, all others unchanged

 Step 6: i = 2, carry = 0, c3 = ??, c2 = ??, c1 = 7, and c0 = 8

Solutions Manual for Invitation to Computer Science 7th Edition by Schneider
Full Download: http://downloadlink.org/product/solutions-manual-for-invitation-to-computer-science-7th-edition-by-schneider/

Full all chapters instant download please go to Solutions Manual, Test Bank site: downloadlink.org

http://downloadlink.org/product/solutions-manual-for-invitation-to-computer-science-7th-edition-by-schneider/

 Step 4: c1 = 1, all others unchanged

 Step 5: carry = 0, all others unchanged

 Step 6: i = 3, carry = 0, c3 = ??, c2 = 1, c1 = 7, and c0 = 8

 Step 7: c3 = 0, c2 = 1, c1 = 7, and c0 = 8

 Step 8: Print out 0178.

6. Replace Step 8 with the following steps:

 Step 8: Set the value of i to m

 Step 9: Repeat step 10 until either ci is not equal to 0 or i < 0

 Step 10: Subtract 1 from i, moving one digit to the right

 Step 11: If i > 0 then print cici-1 . . . c0

7. Assume that a has n digits an-1, … , a0, and b has m digits, bm-1, … , b0, with n not necessarily

equal to m. Add an operation at the beginning of the algorithm that resets the two numbers to the

same number of digits by adding non-significant leading zeros to the shorter one. We can then

reuse the algorithm of Figure 1.2.

 If (m > n) then

 Set i to 0

 While (n+i < m)

 Add a leading zero to the number at position an+i

 Increment i by 1

 End of the loop

 Else

 If (n > m)

 Set i to 0

 While (m+i < n)

 Add a leading zero to the number at position bm+i

 Increment i by 1

 End of the loop

We have now made the two numbers equal in length. All we need do now is set the variable m to

the larger of the two values:

 Set m to the larger of m and n.

The addition algorithm in Figure 1.2 will now work correctly. Note that if m and n are equal in

value, neither of the Boolean expressions will be true, and neither of the conditional statements

will be executed.

8. It is not effectively computable if b2 – 4ac < 0 (since we cannot take the square root of a

negative number if we are limited to real numbers) or if a = 0 (since we cannot divide by 0).

9. The first algorithm (Figure 1.3(a)) is a better general purpose algorithm. If you want to

shampoo your hair any number n times you can change the 2 to n. You could even ask the

shampooer to input the desired number n of washings. For the second algorithm you would have

to rewrite the algorithm to repeat steps 4 and 5 998 more times.

10. (a) Trace:

 Step 1: I = 32, J = 20, and R = ??

 Step 2: I = 32, J = 20, and R = 12

 Step 3: I = 20, J = 12, and R = 12

 Step 2: I = 20, J = 12, and R = 8

 Step 3: I = 12, J = 8, and R = 8

 Step 2: I = 12, J = 8, and R = 4

 Step 3: I = 8, J = 4, and R = 4

 Step 2: I = 8, J = 4, and R = 0

 Step 4: Print J = 4

 (b) At Step 2 we are asked to divide I = 32 by J = 0, which cannot be done. We can fix the

problem by adding a step between Step 1 and Step 2 that says: If J = 0, then print “ERROR:

division by 0” and Stop.

11. There are 25! possible paths to be considered. That is approximately 1.5 x 1025 different

paths. The computer can analyze 10,000,000, or 107, paths per second. The number of seconds

required to check all possible paths is about 1.5 x 1025/107, or about 1.5 x 1018 seconds. That’s

roughly 1012 years: about a trillion years. This would not be a feasible algorithm.

12. A Multiplication Algorithm.

 Given: Two positive numbers a and b

 Wanted: A number c which contains the result of multiplying a and b

 Step 1: Set the value of c equal to 0

 Step 2: Set the value of i equal to b

 Step 3: Repeat steps 4 and 5 until the value of i is 0

 Step 4: Set the value of c to be c + a

 Step 5: Subtract 1 from i

 Step 6: Print out the final answer c

 Step 7: Stop

 This algorithm assumes that we know how to add two multiple-digit numbers together.

We may assume this because we have the algorithm from the book which does exactly that.

13. The algorithm will work correctly only if all three numbers are unique. If two or more

numbers are identical, none of the Boolean expressions will be true and nothing will be output.

To make this a correct solution you either have to specify in the problem statement that the three

numbers provided must all be distinct or (better) change all of the comparison operations to ≥ in

place of >.

14. This is an essay question. Students may find excellent resources on the Internet.

15. If this problem is assigned, be sure to coordinate with your computing staff ahead of time for

students to get the required information.

16. This is an essay question. Because this is a “hot” topic, a great deal of hype and hyperbole is

available, as well as useful information. It might be a good opportunity to teach students about

finding reliable sources on the Internet, and evaluating online and print source materials.

17. Like question 16 this is an essay question. Students may be familiar with Apple iCloud

services for iPhone and iPad devices, so it might be a good opportunity to relate their answers to

the services provided by Apple.

18. About 130 feet ((((700,000,000 chars/5 chars per word)/300 words per page)/300 pages per

inch)/12 inch per foot)

Discussion of Challenge Work

1. We may perform subtraction, like addition, by subtracting one column at a time, starting with

the rightmost column and working to the left. Since we know that the first number is larger than

the second one, we know that we can always borrow from columns to the left of the current one.

Therefore, if the upper number in the column (ai) is smaller than the lower, we automatically

borrow from the next column. We can do this by subtracting one from the ai+1 value of the

column to the left. If the ai+1 value were already zero, then it would become -1. This

automatically causes a borrow to occur on the next step. Here is the algorithm:

 Step 1: Set the value of i equal to the value of 0

 Step 2: Repeat steps 3 to 6 until the value of i is m

 Step 3: If bi < ai then

 Step 4: Set ci equal to ai - bi

 Otherwise (bi > ai)

 Step 5: Set ci equal to (ai + 10) – bi and replace ai+1 with ai+1 – 1

 (This amounts to a borrow of 1 from ai+1 which adds 10 to ai)

 Step 6: Add 1 to i (moving us one column to the left)

 Step 7: Print out the final answer cm-1cm-2 . . . c0

 Step 8: Stop.

 2. Students may need assistance finding or understanding other definitions from other

sources.

Chapter 2: Algorithm Discovery and Design

1. (a) Set the value of area to ½(b h)

(b) Set the value of interest to I B

 Set the value of FinalBalance to (1 + I) B

(c) Set the value of FlyingTime to M/AvgSpeed

2. Algorithm:

Step 1: Get values for B, I, and S

Step 2: Set the value of FinalBalance to (1 + I/12)12B

Step 3: Set the value of Interest to FinalBalance – B

Step 4: Set the value of FinalBalance to FinalBalance – S

Step 5: Print the message 'Interest Earned: '

Step 6: Print the value of Interest

Step 7: Print the message 'Final Balance: '

Step 8: Print the value of FinalBalance

3. Algorithm:

Step 1: Get values for E1, E2, E3 and F

Step 2: Set the value of Ave to (E1 + E2 + E3 + 2F)/5

Step 3: Print the value of Ave

4. Algorithm:

Step 1: Get values for P and Q

Step 2: Set the value of Subtotal to P Q

Step 3: Set the value of TotalCost to (1.06) Subtotal

Step 4: Print the value of TotalCost

5. (a) If y 0 then

 Print the value of (x/y)

Else

Print the message 'Unable to perform the division.'

 (b) If r > 1.0, then

 Set the value of Area to r2

 Set the value of Circum to 2 r

 Else

 Set the value of Circum to 2 r

6. Algorithm:

Step 1: Get a value for B, I, and S

Step 2: Set the value of FinalBalance to (1 + I/12)12B

Step 3: Set the value of Interest to FinalBalance – B

Step 4: If B < 1000 then Set the value of FinalBalance to FinalBalance – S

Step 5: Print the message 'Interest Earned: '

Step 6: Print the value of Interest

Step 7: Print the message 'Final Balance: '

Step 8: Print the value of FinalBalance

7. Algorithm:

Step 1: Set the value of i to 1

Step 2: Set the values of Won, Lost, and Tied all to 0

Step 3: While i < 10 do

Step 4: Get the value of CSUi and OPPi

Step 5: If CSUi > OPPi then

Step 6: Set the value of Won to Won + 1

Step 7: Else if CSUi < OPPi then

Step 8: Set the value of Lost to Lost + 1

Step 9: Else

Step 10: Set the value of Tied to Tied + 1

Step 11: Set the value of i to i + 1

 End of the While loop

Step 12: Print the values of Won, Lost, and Tied

Step 13: If Won = 10, then

Step 14: Print the message, 'Congratulations on your undefeated season.'

8. Algorithm:

Step 1: Set the value of i to 1

Step 2: Set the value of Total to 0

Step 3: While i < 14 do

Step 4: Get the value of Ei

Step 5: Set the value of Total to Total + Ei

Step 6: Set the value of i to i + 1

 End of While loop

Step 7: Get the value of F

Step 8: Set the value of Total to Total + 2F

Step 9: Set the value of Ave to Total / 16

Step 10: Print the value of Ave

9. Algorithm:

Step 1: Set the value of TotalCost to 0

Step 2: Do

Step 3: Get values for P and Q

Step 4: Set the value of Subtotal to P Q

Step 5: Set the value of TotalCost to TotalCost + (1.06) Subtotal

 While (TotalCost < 1000)

Step 6: Print the value of TotalCost

10. The tricky part is in steps 6 through 9. If you use no more than 1000 kilowatt hours in the

month then you get charged $.06 for each. If you use more than 1000, then you get charged

$.06 for the first 1000 hours and $.08 for each of the remaining hours. There are Mi – 1000

remaining hours, since Mi is the number of hours in the ith month. Also, remember that

KWBegini and KWEndi are meter readings, so we can determine the total kilowatt-hours used

for the whole year by subtracting the first meter reading (KWBegin1) from the last

(KWEnd12).

Step 1: Set the value of i to 1

Step 2: Set the value of AnnualCharge to 0

Step 3: While i < 12 do

Step 4: Get the value of KWBegini and KWEndi

Step 5: Set the value of Mi to KWEndi – KWBegini

Step 6: If Mi < 1000 then

Step 7: Set AnnualCharge to AnnualCharge + (.06Mi)

Step 8: Else

Step 9: Set AnnualCharge to AnnualCharge + (.06)1000

 + (.08)(Mi – 1000)

Step 10: Set the value of i to i + 1

 End of While loop

Step 11: Print the value of AnnualCharge

Step 12: If (KWEnd12 – KWBegin1) < 500, then

Step 13: Print the message 'Thank you for conserving electricity.'

11. Algorithm:

Step 1: Do

Step 2: Get the values of HoursWorked and PayRate

Step 3: If HoursWorked > 54 then

Step 4: DT = HoursWorked – 54

Step 5: TH = 14

Step 6: Reg = 40

Step 7: Else if HoursWorked > 40 then

Step 8: DT = 0

Step 9: TH = HoursWorked – 40

Step 10: Reg = 40

Step 11: Else (HoursWorked < 40)

Step 12: DT = 0

Step 13: TH = 0

Step 14: Reg = HoursWorked

Step 15: GrossPay = PayRate Reg

 + 1.5 PayRate TH + 2 PayRate DT

Step 16: Print the value of GrossPay

Step 17: Print the message 'Do you wish to do another computation?'

Step 18: Get the value of Again

 While (Again = yes)

12. Steps 1, 2, 5, 6, 7, and 9 are sequential operations and steps 4 and 8 are conditional

operations. After their completion, the algorithm moves on to the step below it, so none of

these could cause an infinite loop. Step 3, however, is a while loop, and it could possibly

cause an infinite loop. The true/false looping condition is “Found = NO and i 10,000.” If

NUMBER is ever found in the loop then Found gets set to YES, the loop stops, and the

algorithm ends after executing steps 8 and 9. If NUMBER is never found, then 1 is added to

i at each iteration of the loop. Since step 2 initializes i to 1, i will become 10,001 after the

10,000th iteration of the loop. At this point the loop will halt, steps 8 and 9 will be executed,

and the algorithm will end.

13. Algorithm:

 Step 1: Get values for NUMBER, T1, T10000, and N1,, N10000

 Step 2: Set the value of i to 1 and set the value of NumberFound to 0

 Step 3: While (i 10,000) do steps 4 through 7

 Step 4: If NUMBER equals Ti then

 Step 5: Print the name of the corresponding person, Ni

 Step 6: Set the value of NumberFound to NumberFound + 1

 Step 7: Add 1 to the value of i

 Step 8: Print the message NUMBER ' was found ' NumberFound 'times'

 Step 9: Stop

14. Let’s assume that FindLargest is now a primitive to us, and use it to repeatedly remove the

largest element from the list until we reach the median.

Step 1: Get the values L1, L2, . . ., LN of the numbers in the list

Step 2: If N is even then

Let M = N / 2

 Else

Let M = (N + 1) / 2

Step 3: While (N M) do steps 4 through 9

Step 4: Use FindLargest to find the location of the largest number

 in the list L1, L2, . . ., LN

Step 5: Exchange Llocation and LN as follows

Step 6: Temp = LN

Step 7: LN = Llocation

Step 8: Llocation = Temp

Step 9: Set N to N – 1 and effectively shorten the list

Step 10: Print the message 'The median is: '

Step 11: Print the value of LM

Step 12: Stop

15. This algorithm will find the first occurrence of the largest element in the collection. This

element will become LargestSoFar, and from then on Ai will be tested to see if it is greater

than LargestSoFar. Some of the other elements are equal to LargestSoFar but none are

greater than it.

16. (a) If n < 2, then the test would be true, so the loop would be executed. In fact, the test

would never become false. Thus the algorithm would either loop forever, or generate an

error when referring to an invalid Ai value. If n > 2, then the test would be false the first time

through, so the loop would be skipped and A1 would be reported as the largest value.

(b) The algorithm would find the largest of the first n – 1 elements and would not look at the

last element, as the loop would exit when i = n.

(c) For n = 2 the loop would execute once, comparing the A1 and A2 values. Then the loop

would quit on the next pass, returning the larger of the first two values. For any other value

of n, the loop would be skipped, reporting A1 as the largest value.

17. (a) The algorithm would still find the largest element in the list, but if the largest were not

unique then the algorithm would find the last occurrence of the largest element in the list.

 (b) The algorithm would find the smallest element in the list.

 The relational operations are very important, and care must be taken to choose the correct

one, for mixing them up can drastically change the output of the algorithm.

18. (a) The algorithm will find the three occurrences of "and". First in the word band, second in

the word and, and third in the word handle.

 (b) We could search for “ and ”. That is, the word itself surrounded by spaces. Note that the

word "and" is special in that it is almost always surrounded by spaces in a sentence. Other

words may start or end sentences and be followed by punctuation.

19. It would go into an infinite loop, because k will stay at 1, and we will never leave the

outside while loop. We will keep checking the 1 position over and over again.

20. Step 1: Get the value for N

 Step 2: Set the value of i to 2

 Step 3: Set the value of R to 1;

 Step 4: While (i < N and R 0) do Steps 5-6

 Step 5: Set R to the remainder upon computing N/i

 Step 6: Set the value of i to i + 1

 Step 7: If R = 0 then

 Print the message 'not prime'

 Else

 Print the message 'prime'

 (This algorithm could be improved upon because it is enough to look for divisors of N less

than or equal to N .)

21. Here we assume that we can perform "arithmetic" on characters, so that m + 3 = p, for

example. Step 4 is the difficult part that must handle the "wraparound" from the end of the

alphabet back to the beginning.

Step 1: Get the values for nextChar and k

 Step 2: While (nextChar $) do steps 3 through 5

 Step 3: Set the value of outChar to nextChar + k

 Step 4: If outChar > z then

 Set the value of outChar to (outChar -26)

 Step 5: Print outChar

22. Step 1: Get the values for k and N1, N2, …, Nk

 Step 2: Set the value of front to 1

 Step 3: Set the value of back to k

 Step 4: While (front back) do steps 5 through 9

 Step 5: Set the value of Temp to Nback

 Step 6: Set the value of Nback to Nfront

 Step 7: Set the value of Nfront to Temp

 Step 8: Set front = front + 1

 Step 9 Set back = back – 1

23. Step 1: Get the values for N1, N2, …, Nk, and SUM

 Step 2: Set the value of i to 1

 Step 3: Set the value of j to 2

 Step 4: While (i < k) do steps 5 through 11

 Step 5: While (j k) do steps 6 through 9

 Step 6: If Ni + Nj = SUM then

 Step 7: Print (Ni, Nj)

 Step 8: Stop

 Else

 Step 9: Set the value of j to j + 1

 Step 10: Set the value of i to i + 1

 Step 11: Set the value of j to i + 1

 Step 12: Print the message 'Sorry, there is no such pair of values.'

24. Set count to 0

Set sum to 0

Get a value for V

While V ≠ -1

 Set sum to sum + V

 Set count to count + 1

 Get the next value for V

End of the loop

Let’s make sure that we had at least one value so we don’t divide by 0

If (count > 0)

 Set average to sum / count

 Print the value of average

Else

 Print the message ‘I was given no input data’

Stop

25. Set adjacent to NO

Get values for V1 and V2 We can do this since we know there are at least 2 values

While (V2 ≠ -1) AND (adjacent = NO)

 If V1 = V2

 Set adjacent to YES

 Else

 Set V1 = V2

 Get a new value for V2

End of loop

Print the value of adjacent

Stop

26. We only need to make one simple change. Instead of writing

Print the value of adjacent

we change that to read:

If (adjacent = YES)

 Print the message 'Yes, the numbers ' V1 ' and ' V1 ' are adjacent.'

Else

 Print just the value of adjacent

Discussion of Challenge Work

1. The general algorithm is fairly clear, in English, in the text.

Step 1: Read values for start, step, and accuracy

Step 2: While |step| > accuracy do steps 3 through 9

Step 3: If f(start) > 0 then set FirstSign to +

Step 4: Else set FirstSign to –

Step 5: Do steps 6 through 8

Step 6: Set the value of start to start + step

Step 7: If f(start) > 0 then set the value of Sign to +

Step 8: Else set the value of Sign to –

 while (Sign = FirstSign)

Step 9: If |step| > accuracy then set the value of step to (-0.1)step

Step 10: Set the value of root to start – step/2

Step 11: Print the value of root.

2. Many excellent simulations of sorting algorithms are available on the Web, suggest students

examine them if they have questions about this algorithm.

The Find Largest algorithm given in the book always searches the whole list. First, we

should create a variation that takes, in addition to the list of values, two indices which bound

the range of the list that should be searched. Also, it is easiest to return the location of the

largest value, for use in the sort algorithm. Below is a sketch of how it should change:

 FindLargest(A, start, end)

 Step 1: Set the value of loc to start

 Step 2: Set the value of i to start + 1

 Step 3: While (i < end) do

 Step 4: If Ai > Aloc then

 Step 5: Set loc to i

 Step 6: Add 1 to the value of i

 Step 7: End of the loop

 Step 8: Return the value loc

The Selection Sort algorithm is quite simple, once we have a suitable form for the Find

Largest portion of it.

 Step 1: SelectionSort(A, n)

 Step 2: Set lastpos to n

 Step 3: While (lastpos > 1) do

 Step 4: Set biggestpos to FindLargest(A, 1, lastpos)

 Step 5: Swap Alastpos and Abiggestpos

 Step 6: Subtract 1 from lastpos

 Step 7: End of loop

3. Students should be provided with concrete leads to reference materials about non-European

mathematicians, including references to online resources.

Solutions Manual for Invitation to Computer Science 7th Edition by Schneider
Full Download: http://downloadlink.org/product/solutions-manual-for-invitation-to-computer-science-7th-edition-by-schneider/

Full all chapters instant download please go to Solutions Manual, Test Bank site: downloadlink.org

http://downloadlink.org/product/solutions-manual-for-invitation-to-computer-science-7th-edition-by-schneider/

