
19 

© 2016 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

Heat and Mass Transfer, SI Edition 

Solutions Manual 

Second Edition 

 

This solutions manual sets down the answers and solutions for the Discussion Questions, Class 
Quiz Questions, and Practice Problems. There will likely be variations of answers to the 
discussion questions as well as the class quiz questions. For the practice problems there will 
likely be some divergence of solutions, depending on the interpretation of the processes, 
material behaviors, and rigor in the mathematics. It is the author’s responsibility to provide 
accurate and clear answers. If you find errors please let the author know of them at 
<rolle@uwplatt.edu>. 

 

Chapter 2 

Discussion Questions 

Section 2-1 

1. Describe the physical significance of thermal conductivity.  
Thermal conductivity is a parameter or coefficient used to quantitatively 
describe the amount of conduction heat transfer occurring across a unit area of 
a bounding surface, driven by a temperature gradient. 

2. Why is thermal conductivity affected by temperature?  
Conduction heat transfer seems to be the mechanism of energy transfer 
between adjacent molecules or atoms and the effectiveness of these transfers is 
strongly dependent on the temperatures. Thus, to quantify conduction heat 
transfer with thermal conductivity means that thermal conductivity is strongly 
affected by temperature. 

3. Why is thermal conductivity not affected to a significant extent by material density?  
Thermal conductivity seems to not be strongly dependent on the material 
density since thermal conductivity is an index of heat or energy transfer 
between adjacent molecules and while the distance separating these molecules 

is dependent on density, it is not strongly so. 

Section 2-2 

4. Why is heat of vaporization, heat of fusion, and heat of sublimation accounted as energy 
generation in the usual derivation of energy balance equations?  

Heats of vaporization, fusion, and sublimation are energy measures accounting 
for phase changes and not directly to temperature or pressure changes. It is 
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convenient, therefore, to account these phase change energies as lumped 

terms, or energy generation. 

Section 2-3 

5. Why are heat transfers and electrical conduction similar?  
Heat transfer and electrical conduction both are viewed as exchanges of 
energy between adjacent moles or atoms, so that they are similar. 

6. Describe the difference among thermal resistance, thermal conductivity, thermal 
resistivity, and R-Values.  

Thermal Resistance is the distance over which conduction heat transfer occurs 
times the inverse of the area across which conduction occurs and the thermal 
conductivity, and thermal resistivity is the distance over which conduction 
occurs times the inverse of the thermal conductivity. The R-Value is the same as 
thermal resistivity, with the stipulation that in countries using the English unit 

system, 1 R-Value is 1 hr∙ft2 ∙0F per Btu. 

Section 2-4 

7. Why do solutions for temperature distributions in heat conduction problems need to 
converge?  

Converge is a mathematical term used to describe the situation where an 
answer approaches a unique, particular value. 

8. Why is the heat conduction in a fin not able to be determined for the case where the 
base temperature is constant, as in Figure 2-9?  

The fin is an extension of a surface and at the edges where the fin surface 
coincides with the base, it is possible that two different temperatures can be 
ascribed at the intersection, which means there is no way to determine 
precisely what that temperature is. Conduction heat transfer can then not be 
completely determined at the base. 

9. What is meant by an isotherm?  
An isotherm is a line or surface of constant or the same temperature. 

10. What is meant by a heat flow line?  
A heat flow line is a path of conduction heat transfer. Conduction cannot cross a 

heat flow line. 

Section 2-5 

11. What is a shape factor?  
The shape factor is an approximate, or exact, incorporating the area, heat flow 
paths, isotherms, and any geometric shapes that can be used to quantify 
conduction heat flow between two isothermal surfaces through a heat 
conducting media. The product of the shape factor, thermal conductivity, and 
temperature difference of the two surfaces predicts the heat flow.  
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12. Why should isotherms and heat flow lines be orthogonal or perpendicular to each 
other?  

Heat flow occurs because of a temperature difference and isotherms have no 
temperature difference. Thus heat cannot flow along isotherms, but must be 

perpendicular or orthogonal to isotherms. 

Section 2-6 

13. Can you identify a physical situation when the partial derivatives from the left and right 
(see Equations 2-85 and 2-86) are not the same?  

Often at a boundary between two different conduction materials the left and 
the right gradients could be different. Another situation could be if radiation or 
convection heat transfer occurs at a boundary and then again the left and right 

gradients or derivatives could be different. 

Section 2-7 

14. Can you explain when fins may not be advantageous in increasing the heat transfer at a 
surface?  

Fins may not be a good solution to situations where a highly corrosive, 
extremely turbulent, or fluid having many suspended particles is in contact with 
the surface. 

15. Why should thermal contact resistance be of concern to an engineer?  
Thermal contact resistance inhibits good heat transfer, can mean a significant 
change in temperature at a surface of conduction heat transfer, and can provide 
a surface for potential corrosion. 

 

Class Quiz Questions 

1. What is the purpose of the negative sign in Fourier’s law of conduction heat transfer?  
The negative sign provides for assigning a positive heat transfer for negative 
temperature gradients. 

2. If a particular 20-cm thick material has a thermal conductivity of 17 W/ m∙K, what is its 
R-value?  

The R-value is the thickness times the inverse thermal conductivity;  

� − ����� = 	ℎ��
� = (20 × 10���)/(17	W/� ∙ �) = 0.012	m ∙ K/W 

3. What is the thermal resistance of a 10-m2 insulation board, 30 cm thick, and having 
thermal conductivity of 0.03 W/m∙K?  

The thermal resistance is 

 
( ) ( ) ( )2/ 0.3 / 10 0.03 / 1.0 /x A m m W m K K Wκ∆ ⋅ = ⋅ =
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4. What is the difference between heat conduction in series and in parallel between two 
materials?  

The thermal resistance, or thermal resistivity are additive for series. In parallel 
the thermal resistance needs to be determined with the relationship 

 
5. Write the conduction equation for radial heat flow of heat through a tube that has 

inside diameter of Di and outside diameter of D0.  

   
6. Write the Laplace equation for two-dimensional conduction heat transfer through a 

homogeneous, isotropic material that has constant thermal conductivity.  

 
7. Estimate the heat transfer from an object at 400C to a surface at 50C through a heat 

conducting media having thermal conductivity of 8.5 W/m∙K if the shape factor is 30 cm.  !" = #�Δ$ = (0.3	�)(8.5	(/� ∙ �)(35℃) = 89.25	( 

8. Sketch five isotherms and appropriate heat flow lines for heat transfer per unit depth 
through a 5 cm x 5 cm square where the heat flow is from a high temperature corner to 
the four sides at a uniform lower temperature. Use one isothermal as the corner and 
another isothermal as the side of the square. 
           

     
9. If the thermal contact resistance between a clutch surface and a driving surface is 

0.0023 m2 ∙ 0C/W, estimate the temperature drop across the contacting surfaces, per 
unit area when 200 W/m2 of heat is desired to be dissipated.  

The temperature drop is 

 
10. Would you expect the wire temperature to be greater or less for a 0.14 cm dia. copper 

wire as compared to a 0.18 cm dia. copper wire, both conducting the same electrical 
current?  

( )( ) ( )
1 2 1 2/eqR R R R R= +

( )0

2
ln i

T
LQ

D D
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i
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A 0.14 cm dia. copper wire has a smaller diameter and a greater electrical 
resistance per unit length. Therefore it would be expected to have a higher 
temperature than the 0.18 cm dia. copper wire. 

 

Practice Problems 

Section 2-1 

1. Compare the value for thermal conductivity of Helium at 200C using Equation 2-3 and 

the value from Appendix Table B-4.     

Solution  

Using Equation 2-3 for helium

  From Appendix Table B-4

 

 

2. Predict the thermal conductivity for neon gas at 950C. Use a value of 3.9 Ǻ for the 
collision diameter for neon.  

Solution  

Assuming neon behaves as an ideal gas, with MW of 20, and 367K, and using Equation 2-

1 

  

 

3. Show that thermal conductivity is proportional to temperature to the 1/6th power for a 

liquid according to Bridgeman’s equation (2-6).  

Solution  

 From Bridgeman’s equation  Also, Vs (sonic velocity) ~+,- .⁄  

~ρ-1/2   the mean separation distance between molecules 01� =	 (�� .⁄ )�/2 ~ρ-2/3 so 

that               

 

40.8762 10 0.0015 / c 0.15 /x T W m K W m Kκ −= = ⋅ = ⋅

0.152 /W m Kκ = ⋅

( ) ( )
4 4 4367

8.328 10 8.328 10 18.05 10 / c
20 3.9

T K
x x x W m K

MW
κ − − −= = = ⋅

⋅Γ

( )23 23.865 10 s mx V xκ −=

2/3 1/2 1/6 1/6Tκ ρ ρ− + −=∼ ∼
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4. Predict a value for thermal conductivity of liquid ethyl alcohol at 300 K. Use the 

equation suggested by Bridgman’s equation (2-6).    

Solution  

Bridgeman’s equation (2-6) uses the sonic velocity in the liquid, +,- .⁄  , which for 

ammonia at 300 K is nearly 1.14 x 105 cm/s. The equation also uses the mean distance 
between molecules, assuming a uniform cubic arrangement of the molecules, which is +�� .⁄3  , mm being the mass of one molecule in grams, the molecular mass divided by 

Avogadro’s number. Using data from a chemistry handbook the value of xm is nearly 
0.459 x 10-7 cm. Using Equation 2-6, 

 

 

5. Plot the value for thermal conductivity of copper as a function of temperature as given 

by Equation 2-10. Plot the values over a range of temperatures from -400C to 700C.  

Solution  

Using Equation 2-10 and coefficients from Appendix Table B-8E 

� = �45 + 7($ − $8) = 393 Wm ∙ k − 0.019 Wm ∙ K� 	($ − 273K) 

This can be plotted on a spreadsheet or other modes. 

 

6. Estimate the thermal conductivity of platinum at -1000C if its electrical conductivity is 6 x 
107 mhos/m, based on the Wiedemann-Franz law. Note: 1 mho = 1 amp/volt = 1 

coulomb/s, 1 W = 1 J/s = 1 volt-coulomb.   

Solution  

Using the Wiedemann-Franz law, Equation 2-9 gives 

 

 

7. Calculate the thermal conductivity of carbon bisulfide using Equation 2-6 and compare 

this result to the listed value given in Table 2-2.   

 

 

( )23 2 43.865 10 20.9 10 / c 0.209 /s mx V x x W m K W m Kκ − −= = ⋅ = ⋅

( )( )( )8 2 2 72.43 10 6 10 173 252.2 /Lz T x V K x amp V m K W m Kκ −= ⋅ = ⋅ = ⋅
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Solution   

Equation 2-6 uses the sonic velocity in the material. This is �: =	+,- .⁄ =1.18	0	10;��/<, where Eb is the bulk modulus. The mean distance between adjacent 

molecules, assuming a uniform cubic arrangement, is also used. This is 01 =	+��/. 

where mm is the mass of one molecule; MW/Avogadro’s number. This gives 01 =
0.466	0	10�?��. then  

 

Section 2-2 

8. Estimate the temperature distribution in a stainless steel rod, 2.5 cm in diameter, that is 
1 meter long with 7.5 cm of one end submerged in water at 50C and the other end held 
by a person. Assume the person’s skin temperature is 280C, the temperature in the rod 

is uniform at any point in the rod, and steady state conditions are present.   

Solution  

Assuming the heat flow to be axial and not radial and also 50C for the first 7.5 cm of the 
rod, the temperature distribution between x = 7.5 cm and out to x = 1 m we can use 
Fourier’s law of conduction and then for 7.5 ≤ x ≤ 100 cm, identifying the slope and x-
intercept $(0) = 0.249	0 + 3.135 The sketched graph is here included. One could now 
predict the heat flow axially through the rod, using Fourier’s law and using a thermal 

conductivity for stainless steel. 

  

 

23 0

2
3.865 10 0.0021 /s

m

V
x W cm C

x
κ −= = ⋅
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9. Derive the general energy equation for conduction heat transfer through a 

homogeneous, isotropic media in cylindrical coordinates, Equation 2-19.  

Solution  

Referring to the cylindrical element sketch, you can apply an energy balance, Energy in – 
Energy Out = Energy Accumulated in the Element. Then, accounting the energies in and 
out as conduction heat transfer we can write 

                               an in energy                                

an in energy                          an in energy

                     an out energy

                       an out energy

                  an out energy

     

The rate of energy accumulated in the element. If you put the three energy in terms and 
the three out terms on the left side of the energy balance and the accumulated energy 
on the right, divide all terms by (@ +	@ 2⁄ )(AB ∙ AC ∙ A@), and take the limits as Δr →0, 
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Δz → 0, and Δθ→ 0 gives, using calculus, Equation 2-19 

 

 

10. Derive the general energy equation for conduction heat transfer through a 

homogeneous, isotropic media in spherical coordinates, Equation 2-20.  

Solution  

Referring to the sketch of an element for conduction heat transfer in spherical 
coordinates, you can balance the energy in – the energy out equal to the energy 
accumulated in the element. Using Fourier’s law of conduction 

                       an in term

                    an in term
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  an out term

           an out term
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              an out term

       
Which is the accumulated energy. Inserting the three in terms as positive on the left side 
of the energy balance, inserting the three out terms as negative on the left side of the 
balance, inserting the accumulated term on the right side, and dividing all terms by the 
quantity (@<�DBAE) ∙ A@ ∙ AB gives the following 

     
Taking the limits as Δr →0, Δθ →0, Δφ → 0 and reducing 

  
which is Equation 2-20, conservation of energy for conduction heat transfer in spherical 
coordinates. 
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11. Determine a relationship for the volume element in spherical coordinates.   

Solution  

Referring to the sketch for an element in spherical coordinates, and guided by the 

concept of a volume element gives, 

 

  
 

Section 2-3 

12. An ice-storage facility uses sawdust as an insulator. If the outside walls are 60 cm thick 
sawdust and the sideboard thermal conductivity is neglected, determine the R-value of 
the walls. If the inside temperature is -50C and the outside is 300C, estimate the heat 

gain of the storage facility per square foot of outside wall.   

Solution  

Assuming steady state conditions and that the thermal conductivity is the value listed in 

Appendix Table B-2,  

( ) ( ) ( )sinV r r rθ φ θ∆ = ∆ ⋅ ∆ ⋅ ∆
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� − ����� = ∆0� = 0.6	m0.059	W/m ∙ K = 10.17m� ∙ KW  

G"H = � ∆$∆0 = ∆$� − ����� = 30℃ − (−5℃)10.17 = 3.44	 (�� = 1.09 I	�ℎ@ ∙ J	� 

 

13. The combustion chamber of an internal combustion engine is at 8000C when fuel is 
burned in the chamber. If the engine is made of cast iron with an average thickness of 
6.5 cm between the combustion chamber and the outside surface, estimate the heat 
transfer per unit area if the outside surface temperature is 500C and the outside air 

temperature is 300C.  

Solution  

Assuming steady state one-dimensional conduction and using a thermal conductivity 
that is assumed constant and has a value from Table B-2, 

 

 

14. Triple-pane window glass has been used in some building construction. Triple pane glass 
is a set of three glass panels, each separated by a sealed air gap as shown in Figure 2-49. 
Estimate the R-Value for triple pane windows and compare this to the R-Value for single 
pane glass. Note that the air within the gap is sealed and cannot move so that it acts as 
a conducting medium only. 
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Solution  

Assume the air in the gaps do not move so that they are essentially conducting media. 

Then the R-Value is 

	� − ����� = 3(∆KL )MNO:: + 2(∆KL )OPQ = 3(8.88�R.S ) + 2(8.88T8.8�T) = 0.4658	m� ∙ UV  

The R-Value for a single pane window is  

� − ����� = W∆KL XMNO:: = 8.88�	Y
R.S	 Z[∙\

= 0.1429	m� ∙ UV	  
The ratio of the R-Value for the triple pane to the R-Value for a single pane is roughly 

324  

 

15. For the outside wall shown in Figure 2-50, determine the R-Value, the heat transfer 
through the wall per unit area and the temperature distribution through the wall if the 

outside surface temperature is 360C and the inside surface temperature is 150C.   

Solution  

The R-Value is the sum of the three materials; pine, plywood, and limestone, with 
thermal conductivity 

values obtained from Appendix Table B-2.The conversion to English units is 0.176 
m2K/W = 1 R-Value so that � − ����� = 2.62 . The heat transfer per unit area is 

The temperature distribution is determined by 
noting that the heat flow is the same through each material. For the pine,

 so that T1 at the surface between the 
pine and the plywood, is 27.10C. Similarly, to determine the temperature between the 
plywood and the limestone, again noting that the heat flow is the same as before
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so that T2 is 34.60C. This is sketched in the figure.

 

 

16. Determine the heat transfer per foot of length through a copper tube having an outside 
diameter of 5 cm and an inside diameter of 3.8 cm. The pipe contains 800C ammonia 

and is surrounded by 250C air.  

Solution   

Assuming steady state and only conduction heat transfer, for a tube cylindrical 

coordinates is the appropriate means of analysis. Then 

G"N = 2]�∆$
ln W`a P̀b X =

2]c400	W m ∙ Kb d(80℃ − 25℃)
ln( 5	cm3.8	cm) = 503,690	W mb

= 523,980	 Btu hr ∙ ftb  

 

17. A steam line is insulated with 15 cm of rock wool. The steam line is a 5 cm OD iron pipe 
with a 5 mm thick wall. Estimate the heat loss through the pipe per meter length if 
steam at 1200C is in the line and the surrounding temperature is 200C. Also determine 
the temperature distribution through the pipe and insulation.   

Solution   

Assume heat flow is one-dimensional radial and steady state. The heat flow is then the 
overall temperature difference divided by the sum of the radial thermal resistances. We 

have 
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To determine the temperature distribution through the pipe and wool insulation the 
radial heat flow will be same through the iron pipe and the wool insulation. The 
temperature at the interface between the iron pipe and the insulation is determined by

  From this the interface temperature, TpipeOd =119.9910C 

=TwoolID  The temperature in a homogeneous radial section is (@) = $8 + m�D@ . For the 
iron pipe, the two boundary conditions 1.) T = 1200C @ r = 2 cm and 2.) T = 119.9910C @ 

r = 2.5 cm can be used to solve for T(r) and resulting in two separate equations. Solving 
these two simultaneously gives that T0= 120.0280C and C = -0.040. For the iron pipe then $(@) = 120.928 − 0.040�D@ . For the wool insulation the two boundary conditions 1.) T 

= 119.9910C @ r = 2.5 cm and 2.) T = 200C @ r = 17.5 cm can be substituted into the 
equation to solve for T(r). Solving these two equations simultaneously for T0 and C gives 
that T0 = 167.07 and C = -51.385. For the wool insulation $(@) = 157.07 − 51.385�D@. 
the following sketch indicates the character of the temperature distribution.

 

 

18. Evaporator tubes in a refrigerator are constructed of 2.5 cm OD aluminum tubing with 3 
mm thick walls. The air surrounding the tubing is at -50C and the refrigerant in the 
evaporator is at -100C. Estimate the heat transfer to the refrigerant over 30 cm of 

length.   
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Solution  

Assume steady state one-dimensional radial conduction heat transfer and using a 

thermal conductivity value from Appendix Table B-2  

!" = 2]�nlnc@a @Pb d ($a − $P) = 2](236	W m ∙ Kb )(0.3	m)
ln W1.25	�� (0.95	cm)b X c−5℃ − (−10℃)d

= 8,105	W 

 

19. Teflon tubing of 4 cm OD and 2.7 cm ID conducts 1.9 W/m when the outside 
temperature is 800C. Estimate the inside temperature of the tubing. Also predict the 

thermal resistance per unit length.  

Solution  

Assume steady state one-dimensional radial conduction heat transfer. Reading the 
thermal conductivity from Appendix Table B-2, applying the Fourier’s Law of conduction 

for radial heat flow  and solving for Ti 

 

and the thermal resistance per unit of length is

 

 

20. A spherical flask, 4 m in diameter with a 5 mm thick wall, is used to heat grape juice. 
During the heating process the outside surface of the flask is 1000C and the inside 
surface is 800C. Estimate the thermal resistance of the flask; the heat transfer through 
the flask, if it is assumed that only the bottom half is heated; and the temperature 
distribution through the flask wall.  

Solution  

Assume steady state one-dimensional, radial conduction heat transfer with constant 
properties. Since only the bottom half is heated you need to recall that a surface area of 

( )
( )0

0

2
1.9W/ m
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i

l
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T T
r r

q
πκ

= − =
i
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a hemisphere is 2πr2 rather than 4πr2. Then 

 

The thermal resistance for the full flask would be 

 

For such a small thermal resistance, the temperature distribution will be nearly constant 
through the wall. Yet for the bottom half of the flask we can write

        or

 

 
21. A Styrofoam spherical container having a 2.5 cm thick wall and 60 cm diameter holds 

dry ice (solid carbon dioxide) at -650C. If the outside temperature is 150C, estimate the 
heat gain in the container and establish the temperature distribution through the 2.5-

cm wall.   

Solution   

Assuming steady state one-dimensional radial conduction heat transfer and using the 

thermal conductivity value for Styrofoam from Appendix Table B-2 

!" = 4]�1@P − 1@a
($a − $P) = 4]c0.029	W m ∙ Kb d10.275	m − 10.3	m c15℃ − (−65℃)d = 96.2	W 

The temperature distribution for T(r) is  

$(@) = −65℃ + 96.2	(4]c0.029	( � ∙ �b d o 10.275	m − 1@p
= −65℃ + 264.11 o 10.275	m − 1@p 

 where r is in meters. 
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22. Determine the overall thermal resistance per unit area for the wall shown in Figure 2-51. 
Exclude the thermal resistance due to convection heat transfer in the analysis. Then, if 
the heat transfer is expected to be 19.0 W/m2 and the exposed brick surface is 100C, 
estimate the temperature distribution through the wall.   

 

Solution  

The overall thermal resistance will be the sum of the thermal resistances of the three 

components,  

Since there is expected to be 19.0 W/m2 of conduction heat transfer through each of the 
three components, the temperatures at the inside surface and the two interface 

surfaces are  which is the 
inside surface temperature. The temperature between the concrete and the Styrofoam 

is  
and the temperature between the Styrofoam and the brick facing is

 

 

23. Determine the thermal resistance per unit length of the tubing (nylon) shown in Figure 
2-52. Then predict the heat transfer through the tubing if the inside ambient 
temperature is -100C and the outside is 200C.  

20.3 0.025 0.1
1.192 /

1.6 / 0.029 / 0.7 /
V

m m m
R m K W

W m K W m K W m K
= + + = ⋅

⋅ ⋅ ⋅

( ) ( )2 2 0 0 019.0 / 1.192 C/ 10 32.6insideT W m m W C C= ⋅ + =

( )( )0 2 2 0 032.6 19 / 0.1875 C/ 29.0c styr inside concreteT T R C W m m W CQ− = − ⋅ = − ⋅ =
i

( )( )0 2 2 0 0

0 10 19 / 0.143 / 12.7styr brick brickT T R C W m m C W CQ− = + ⋅ = + ⋅ =
i
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Solution  

The nylon tubing has properties of Teflon, the inside diameter is 40mm, and the outside 
diameter is 60mm. Then 

 

Assuming steady state one-dimensional radial conduction heat transfer, 

 

 

24. Determine the temperature distribution through the wall of Example Problem 2-5 if the 
thermal conductivity is affected by temperature through the relationship 

 � = 0.638 + 0.00270	$	V∙qYYr∙U  

where T is in Kelvin.  

Solution  

In Example 2-5 the wall is 40 cm thick, has a temperature of 120C on one side and 400F 
on the other. Assuming steady state one-dimensional conduction heat transfer  

G"H = −� s$s0 = −(0.638 + 0.00270	$) s$s0 

separating variables and integrating 

( ) ( ) ( )
( )

0 0ln ln ln 60 40
0.184 /

2 2 2 0.35 /

i i

TL

D D r r mm mm
R m K W

W m Kπκ πκ π
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G"Hts0 = G"H(40	��) = −t(0.638 + 0.00270	$)s$
= −9.2(12 − 40) − 12 (0.00270)(12� − 40�) 

and then solving for the heat transfer per unit area gives 

G"H = 140 u257.6	( ∙ ���� + 1.96( ∙ ���� v = 6.49	 (�� 

 

25. Determine the temperature distribution through a slab if κ = aT0.001, T is in Kelvin, and a 
is a constant. Then compare this to the case where κ = a.  

Solution  

If the variables are now separated and integrating 

  defining a boundary condition of T 

= T0 @ x = 0 allows the constant C to be defined as   the temperature 

distribution is then              

For κ = a and T = T0 @ x = 0  

 

Section 2-4 

26. Show that $(0, w) = (�	<�D	x0 + y	�z<	x0)(���{| + s�{|) satisfies Laplace’s equation 
}r4(K,|)}Kr + }r4(K,|)}|r = 0.  

Solution   

Taking first and second derivatives              

and    taking the first and second 
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partial derivative with respect to y give, for the second derivative that 

 summing these last two equations gives 
Laplace’s equation.  

 

27. For the wall of Example Problem 2-11, determine the heat transfer in the y-direction at 
3 feet above the base. Then plot the temperature distribution at this level. 

Solution   

The solution to the wall temperature of example 2-11 is   
The heat transfer in the y-direction can be determined,

For W = 1 ft, L = 

3 ft, and y = 3 ft this equation can then be finalized

For a thermal conductivity of 0.925Btu/hr∙ft oF from Appendix Table B-2E, the heat 
transfer is about 4.00 Btu/hr. The temperature distribution at y = 3 ft for 0 ≤ x ≤ 3ft is

 

 

28. Write the governing equation and the necessary boundary conditions for the problem of 
a tapered wall as shown in Figure 2-53.  
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Solution  

For steady state conduction in two-dimensions the governing equation will be 
}r4}Kr +}r4}|r = 0.  Calling Tg the ground temperature the following four (4) boundary conditions 

may be used: 

B.C. 1  $(0, 0) = 	$M							Jz@	0 < 0	 ≤ � 

B.C. 2  $(�, w) = 	$M							Jz@	0 ≤ w	 ≤ n 

B.C. 3  $(0, n) = 	$8							Jz@	� − � ≤ 0	 ≤ � 

B.C. 4  $(0, w) = 	$8							Jz@	0	 ≤ 	w	 ≤ n				�Ds		w = 	 (n � − �)⁄ 0 

 

29. Write the governing equation and the necessary boundary conditions for the problem of 
a heat exchanger tube as shown in Figure 2-54.   
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Solution   

A heat exchanger tube with convection heat transfer at the inside and the outside 
surfaces can be analyzed for steady state one-dimensional radial heat transfer with the 

equation  and with, as a possibility, the following two boundary 

conditions 

B.C. 1 G"Q = 2]@PℎP($P − $) @ r = ri 

B.C. 2 G"Q = 2]@8ℎ8($ − $8) @ r = r0 

 

30. Write the governing equation and the necessary boundary conditions for the problem of 
a spherical concrete shell as sketched in Figure 2-55.     

 

Solution   

For steady state one-dimensional radial conduction heat transfer in spherical 
coordinates the governing equation for analyzing this and two suggested boundary 

conditions are  

B.C. 1 T = T0  @ r = r0 

B.C. 2 T = Ti  @ r = ri 

 

31.  Determine the Fourier coefficient An  for the problem resulting in a temperature 

distribution of $(0, w) = ∑ ������|/�<�D(D]0/n)���8  involving a boundary 

temperature distribution given by $(0, 0) = �z<(]0/n) for 0 ≤ x ≤ L.   
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Solution  

The Fourier coefficient is defined as 

  and using an identity

For n = 0 the Fourier coefficient, A0 becomes     
For n = 1 the Fourier coefficient becomes

     For n = 2, the Fourier coefficient is

For 

n =4   For any even integer of n, such as 6, 8, 10, etc. the Fourier 

coefficient is  By reviewing the first coefficient, A1 it turns out 
that for all odd integers of n, such as 3, 5, 7, 9, 11, etc, the Fourier coefficient is zero, 0. 

 

32.  Determine the Fourier coefficient An for the problem involving a boundary temperature 

distribution given by $(0, 0) = 	$8 W1 −	K�X and where the solution to the temperature 

field is $(0, w) = ∑ ������|/�<�D(D]0/n)���8 .   

Solution 

   By inspection A0 = 0 for n = 0. 

For n = 1 
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Using integral tables in Appendix Table A-4 

For n 

even, such as 2, 4, 6, 8, . . . . 

 and for n odd, such as 3, 5, 7, 9, . . . . 

 which is the same as for n even 

 

33.  Plot the Bessel’s function of the first kind of zero and first order, J0 and J1, for arguments 

from 0 to 10.   

Solution  

Appendix Table A-10-1 tabulates the Bessel’s Function of arguments from 0 to 10. The 

plot is shown.  
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34.  Plot the Bessel’s Function of the second kind of zero and first order, Y0 and Y1 for 

arguments from 0 to 10.   

Solution  

The Bessel’s Functions of the second kind of zeroth and first order are tabulated in 
Appendix Table A-10-1, plotted in Appendix Figure A-10-2, and here shown.

 

 

35.  A silicon rod 20 cm in diameter and 30 cm long is exposed to a high temperature at one 
end so that the end is at 4000C whereas the remaining surfaces are at 600C. Estimate the 

centerline temperature distribution through the rod.    
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Solution   

The ratio of the length to radius, L/R is 3.0 so, using Figure 2-22 the following values can 

be read: 

x/L (T – T0)/(Tf – T0) T(x) 0Celsius 

0.0 0.000 60.00 

0.2 0.002 60.68 

0.4 0.020 67.20 

0.6 0.086 90.96 

0.8 0.360 189.6 

1.0 1.000 400.0 

The values for T(x) are computed from the equation   

  

 

36.  A Teflon rod 15 cm in diameter and 60 cm long is at 1100C. It is then exposed at one end 
to cool air so that that end reaches 250C whereas the cylindrical surface cools to 650C. 
The other end remains at 1100C at steady state. Determine the expected temperature 

distribution.   

Solution  

To determine the centerline temperature distribution you can use Figure 2-22b. Since 
the L/R value is 60/7.5 = 8 we need to extrapolate on the graph for approximate values. 
Also, the centerline temperature will not change significantly for values of z/L less than 
about 0.6. In addition, a principle of superposition will provide the rigorous solution. 
Yet, since the axial lengths are such that the distance from the 1100C end will be the 
total length minus the length from the 27oF end, CRR8 = n −	C�? . Since the 
temperature of the center of the rod, axially, does not change significantly from the 
650C (T0) for z/L ≤ 0.6, we can just consider each end separately. For the model of a rod 
at 65oC with one end at 250C we have, say at z/L of 0.8, from Figure 2-22b that (T – 

T0)/(250F – T0) = (T – 65)/(25 – 65) = (T – 27)/(-40) has a value of about 0.15. Therefore, 
at z = 12 cm (corresponding to z = 48 cm from the 650C end) from the 25oC end the 

centerline temperature is $(12	cm, 0) = (0.15)(25 − 65) + 65 = 5958C). At say z = 21 
cm (0.4 m from the 65oC end), z/L = 0.65, and from Figure 2-22b, (T – T0)/(250F – T0) ≈ 

( )0 00

0

(x,0) 400 60 60
f

T T
T C C

T T

 −
= − +  − 
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0.03 and then the centerline temperature at 21 cm from the 250C end is $(21	cm, 0) =(0.03)(25 − 65) + 65 = 64.48C . Similarly, for the end at 1100C with the rod at 650 C, 
at z/l = 0.8, corresponding to 12 cm from the 1100C end, the centerline temperature is $(12	cm, 0) = (0.15)(110 − 65) + 65 = 72℃). At z/L = 0.65 (corresponding to 21 cm 
from the 110oC end) the centerline temperature is $(21	cm, 0) = (0.03)(110 − 65) +65 = 66.4℃   

 

Section 2-5 

37.  A water line of 5-cm diameter is buried horizontally 1.2 m deep in earth. Estimate the 
heat loss per foot from the water line if water at 100C flows through the line and the 
outside temperature of the line is assumed to be 100C. The surface temperature of the 
earth is -300C.  

Solution  

Using the shape factor from Table 2-3, item 8, where L » r 

# = 2]n
cosh�R �@ =

2]n
cosh�R 1.2	m2.5 × 10��m

= 2]n4.564 

The thermal conductivity of earth is about 1.5 W/m∙K from Appendix Table B-2 so that 

the heat transfer per unit length is 

G"N = #�∆$(1/n) = W ��S.T;SX W1.5	 VY∙UX (40℃) ≈ 81VY  

 

38.  A chimney is constructed of square concrete blocks with a round flue as shown in Figure 
2-56. Estimate the heat loss through the cement blocks per meter of chimney if the 

outer surface temperature is -100C and the inner surface temperature is 1500C.       
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Solution   

Assuming steady state conduction and using the shape factor from Table 2-3, item 4, the 
heat loss can be estimated. From Appendix Table B-2 the thermal conductivity of 

concrete may be taken as 1.4 W/m∙K so that  
The heat loss can then be calculated from

 

 

39.  Nuclear waste is placed in drums 50 cm in diameter by 100 cm long and buried in sand. 
Water lines are buried adjacent to the drums to keep them cool. The suggested typical 
arrangement is shown in Figure 2-57. Estimate the heat transfer between a drum and 

the water line.   

 

 

Solution   

Assume steady state, infinite media, and all heat transfer occurs between the 100 cm 
long drum and an adjacent 10 cm long water line. Using, item 11 from Table 2-3 with r = 
r1/r2 = 25/5 = 5, and L = 50 cm/5 cm = 10, gives

Assuming dry sand with a thermal 
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conductivity from Appendix Table B-2 of 0.3 W/m∙K, the heat transfer is

 

 

40.  Steel pins are driven into asphalt pavement as shown in Figure 2-58. Estimate the heat 

transfer between a pin when it is at 150C and the surface when it is at 450C.   

 

Solution  

Assume steady state conduction. Using a value of 0.062 W/m∙K for the thermal 
conductivity of asphalt from Appendix Table B-2, a uniform pin temperature of 15oC and 

the asphalt surface is 45oC, 

!" = #�Δ$ = 2]n
ln 2n� �Δ$ = 2](0.45	m)

ln 2(0.45	m)0.025	m
	o0.062 Wm ∙ Kp (45℃ − 15℃)

= 1.47	W 

 

41.  A heat treat furnace sketched in Figure 2-59 has an inside surface temperature of 
12000C and an outside surface temperature of 600C. If the walls are assumed to be 
homogeneous with thermal properties the same as asbestos, estimate the heat transfer 

from the walls, excluding the door.   

( ) ( ) ( )2.336 0.3 1 135 94.6
W

S L T m K W
m K

Q κ  = ∆ = = ⋅ 

i
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Solution  

The heat transfer between the inside and the outside is !" = 	!"�a{ +	!"-a��a1 +!"-O�� + 2!":P�� + 4!":P����M� + 2!" -O����M� + 2!"�{QPM����M�: + 4!"�aQ��Q: . All of these 

can be modeled with shape factors from Table 2-3. The first four terms are just one-
dimensional conduction through a sheet, or plate. The next three are edges and the last 

is a corner. Combining all this 

         
substituting the thermal conductivity, the thickness Δx , and the temperature difference

 

 

42. A small refrigerator freezer, 40 cm x 40 cm x 45 cm outer dimensions, has an inside 
surface temperature of -100C and an outside surface temperature of 250C. If the walls 
are uniformly 7.5 cm thick, homogeneous, and with thermal properties the same as 

Styrofoam, estimate the heat transfer through the walls and door of the refrigerator.  

Solution   

Using shape factor methods we can list 

 

The thermal conductivity of Styrofoam is 0.029 W/m∙K, the temperature difference is 
35oC. The first five terms are just heat transfer through a flat plate, the next three are 

edges, and the last is a corner. Using items 1, 17, and 18 from Table 2-3 we get  

230 65 30 65 30 40 2 40 65
T

x cm x x x x
x

Q
κ∆

 = + + + + ∆

i

( ) ( ) ( )( ) ( ) ( ) ( ) ( )4 0.559 65 2 0.559 30 2 0.559 40 4 0.15 15Tκ∆ + + +  

1634.8WQ =
i

/
2 4 4 4 8

door back top bottom side edge upedge back frontedge corner
Q Q Q Q Q Q Q Q Q Q= + + + + + + + +
i i i i i i i i i i
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!" = �Δ$
Δ0 �0.25 × 0.25	cm� + 0.25 × 0.25	cm� + 0.25 × 0.3	cm� + 0.25 × 0.3	cm�

+ 2 × 0.25 × 0.3	cm�	� + �∆$(0.559)(4 × 0.3 + 4 × 0.25 + 4 × 0.25)+ �∆$(8 × 0.0125 ∗ 0.075) 
The total heat transfer is then 

!" = 10.3	( 

 

43.  Using graphical methods, estimate the temperatue distribution and the heat transfer 
per meter depth between the two surfaces at the corner shown in Figure 2-60. Notice 

that the scale is 1 to 8, or that the figure is only one-eighth the actual size. 

 

Solution  

The sketch shown shows that there are 11 heat flow paths, M = 11, and 4 temperature 
steps, N = 4. Thus, the shape factor is roughly M/N = 2.75 and the heat transfer is

 

 

 

( ) ( )( )2.75 0.029 / 110 8.7725 /S T W m K K W mQ κ= ∆ = ⋅ =
i
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44.  Using graphical methods, estimate the temperature distribution through the phenolic 
disk surrounding the silicon chip sketched in Figure 2-61. Then estimate the heat 
transfer per millimeter of depth. 

  

Solution  

Here we have that the shape factor is the heat flow paths, M, divided by the 
temperature steps, N, so that S = M/N. From the sketch shown there are about 25 heat 
flow paths and 4 temperature steps. Using a thermal conductivity of 0.35 W/m∙K for 

nylon as an approximation for phenolic from Appendix Table B-2, we have 

G"N = #�Δ$ = 254 o0.35 Wm ∙ Kp (80℃ − 25℃) = 120.3Wm 

 

 

45.  Using graphical techniques estimate the temperature distribution through the earth 
around the electrical power line shown in Figure 2-62. Then estimate the heat transfer 
necessary between the line and the ground surface for steady state conditions. Express 
your answer in W/m. 
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Solution  

The temperature distribution and the heat transfer can be approximated with a sketch 
of the heat flow lines and isotherms. These two sets of lines need to be orthogonal or 
perpendicular at all times and the spacing between adjacent isotherms and heat flow  
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lines need to approximate a square. The Shape factor, S, will be the ratio of the heat 
flow paths, M, to the isotherms, N. The sketch shows a possible approximate solution 
where the temperature steps or isotherms is seven (7) and the number of heat flow 
paths is twenty seven (27). Then

 

Notice that the shape factor is 27/7 = 3.86, which is a value in close agreement with 
item 8 of Table B-3 for a buried line, 

 

 

46.  Using graphical techniques, estimate the temperature distribution through the cast iron 

engine block and head shown in Figure 2-63.  

   

Solution   

Referring to the sketch of the piston-cylinder and assuming symmetry, there are five (5) 
isothermal steps so N = 5. Also there are estimated to be twenty-two (22) heat flow 
paths for one half the cylinder for heat exchange between the cylinder at 315oC and the 

( )27
0.52 20 40.1

7l

M W W
S T T K

N m K m
q κ κ  = ∆ = ∆ = = ⋅ 

i

1 1

2 2
4.77

4
cosh cosh

2

S
Y

R

π π
− −

= = =



54 

© 2016 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

surroundings at 70oC. From Appendix Table B-2 the thermal conductivity for cast iron 

may be taken as 39 W/m∙K. Then the heat transfer is  

G"Q = ���Δ$ = o39	 Wm ∙ Kp o225 p (315℃ − 70℃) = 42042	 Wm ∙ radious 

and if we assume an effective radius of 0.09 m and rotate the 22 heat flow paths 
through one revolution, 2πr, then the heat transfer will be 

!" = 2]@������P��G"Q = 2](0.09	m) o42042	Wmp = 23,774	W 

 

47.  A Bunsen burner is used to heat a block of steel. The surfaces of the steel may be taken 
as 500C except on the bottom, where the burner is heating the block. Figure 2-64 shows 
the temperature profile at the bottom surface and the overall configuration of the 
heating process. Using graphical techniques, estimate the temperature profile through 

the block and the heat transfer through the block.  
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Solution  

 

Using graphical techniques requires that a web of approximately square elements are 
formed between adjacent heat flow lines and isotherms. An approximate solution is 
shown, noting that the 8500C is assumed to be in the block. The number of heat flow 
paths for one-half the block is nine (9) and the number of isotherms is five (5). Assuming 
a carbon steel the thermal conductivity is taken as 60.5 W/m∙K from Appendix Table B-
2. Since the block is 25 cm square

 

 

Section 2-6 

48.  Estimate the heat transfer from the fin shown in Figure 2-65. Write the necessary node 

equations and then solve for the temperatures. Assume the fin is aluminum.    

( ) ( )9
60.5 0.25 850 50 21.78

5

M W
L T m K kW

N m K
Q κ    = ∆ = − =   ⋅   

i
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Solution 

   

Referring to the sketch, assuming symmetry so that only 9 nodes need to be identified 
and using node neighborhoods of 2.5 cm squares (Δx = Δy = 2.5cm), and assuming the 
temperature of node 5 is 1600C the node equations can be written for steady state 
conduction two-dimensional heat transfer. The thermal conductivity of aluminum is 236 
W/m∙K from Appendix Table B-2. For node 1:

 substituting into this node 

equation, for the Temperature matrix 

( )5 1 2 1
1 0

2 2 2

T T T Ty x y
h T T

x y
κ κ ∞ ∞

 − −∆ ∆ ∆    + + − =     ∆ ∆      
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49. Write the node equations for the model of heat transfer through the compressor 
housing section shown in Figure 2-66. Then solve for the node temperatures by using 
EES, Mathcad, or MATLAB.   

 

Solution   

Referring to Figure 2-66, which is a scale 1 to 6, the inner radius is assumed to be 21 cm 
and the outer radius is then 30 cm. The housing is cast iron so that the thermal 
conductivity is 39 W/m∙K from Appendix Table B-2 and assuming that the slots have 
quiescent fluid at with a thermal conductivity of 1 W/m∙K, the node equations may be 
written out. Referring to the following sketches some of the nodes are identified, others 

need to be to be inferred, and node 1 is shown in some detail.  
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Node 1 neighborhood. The angular displacement between nodes is 11.250 or 0.196 
radians. For node 1

Substituting the thermal conductivity, convective heat transfer coefficient, and radius 

change  which is the equation for 
node 1 

An energy balance for node 2 gives

 or  which is the equation for 
node 2. An energy balance of the heat flows to each of the nodes can be made and the 
following equations result                      

( )( )
( ) ( )( ) ( )( ) ( )02 1
5 1 0 1

0.196 0.285 0.196 0.31
35 0

2 0.196 0.3 2 2

rad m mT Tr
T T h C T

m r
κ κ

 −∆  − + + − =  ∆   

( ) ( ) ( )5 1 2 1 19.95 36.3 5.292 35 0T T T T T− + − + − =

( )
( ) ( )6 2 3 21 2

0.196 0.285 0.196 0.255
0

0.196 0.27 2 2

m mT T T TT T
r

m r r
κ κ κ

     − −−   ∆ + + =          ∆ ∆       

( ) ( ) ( )6 2 1 2 3 222.1 36.309 32.487 0T T T T T T− + − + − =
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t which is the equation for 

node 3,    which is the equation 
for node 4. After applying energy balances to all of the 20 nodes the following set of 

equations result  

                          51.542$R − 36.3$� − 9.95$; = 185.22  

                      90.896$� − 36.3$R − 22.1$T − 32.487$2 = 0 

86.024$2 − 32.487$� − 28.665$S − 24.872$? = 0 

                       50.695$S − 28.665$2 − 14.21$¤ = 2346  

        103.084$; − 9.95$R − 72.6$T − 9.95$¥ = 370.44 

     142.077$T − 22.1$� − 72.6$; − 36.32$? − 11.057$R8 = 0 

130.96$? − 24.87$2 − 36.32$T − 57.33$¤ − 12.44$RR = 0 

                      101.39$¤ − 14.21$S − 57.33$? − 14.21$R� = 4692 

103.084$¥ − 9.95$; − 72.6$R8 − 9.95$R2 = 370.44 

        94.757$R8 − 11.057$T − 72.6$¥ − 0.043$RR − 11.057$RS = 0 

82.253$RR − 12.44$? − 0.043$R8 − 57.33$R� − 12.44$R; = 0 

101.39$R� − 14.21$¤ − 57.33$RR − 14.21$RT = 4692 

                      103.084$R2 − 9.95$¥ − 72.6$RS − 9.95$R? = 370.44 

22.114$RS − 11.057$R8 − 72.6$R2 − 0.043$R; − 11.057$R¤ = 0 

82.253$R; − 12.44$RR − 0.043$RS − 57.33$RT − 12.44$R¥ = 0 

101.39$RT − 14.21$R� − 57.33$R; − 14.21$�8 = 4692 

                       51.542$R? − 9.95$R2 − 36.3$R¤ = 185.22  

        47.3785$R¤ − 11.057$RS − 36.3$R? − 0.0213$R¥ = 0 

41.126$R¥ − 12.44$R; − 0.0213$R¤ − 28.665$�8 = 0 

                         50.695$�8 − 14.21$RT − 28.665$R¥ = 2346  

With this set of equations the temperatures can be determined. Using Mathcad, noting 
that the results are tabulated in the final column with node 1 being listed as 0, node 2 as 

1, and so on. 

( ) ( ) ( )7 3 2 3 4 324.872 32.487 28.665 0T T T T T T− + − + − =

( ) ( ) ( )8 4 3 4 414.21 28.665 7.82 300 0T T T T T− + − + − =
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; 
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50. Write the node equations for describing heat transfer through the buried waste shown 
schematically in Figure 2-67. Notice that there is energy generation that occurs due to a 
pyrolytic reaction of the waste (slow chemical reaction) and that there are boundaries 

that require reference to Table 2-6. 
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Solution  

For doing a finite difference analysis the following grid may be used. Then the heat from 

the waste mass per unit depth (1 m) is ,"M = 30	 
( ��⁄ (0.2�)� = 1.2	
(. Estimate 

that the power or heat to node 1 is 0.6 kW and 0.3 kW to node 2. Using a thermal 
conductivity of 0.52 W/m∙K for earth or soil from Appendix Table B-2, and utilizing 
symmetry in the x-direction, one-half of the neighborhood for node 1 will be 0.05 m 

wide and   or, for node 1

 Similarly, for the remaining nodes,

  which is for node 2, 

 

3 1 2 1 600 0
2 2

T T T Tx y
W

y x
κ κ

 − −∆ ∆     + + =     ∆ ∆     

( ) ( )( )3 1
2 10.52 0.26 600 0

2

T T
T T W

−  + − + = 
 

( ) ( ) ( )( )1 2 5 20.26 0.52 300 0T T T T W− + − + =
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  which is the node equation for 

node 3  

 

 

 

 

 

 

 

51. Write the node equations for determining the temperature distribution through the cast 
iron lathe slide shown in Figure 2-68. Notice that the sliding surface is assumed to be 
adiabatic and that there are irregular boundary profiles. 

 

 

 

 

 

 

( ) ( ) ( ) ( ) ( ) ( )1 3 6 3 4 30.26 0.26 0.52 0T T T T T T− + − + − =

4 3 2 5 74 0T T T T T− − − − =

0

7 6 4 84 12T T T T C− − − =

0

8 7 5 94 12T T T T C− − − =

0

9 82 12T T C− =

0

6 3 7

1
3 6

2
T T T C− − =
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Solution   

A proposed node layout is shown

 

The node neighborhoods are A0 = Aw = 2.5	��, assume the hole has air at 30oC with a 
convective heat transfer coefficient of 10.4 W/m2∙0C, and the thermal conductivity for 
cast iron may be taken as 39 W/m∙0C from Appendix Table B-2. Applying an energy 
balance to node neighborhood 1, the following equation results   

�($� − $R) + �($T − $R) +Δ0 o3154.6 (��p = 0 

Substituting for thermal conductivity and node neighborhood size, 

2$R − $� − $T = 2.08¦ 

For nodes 2 through 6 	 3$� − $2 − $? = −15.78¦ 

     	1.044$; − $S = 3.58¦ 

     	2$T − $R − $? − $R8 = 17.8 

Nodes 7, 8, 11, and 12 require some adjusting. Referring to the sketch for node 7 
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The energy balance can be approximated by 

 

�Δw
Δ0 ($T − $?) + �Δw

Δ0 ($� − $?) + � Δw2Δ0 ($¤ − $?) + � Δ02Δw ($RR − $?)
+ ℎ� ]2 o∆02 p (30℃− $?) = 0 

which becomes       3.017$? −	$T −	$� − 0.5$¤ − 0.5$RR = 0.57  

Similarly, for node 8   3.017$¤ −	$� −	$¥ − 0.5$? − 0.5$R� = 0.57 

And for nodes 11 and 12 3.017$RR −	$R8 −	$R; − 0.5$R� − 0.5$? = 0.57 

                     3.017$R� −	$RT −	$R2 − 0.5$RR − 0.5$¤ = 0.57 

The remaining node equations are straightforward energy balances and are, 

For node 9  33.022$¥ −	$S −	$¤ − $R2 = −536.28C 

For node 10  3$R8 −	$T −	$RR − $RS = 0 

For node 13  33.022$R2 −	$¥ −	$R� − $R? = −536.28C 

For node 14  3$RS −	$R8 −	$R; − $�8 = 0 

For node 15  4$R; −	$RR −	$RS − $RT −	$�R = 0 

For node 16  4$RT −	$R� −	$R; − $R? −	$�� = 0 

For node 17  3.511$R? −	$R2 −	$RT − $�2 −	0.5$R¤ = 0.34℃ 

For node 18  2.022$R¤ −	$R? −	$R¥ − $�S = 18.5℃ 

( ) ( ) ( ) ( ) ( )0

6 7 2 7 8 7 11 7 790 0
2 2 2 2

y y y x x
T T T T T T T T h F T

x x x y

π
κ κ κ κ ∞

∆ ∆ ∆ ∆ ∆ − + − + − + − + − = ∆ ∆ ∆ ∆  



66 

© 2016 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

For node 19  1.533$R¥ − 	0.5$R¤ − $�; = 0.49℃ 

For node 20  2$�8 −	$RS − $�R = 0 

For node 21  3$�R −	$R; −	$�8 − $�� = 0 

For node 22  3$�� −	$RT −	$�R − $�2 = 0 

For node 23  3$�2 −	$R? −	$�� − $�S = 0 

For node 24  3$�S −	$R¤ −	$�2 − $�; = 0 

For node 25  2.022$�; −	$R¥ −	$�S = 0.72℃ 

 

52.  A concrete chimney flue is surrounded by a Styrofoam insulator as shown in Figure 2-69. 
Construct an appropriate grid model and then write the node equations needed to 
determine the temperature distribution.   

 

Solution  

Assume symmetry for the chimney so that only one quarter of the section needs to be 

considered, as shown in the sketch 
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Writing the energy balance for node 1   

 

Which can be reduced to 2$R − 0.5$; − $� = 658m 

Fore node 2   4$� − $R −	$T − $2 = 1308m 

For node 3   4$2 − $� − $S −	$? = 1308m 

For node 4   2. 25$S − $2 − $¤ = 32. 58m 

For nodes 5 through 9 the Styrofoam impacts the energy balance so 

  Also, since the 
boundary temperature between the Styrofoam and the concrete is not yet known we 

write  Solving this equation for Ts 
and substituting back into the node equation gives 

   o1.5 +	 L§¨©Lª«¬­	L§¨©p$; − 0.5$R − $T 	= 	 L§¨©Lª«¬­L§¨© (308) 
For node 6  o3 +	 L§¨©Lª«¬­	L§¨©p$T − $; − $� 	− 	$? 	= 	 L§¨©Lª«¬­L§¨© (308) 
For node 7  o3 +	 L§¨©Lª«¬­	L§¨©p$? − $¤ − $T −	$2 	= 	 L§¨©Lª«¬­L§¨© (308) 

5 11 2 1130
0

2 2
con con con

T TT T Tx x
y

y x y
κ κ κ

   −− −∆ ∆ + ∆ + =    ∆ ∆ ∆    

1 5 6 5 30
0

2 2 2
con con sty

T T T Tx x T
y

y x y
κ κ κ

  − −∆ ∆ − + ∆ + =    ∆ ∆ ∆    

5

30 5

30

2 2 2 2

s s
con sty

C node

T T Tx x

y y
Q κ κ

−

   − −∆ ∆
= =   ∆ ∆   

i
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For node 8  o3 +	 L§¨©Lª«¬­	L§¨©p$¤ − $? − $S 	− 	$¥ =	 L§¨©Lª«¬­L§¨© (308) 
For node 9  o1 +	 L§¨©Lª«¬­	L§¨©p$¥ − $¤ 	= 	 L§¨©Lª«¬­L§¨© (308) 

 

53. Consider the chimney flue of Figure 2-69. If the Styrofoam is removed and the outer 
boundary condition is the same, write the necessary node equations and solve for the 
node temperatures. What is the heat transfer through the chimney flue?        

Solution   

Using the same node arrangement as for Problem 2-52 and referring to the sketch, the 

node equation for node 1 is  2$R − 0.5$; − $� = 658m 

For node 2  4$� − $R − $2 	−	$T 	= 1308m 

For node 3  4$2 − $� − $S 	− 	$? 	= 1308m 

For node 4  2.25$S − $2 	− 	$¤ 	= 32. 58m 

For node 5  2.5$; − 0.5$R 	− 	$T 	= 158m 

For node 6  5$T − $� − $; 	− 	$? 	= 608m 

For node 7  5$? − $2 − $T 	− 	$¤ 	= 608m 

For node 8  5$¤ − $S − $? 	− 	$¥ 	= 608m 

For node 9  3$¥ 	−	$¤ 	= 608m 

The heat transfer can be approximated by the equation 

8c!"R�; + !"��T + !"2�? + !"S�¤d which can be written 

!"�a�ON = 8�	�0.5$R + $� + $2 + $S − 0.5$; − $T − $? − $¤� 
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54.  Write the node equations for the nodes 1 and 2 of the model of the oak beam sketched 

in Figure 2-32.    
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 Solution   

The model of the round beam is such that axial symmetry is assumed so that a 
hemispherical section will suffice for nodes. In Figure 2-32 the node numbering scheme 
follows the pattern of number 1 is in the center, 2, 3, and 4 are radially outward to the 
outside surface. Then on a 22.50 rotation numbers 5, 6, and 7 occur. On the next 22.50 
rotation numbers 8, 9, and 10 occur. Continuing in this pattern there are three nodes at 
every 22.50 rotation for the first 28 nodes. On the next hemisphere axially parallel to the 
first hemisphere node number 29 will be on the center position with numbers 30. 31. 
And 32 outward. Again at a 22.50 rotation numbers 33, 34, and 35 occur. Continuing, the 
pattern is such that nodes on the hemisphere parallel to the succeeding hemisphere will 
have a number of the previous node plus 28. Thus, node 2 will be adjacent to nodes 29, 
axially, and also to nodes 3, 5, and 1. This model is sketched. Node 1 has nine (9) 
adjacent radial nodes; 2, 5, 8, 11, 14, 17, 20, 23, and 26. Node 1 also has an adjacent 
node on the axis, number 29. This model is sketched. 

 

For node 2 there four adjacent nodes with the thermal resistances of 

�4Q,R�� =	 TSL�®¯ ,  �4Q,2�� =	 2�L�®¯  , �4¯,28�� =	 ®¯
L�W °°±XoQr�²³r´ p =	 TSL�®¯, and   

�4µ,;�� =	 W3́®QX(� ¤⁄ )
(®¯ �⁄ )®Q  = 

2�RT®¯     so that the node equation for node 2 can be formed. 

Noting that !" = 	A$ �4b  the node equation becomes 

 
( ) ( ) ( ) ( )1 2 3 2 30 2 5 2

3 16
0

64 32 64 3

z r z
T T T T T T T T

κπ κπ κπ
π

∆ ∆ ∆
− + − + − + − =



73 

© 2016 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 

The thermal resistances for conduction between node 1 and 3, 5, 8, 11, 14, 17, 20, 23, 

and 26 are 

 and 

 and for node 29 

to 1  and the node equation or energy balance for node 1 is

 

 

55. Figure 2-70 shows a section of a large surface plate used for precision measurements. A 
person touches the surface and thereby induces heat transfer through the plate. 
Neglecting radiation involved, write the node equations for nodes 1, 5, and 12 of the 
node model of the plate shown in the figure. Assume steady state conditions and that 

the plate is 650F beyond the nodes indicated in the figure. 

,2 1 ,26 1

64
Tr TrR R

zκπ− −= =
∆

,5 1 ,8 1 ,11 1 ,14 1 ,17 1 ,20 1 ,23 1

32
Tr Tr Tr Tr Tr Tr TrR R R R R R R

zκπ− − − − − − == = = = = = =
∆

,29 1 2

8
Tz

z
R

rκπ−

∆
=

∆

( ) ( ) ( )
2

2 26 1 5 8 11 14 17 20 23 1 29 12 7 0
64 32 8

z z r
T T T T T T T T T T T T T

z

κπ κπ κπ∆ ∆ ∆
+ − + + + + + + + − + − =

∆
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Solution  

The sketch of the granite surface plate is shown. 

 

For node 1, the energy balance becomes 

�Δw2 o18℃ − $R∆0 p + �∆0 o$T − $R∆w p + � ∆w2 o$� − $R∆0 p + ℎ�∆0($� − $R) = 0 

 which reduces to 

3.035	$R − 0.05	$� −	$T = 28.15℃ 

In a similar fashion, the node equations are 

3.035	$; − 0.05	$S −	$R8 = 28.15℃  

 for node 5, and f or node 12 

 12 7 13 17 114 0T T T T T− − − − =
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56.  Write the complete set of node equations for the surface plate shown in Figure 2-70 and 

estimate the temperatures and the heat transfer through the plate. 

Solution  

Referring to the sketch for the nodes of the surface plate, shown in the solution to 
Problem 2-55, the twenty node equations become  

3.035$R − 0.5$� − $T = 28.15℃ 

	 3.035$� − 0.5$R − 0.5$2 	− 	$? = 37.04℃ 

3.035$2 − 0.5$� − 0.5$S 	− $¤ = 37.04℃ 

 	 3.035$S − 0.5$2 	− 0.5$; − $¥ = 19℃ 

3.035$; − 0.5$S − $R8 = 28.15℃ 

4$T − $R − $? − $RR = 18.33℃ 

4$? −	$T − $� − $¤ − $R� = 0 

4$¤ −	$? − $2 − $¥ − $R2 = 0 

4$¥ −	$¤ − $S − $R8 − $RS = 0 

4$R8 − $¥ − $; − $R; = 18.33℃ 

4$RR − $R� − $RT − $T = 18.33℃ 

4$R� −	$RR − $? − $R2 − $R? = 0 

4$R2 −	$R� − $¤ − $RS − $R¤ = 0 

4$RS −	$R2 − $¥ − $R; − $R¥ = 0 

4$R; −	$RS − $R8 − $�8 = 18.33℃ 

2$RT − 0.5$RR − $R? = 9.17℃ 

2$R? − $R� − 0.5$RT − 0.5$R¤ = 0 

2$R¤ − $R2 − 0.5$R? − 0.5$R¥ = 0 

2$R¥ − $RS − 0.5$R¤ − 0.5$�8 = 0 

2$�8 − 0.5$R¥ − $R; = 9.17℃ 



76 

© 2016 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

This set of 20 x 20 matrix ca be solved with a computer 

$ =

��
��
��
��
��
��
��
��
��
 19.221.128.721.119.219.52122.920.919.419.520.521.220.419.419.620.320.720.219.3¡¢

¢¢
¢¢
¢¢
¢¢
¢¢
¢¢
¢¢
¢¢
£

 

 

57.  A plutonium nuclear fuel rod shown in Figure 2-71 has energy generation in the amount 
of 112 MW/m3. For the grid model shown, write the node equations and solve for the 
temperatures. Assume κ = 10 W/m∙K.  
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Solution  

From Figure 2-71, it can be assumed that the heat flow is radially outward and axially 

and angularly and axially symmetrical. The node model is sketched  

 

Then for node 1 the adjacent nodes are 4 and 2 plus a convective heat transfer. 

Referring to the sketch for node 1 

 

The node equation is 

� ∆@2 ](2) o∆C2 p o$� − $R∆@ p + �] ¶∆@�4 · o$S − $R∆C p + ℎ�] ¶∆@�4 · ($� − $R)
+ o112 × 10TMWm2 p o∆C2 p ¶]∆@

�
4 · = 0 

Using the following values,  

ℎ� = 690 VYr∙U 	 , $� = 315℃,	� = 10 ¹1º , A@ = 0.0375	m,	�Ds	AC = 0.3	m  

the following node equation results  
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0.56586$R − 0.5$� − 0.0009766$S = 528.3 

A similar analysis for node 2, noting that it has three adjacent nodes, 1, 3, and 5, plus a 

convective heat transfer and energy generation, yielding 

1.79417$� − 0.5$R − 9.75$2 − 0.0347$; = 4386.7 

 

For node 3, the energy balance reduces to 

17.727$2 − 91.5$� − 0.00684$T = 10267 

For node 4, 

1.001954$S − 0.000977$R − 0.000977$? − $; = 1013.9 

Node 5 is a bit more complicated. Referring to the sketch the node equation becomes 

 

4.015625$; − $S − 3$T − 0.0078125$� − 0.0078125$¤ = 4055.6 

Node 6 has three adjacent nodes plus convection and energy generation so its node 

equation is 

20.3$T − 3$; − 0.00684$2 − 0.00684$¥ = 9754.2 

Node 7 energy balance similar to node 4, becomes 

1.001954$? − 0.000977$S − 0.000977$R8 − $¤ = 1013.9 

For the node 8 node equation, similar to node 5 
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4.015625$¤ − $? − 3$¥ − 0.0078125$; − 0.0078125$RR = 4055.6 

For node 9, similar to node 6 

20.3$¥ − 3$¤ − 0.00684$T − 0.00684$R� = 9754.2 

The energy balance for node 10 is similar to node 7 except it is only one-half as long as 

node 7 and there is no lower surface heat transfer. 

0.500977$R8 − 0.000977$? − 0.5$RR = 506.94 

Node 11 equation is 

1.328$RR − 0.5$R8 − 0.75$R� − 0.0078125$¤ = 4054.3 

And Node 12 is 

9.409$R� − 0.75$RR − 0.00684$¥ = 6278.9 

Using Mathcad for the prediction of the 12 node temperatures, the results are 

$ =

��
��
��
��
��
 4042.83988.9826.73566.72552.2858.33579.42561.1859.4745.66451195 ¡¢

¢¢
¢¢
¢¢
¢¢
£

	℃ 

 

Section 2-7 

58.  Determine the heat transfer and fin efficiency for a copper fin shown in Figure 2-72. The 

fin can be assumed to be very long and its base temperature taken as 930C.        



80 

© 2016 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 

Solution      

For very long fins the fin efficiency is 

  where   L = 10 cm = 0.1 m 

    κ = 400 W/m∙k    From Appendix Table B-2 

   A = 0.6 m x (0.003 mm) = 0.0018 m2 

   h = 120 W/m2 ∙K 

   P = perimeter = 1.2 m 

  Then 0. 30 = 30% 

The heat transfer of the fin is  

!" = ¼�P�!"a = (0.3)(ℎ�:)(93 − 25℃) = 0.293	W/fin 

 

59.  A square bronze fin, 30 cm wide, 1 cm thick, and 5 cm long is surrounded by air at 270C 
and h = 300 W/m2 ∙K. The base temperature of the fin is 1700C. Determine the fin tip 

temperature, the fin heat transfer, and the fin efficiency.   

 

 

1
fin

A

L hP

κ
η =
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Solution   

For a finite length fin the temperature distribution is given by the equation 

  

For this fin     h = 300 W/m2K 

  κ = 114 W/m∙K 

  fin thickness, Y = 0.01 m,        fin width W = 0.3 m 

  fin length  L = 0.05 m 

  perimeter,  P = 2W + 2Y = 0.62 m,     Area,  A = WY = 0.003 m2 

 

60.  A square aluminum fin having base temperature of 1000C, 5 mm width, and 5 cm length 
is surrounded by water at 400C. Using h of 400 W/m2∙K, compare the heat transfer of 
the fin predicted by the three conditions: a) very long fin, b) adiabatic tip, and c) uniform 

convection heat transfer over the fin, including the tip. Assume a width of 1 m. 

Solution  

From the Appendix Table B.2,  κalum = 236 W/m∙K   Also, 

Θ0 = 100 -40 = 60 K,     T∞ = 400 C,    h = 400 W/m2∙K,   t = 0.005 m,   L = 0.05 m,   W = 1 m 

P = 2t + 2W + 2W= 2.01 m,   A = LW = 0.05 m2,    and 

� =	½¾ℎ�� = 26.1	��R 

For the very long fin, a)   

For a fin with an adiabatic tip,             

( ) ( )
( ) ( )

0 0

cosh sinh

cosh sinh

h
m L x m L x

mx T x T
h

mL mL
m

κ

κ

 − + −       
Θ = − = Θ  

 +
 
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For a finite length fin,              

  

 

61. Show that the fin heat transfer for a square fin having an adiabatic tip is 

     

Solution        

For a square fin with an adiabatic tip the temperature distribution is 

   

The heat transfer is 

    

and 

      

At x = 0 this is 

    

The fin hat transfer is then 

    

but                  

tanh
0

mL
finQ hP Aθ κ=

i

( ) ( )
( )

0

cosh

cosh

m L x
x T x T

mL
θ θ∞

−  = − =

0 0x x

T
Afin x x

Q A θ
κκ

= =

∂ ∂   = −   ∂ ∂   
=−
i

( )0 sinh

cosh

m m L x

x mL

θθ − ∂  = −
∂

0
0

0

sinh
tanh

coshx

m mL
m mL

x mL

θθ
θ

=

∂  = − = − ∂ 

( )0 tanh
fin

A m mLQ κ θ= − −
i

Ph
m

Aκ
=
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so that 

     

 

62. Show that the heat transfer for a fin that is square and has fin tip convective heat 
transfer coefficient hL can be written 

     

Solution 

For square fin with convective heat transfer coefficient hL at the tip, the temperature 

distribution is 

    

The fin heat transfer is 

      

Also 

 

Since     

 � = ¿À�LH 

     

0 tanh
fin

Ph A mLQ θ κ=
i

0

sinh cosh

cosh sinh

L

fin
L

h
mL mL

mhP A
h

mL mL
m

Q κθ κ

κ

 + 
=  

 +
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i

( ) ( )
( ) ( )
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h
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mx T x T
h
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m

κθ θ

κ

∞
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63.  Derive an expression for the heat transfer from a tapered fin having base of Y thickness, 
L length, κ thermal conductivity, h0 convective coefficient, and T0 base temperature.  
The surrounding fluid temperature is T∞.                                               

Solution  

Referring to the sketch, 

 

w = � W1 − 0nX 

From a heat balance through the fin 

  

where B = $ −	$�																	B8 =	$8 −	$� 

¾ = 2w + 2(	 ≈ 2(      for   y «   W.                                  

Then 

    

Using  X = L – x    and   C = 2h9L/κY    

   with two boundary conditions:   B.C. 1, θ = θ0    @ X = L    

2

02

d
A h P
dx

θ
κ θ=

( ) ( )

2

0 0

2

2 21 h WL h Ld

dx WY L x Y L x

θ
θ κ κ

= =
− −

2

2

1 d C

dx X

θ
θ

− =
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       ``      B.C. 2,  θ = 0 @  = 0  

Now, assuming a series solution so that 

  

From B.C. 2,  c0  =  0  and then 

         for the second derivative 

 

Using the differential equation   − �rµ�Kr =	 ÁÂ B   we get 

 

Comparing coefficients,   2�� = −m�R															z@											�� = − Á� �R 

   ,   6�2 = −m��															z@											�2 = ÁrR� �R 

   ,   12�S = −m�2															z@											�S = − Á3RSS �R 

   20�; = −m�S															z@											�; = Á´�¤¤8 �R            and so on… 

For C less than or equal to 1.0, using the first four terms is suitable as higher terms will 

be significantly smaller. Then, 

   and using B.C.1 

   Solving this for c1 and substituting 

  

 

2 3 4 5

0 1 2 3 4 5 ... ...n

nc c X c X c X c X c X c Xθ = + + + + + + + +

2 3 4 5

1 2 3 4 5 ... ...n

nc X c X c X c X c X c Xθ = + + + + + + +

2
2 3 4 5 6 7 8

2 3 4 5 6 7 8 9 102
2 6 12 20 30 42 56 72 90 ...

d
c c X c X c X c X c X c X c X c X

dx

θ
= + + + + + + + + +

( )2 3 4 5 2 3 4 5

2 3 4 5 6 7 1 2 3 4 52 6 12 20 30 42 ...... ...
C

c c X c X c X c X c X c X c X c X c X c X
X

+ + + + + + = − + + + + +

2 3
2 3 4

1 1 1 1 ..
2 12 144

C C C
c X c X c X c Xθ = − + − +

2 3
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0 1 1 1 1
2 12 144

C C C
c L c L c L c Lθ θ= = − + −

2 3
2 3 4

0

2 3
2 3 4
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2 12 144

...
2 12 144

C C C
X X X X

C C C
L L L L

θ
θ

 
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 =
 
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64.  Show that the fin effectiveness is related to the fin efficiency by the equation 

 

 Solution       

For a fin and a base area between succeeding fins, the fin effectiveness is 

 where 

 

Where        �4 = ��P� + �-O:� 

Also, 

      

And 

    

Substituting into the effectiveness equation 

    

Cancelling the h’s, θ0’s, and rearranging, 

    

 

65.  A circumferential steel fin is 8 cm long, 3 mm thick, and is on a 20 cm diameter rod. The 
surrounding air temperature is 200C and h = 35 W/m2K, while the surface temperature 

of the rod is 3000C. Determine a) Fin Efficiency, and b) Heat transfer from the fin.        

1
fin fin

fin fin

T T
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Solution 

Referring to Figure 2-41 

L = 8 cm = 0.08 m,     r1 = 0.1 m,   y = 3 mm = 0.003 m,    r2 = L + r1,   LC  = L + y/2 = 0.0815 

m,  r2C  = r1 + LC  = 0.1815 m,  and   Am = y(r2C   - r1)  = 0.0002445 m2      Using a thermal 
conductivity of 43 W/mK for steel from Appendix Table B-2 

              and        .   Then, from Figure 2-41, 

a)     η fin    ≈ 44 % 
b)    

 

 

66. A bronze rod 1 cm in diameter and 30 cm long protrudes from a bronze surface at 
1500C. The rod is surrounded by air at 100C with a convective heat transfer coefficient of 
10 W/m2 K. Determine the heat transfer through the rod.         

Solution    

 

Assume the bronze has the same thermal conductivity as brass, 114 W/mK from 
Appendix Table B-2. Some of the other parameters are: h = 10 W/m2 K, T∞ = 100 C,  T0 = 

1500C, 

Θ0 = T0 - T∞  = 1400 C,    P = πD = 0.0314159 m,   A = πr2 = 0.00007854 m2 ,  and 

3/2 1.342C

m

h
L

Aκ
= = 2

1

1.815Cr

r
=

( ) ( )( ) ( )2 2

0 2 1 22
0.44 35 2 300 20 318fin fin

fin

W W
hA r r r y K

m K fin
Q η θ π π   = = − + − =    

i
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    and using the case III fin equation, the finite length fin,  

 

 

67. A circumferential cast iron fin attached to a compressor housing is 2.5 cm thick, 7.5 cm 
long, 7.5 cm diameter, and the convective heat transfer coefficient is 28 W/m2∙K. If the 
base temperature is 700C and the surrounding air is 250C, determine the fin efficiency 
and the heat transfer through the fin.        

Solution                

Referring to Figure 2-41, the following parameters are:        

r1 = 3.75 cm = 0.0375 m,   r2 = 0.112 m,    L = 0.035 m,   y = 0.025m, 

LC  = L + y/2 = 0.05 m,   r2C  = r1  + LC  = 0.09 m,   Am  = y(r2C  - r1)  = 0.00125 m2 , 

r2C/r1  = 2.333,   and    .       

From Figure 2-41 

ηfin  ≈ 82%.      

The heat transfer is 

!"�P� = ¼�P�ℎ��P�($8 − $�)
= 0.82 o28 Wm� ∙ Kp (])(@�� − @R� + 2@�w)(70 − 25℃) 

= 181.2	W 

 

68.  A handle on a cooking pot can be modeled as a rod fin with an adiabatic tip at the 
farthest section from the attachment points. For the handle shown in the sketch, 
determine the temperature distribution and the heat transfer through the handle if the 
pot surface is 880C, the surrounding air temperature is 300C, and the convective heat 

transfer coefficient is 277 W/m2∙K.       

15.923
hP

m m
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−= =

0
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= = 
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Solution      

  

Treating this handle as a fin with an adiabatic tip, the important parameters are:  
Thermal conductivity of 39 W/m2∙K from Appendix Table B-2, L = πr/2 = π(0.075/2) m = 
0.12 m, P = π(0.025) m = 0.078 m,   A = π(0.025)2 (1/4) = 4.9 × 10-4 m2, and        

� = ½ℎ¾�� = ½ 277 × 0.07839 × 4.9 × 10�S = 33.6	��R 

 For an adiabatic tipped fin, 

B = B8 cosh��(n − 0)�cosh�n = (58℃) cosh�33.6(n − 0)�cosh7.255 = (0.082) cosh�33.6(n − 0)� 
At the extreme outer point of the handle, 

   B = 0.079℃    or 

T = 30.0790C 

The heat transfer through the fin is 

!"�P� = B8√ℎ¾��	tan�n = 39.8	W 

Since the handle has two fins, so to speak, 

!"�O��N� = 79.69	W 
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69. An aluminum fin is attached at both ends in a compact heat exchanger as shown. For 
the situation shown, determine the temperature distribution and the heat transfer 
through the fin. Notice that the analysis requires using the governing equation 
d2	B(x)/dx2 = m2	B(x) with appropriate boundary conditions to determine the 

temperature distribution. 

Solution 

  

For the fin 

  

with boundary conditions,  B.C. 1     B = BR = $R − $� = 180℃			@		0 = 0        

B.C. 2     B = B� = $� − $� = 160℃		@		0 = n 

From this equation and the boundary conditions Equation 2-114 is 

      

where   L = 0.2 m,    

And then mL = 2.6   so that 

   

The maximum or minimum temperature occurs at the location predicted by Equation 2-

115, 

   Using x = 0.1079 m in the above equation 
for the temperature distribution,  

2
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The fin heat transfer is the sum of the two adiabatic stems 

 

 

70. For the tapered fin shown, determine the temperature distribution, the fin efficiency, 

and the heat transfer through the fin.      

Solution 

Referring to the figure, 

  

The following parameters are known:   L = LC = 0.06 m,       Y  =  0.02 m,  Am  = LY/2  = 

0.0006 m2, 

Κ = 236 W/mK,    h = 1000 W/m2 ∙K, and 

  From Figure 2-40, ¼�P� 	≈ 62%   and the heat transfer is 

 

 

71.  Determine the expected temperature drop at the contact between two 304 stainless 

steel parts if the overall temperature drop across the two parts is 1000C. 
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Solution 

From Table 2-12, using a value for thermal contact 

resistance of 304 stainless at 209C, 

assuming it will be unchanged at 1000C, 0.000528 m2 ∙ 0C/W, then 

then 

 

  

72.  A mild steel weldment is bolted to another mild steel surface. The contact pressure is 
estimated at 2 MPa and the expected heat transfer between the two parts is 136 W/m2.  
Estimate the temperature drop at the contact due to thermal contact resistance.      

Solution     

 

The temperature drop across the contact surface is 

1 2 1 2
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∆$4Á = G"H ∙ (�4� ∙ �) = o136 (��p (�4� ∙ �) 
 The thermal contact resistance, from Table 2-12, is 

�4Á ∙ � = 0.000394	m�℃W  

 so that 

∆$4Á = 52.8℃ 

 

73. For Example Problem 2-26, estimate the temperature drop at the contact surface if the 

heat transfer is reduced to 9.5 W/m2.        

Solution        

The thermal contact resistance of the concrete block/styrofoam for example 2-26 is 

1.1m2 ∙0C/W. If the heat transfer is reduced to 9.5 W/m2, the temperature drop will be, 

∆$4Á = G"H ∙ (�4Á ∙ �) = 1.74℃ 

 

74. A guarded hot plate test results in the following data: 

  

Estimate the thermal conductivity of the test material. 
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Solution 

The arithmetic averages are 

Amps = 0.05133,   volts = 8.6,    thermocouple 1 = 2.6677 mv,   thermocouple 2 = 2.7753 

mv. 

The average power is = amps∙volts = 0.44147 W.  the average millivolt difference 
between 1 and 2 is 0.10756 mv. For a 220 C /mv setting, the average temperature 

difference will be 2.3660C. From Fourier’s law 

   For a sample thickness of 2 cm (0.02 m) and a test area of 

0.01 m2 

 

 

75. A steam line has an outer surface diameter of 3 cm and temperature of 1600C. If the line 
is surrounded by air at 250C and the convective heat transfer coefficient is 3.0 W/m2∙K, 
determine the heat transfer per meter of line. Then determine the thickness of asbestos 
insulation needed to provide insulating qualities to the steam line.      

Solution        

The heat transfer is by convection so 

   

The critical radius of insulation needed to make the convection equal to the conduction 

through the line is 
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76. Electric power lines require convective cooling from the surrounding air to prevent   
excessive temperatures in the wire. If a 2.5 cm diameter line is wrapped with nylon to 
increase heat transfer with the surroundings, how much nylon can be wrapped around 
the wire before it begins to act as an insulator? The convective heat transfer coefficient 

is 8.7 W/m2 ∙0C.    

Solution    

The critical thickness determines how much insulation wrapped around a cylinder 
decrease heat transfer. Using properties of Teflon from Appendix Table B-2E, 

 

@a� = �ℎ = 0.35	W/(m ∙κ)8.7	W/m�℃ = 0.04	m = 40	cm 

 

77. Estimate the temperature distribution through a bare 16 gauge copper wire conducting 
1.5 amperes of electric current if the surrounding air is at 100C and the convective heat 
transfer coefficient is 65 W/m2∙ K.       

Solution  

Equation 2-123 will predict the temperature distribution through the wire. 

    

Here $� = 108m											ℎ8 = 65( ���⁄ ,								� = 400	( ��⁄   from Appendix Table B-

2.  Then, from Appendix Table B-7,       @8 = 25.41	���< = 0.0006454	� 

�8 = 2,583	��@.���< = 16.664	0	10�?	�� 

�� = 4.016	 zℎ�< 1000J	⁄ = 13.1756	0	10�2zℎ�</� 
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and 

  where r0  = 0.0006454 m 

At the center, where r = 0  T(r)  = 10.0883050C 

And at the outer surface, here r = r0             T(r)  = 10.08830C 

 

78. Aluminum wire has resistivity of 0.286 x 10-7 ohm∙m where resistivity is defined as 
(ohm)∙area/length. Determine the temperature distribution through an aluminum wire 
of 6 mm diameter carrying 200 amperes of current if it is surrounded by air at 250C and 

with a convective heat transfer coefficient of 345 W/m2∙K.             

Solution  

Equation 2-123 predicts the wire temperature distribution 

    

Here,      $� = 25℃,											ℎ8 = 345	W/m� ∙ K 

r0   = 3 mm = 0.003 m,      κ = 236 W/m∙K,      I = 200 amps,    A0   =  2.83×10-5 m2 

   

�� = ��8 = 0.286 × 10�?	Ω ∙ m2.83 × 10�;	m� = 0.0010	Ω/m	 
and 

�"M�� = Å����8 = (200	��x<)�(0.0010	Ω/m)2.83 × 10�;	m� = 1.41 × 10T (�2 
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or 

$(@) = 31.14℃− 1493.6	@� 

T(r) = 31.140C at the center, r=0 

T(r) = 31.1530C at the surface, r = r0 

 

79. Determine the temperature distribution through a uranium slab shown. Assume energy 
generation of 2.8 MW/m3 and the slab is surrounded by water at 900C with a convective 

heat transfer coefficient of 780 W/m2 ∙K. Use the equation 
�r4�Kr + �"ÆÇ¬L = 0 with 

appropriate boundary condition must be made to obtain the temperature distribution 

function. 

 

Solution  

Using the figure shown and the governing equation for one-dimensional conduction 

heat transfer with energy generation 
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     with two boundary conditions:  B.C.1 

¶2.8 × 10T2 · (0.065	m) = 91000 (�� = ℎ8($ − 90℃) 

 at x = 0 

And  
�4�K = 0												@					0 = n/2 

Separating variable once gives, 

   and then again 

         

From B.C. 1 

$ = 91000	(/��
780	(/�� ∙ � + 90℃ = 206.7	℃ 

  at x = 0.   This means that m� = 206.7	℃ 

 

From B.C. 2  

  so that the temperature distribution becomes 

$(0) = −�"M��2� 0� + �"M��2� n + 206.7℃ 

At the center of the slab, where x = 3.25 cm = 0.0325,   T = 159.50C 
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80.  Plutonium plates of 6 cm thickness generate 60 kW/m3 of energy. It is exposed on one 
side to pressurized water which cannot be more than 2800C. The other surface is well 
insulated. What must the convective heat transfer coefficient be at the exposed 

surface? 

Solution  

Using the governing energy balance equation  

     With   B. C. 1,    
�4�K = 0										@			0 = 0 

      B.C. 2  �"M��n = ℎ8($ − $�)         @ x = L 

Separating variables and integrating 

 

 

And separating variable once more, integrating gives, 

   From B.C. 1 C1 = 0 
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