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Heat and Mass Transfer, Sl Edition
Solutions Manual
Second Edition

This solutions manual sets down the answers and solutions for the Discussion Questions, Class
Quiz Questions, and Practice Problems. There will likely be variations of answers to the
discussion questions as well as the class quiz questions. For the practice problems there will
likely be some divergence of solutions, depending on the interpretation of the processes,
material behaviors, and rigor in the mathematics. It is the author’s responsibility to provide
accurate and clear answers. If you find errors please let the author know of them at
<rolle@uwplatt.edu>.

Chapter 2

Discussion Questions

Section 2-1

1. Describe the physical significance of thermal conductivity.

Thermal conductivity is a parameter or coefficient used to quantitatively
describe the amount of conduction heat transfer occurring across a unit area of
a bounding surface, driven by a temperature gradient.

2. Why is thermal conductivity affected by temperature?

Conduction heat transfer seems to be the mechanism of energy transfer
between adjacent molecules or atoms and the effectiveness of these transfers is
strongly dependent on the temperatures. Thus, to quantify conduction heat
transfer with thermal conductivity means that thermal conductivity is strongly
affected by temperature.

3. Why is thermal conductivity not affected to a significant extent by material density?
Thermal conductivity seems to not be strongly dependent on the material
density since thermal conductivity is an index of heat or energy transfer
between adjacent molecules and while the distance separating these molecules
is dependent on density, it is not strongly so.

Section 2-2

4. Why is heat of vaporization, heat of fusion, and heat of sublimation accounted as energy
generation in the usual derivation of energy balance equations?
Heats of vaporization, fusion, and sublimation are energy measures accounting
for phase changes and not directly to temperature or pressure changes. It is
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convenient, therefore, to account these phase change energies as lumped
terms, or energy generation.

Section 2-3

5. Why are heat transfers and electrical conduction similar?
Heat transfer and electrical conduction both are viewed as exchanges of
energy between adjacent moles or atoms, so that they are similar.
6. Describe the difference among thermal resistance, thermal conductivity, thermal
resistivity, and R-Values.
Thermal Resistance is the distance over which conduction heat transfer occurs
times the inverse of the area across which conduction occurs and the thermal
conductivity, and thermal resistivity is the distance over which conduction
occurs times the inverse of the thermal conductivity. The R-Value is the same as
thermal resistivity, with the stipulation that in countries using the English unit
system, 1 R-Value is 1 hr-ft? -°F per Btu.

Section 2-4

7. Why do solutions for temperature distributions in heat conduction problems need to
converge?
Converge is a mathematical term used to describe the situation where an
answer approaches a unique, particular value.
8. Why is the heat conduction in a fin not able to be determined for the case where the
base temperature is constant, as in Figure 2-9?
The fin is an extension of a surface and at the edges where the fin surface
coincides with the base, it is possible that two different temperatures can be
ascribed at the intersection, which means there is no way to determine
precisely what that temperature is. Conduction heat transfer can then not be
completely determined at the base.
9. What is meant by an isotherm?
An isotherm is a line or surface of constant or the same temperature.
10. What is meant by a heat flow line?
A heat flow line is a path of conduction heat transfer. Conduction cannot cross a
heat flow line.

Section 2-5

11. What is a shape factor?
The shape factor is an approximate, or exact, incorporating the area, heat flow
paths, isotherms, and any geometric shapes that can be used to quantify
conduction heat flow between two isothermal surfaces through a heat
conducting media. The product of the shape factor, thermal conductivity, and
temperature difference of the two surfaces predicts the heat flow.
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12. Why should isotherms and heat flow lines be orthogonal or perpendicular to each
other?
Heat flow occurs because of a temperature difference and isotherms have no
temperature difference. Thus heat cannot flow along isotherms, but must be
perpendicular or orthogonal to isotherms.

Section 2-6

13. Can you identify a physical situation when the partial derivatives from the left and right
(see Equations 2-85 and 2-86) are not the same?
Often at a boundary between two different conduction materials the left and
the right gradients could be different. Another situation could be if radiation or
convection heat transfer occurs at a boundary and then again the left and right
gradients or derivatives could be different.

Section 2-7

14. Can you explain when fins may not be advantageous in increasing the heat transfer at a
surface?

Fins may not be a good solution to situations where a highly corrosive,
extremely turbulent, or fluid having many suspended particles is in contact with
the surface.

15. Why should thermal contact resistance be of concern to an engineer?
Thermal contact resistance inhibits good heat transfer, can mean a significant
change in temperature at a surface of conduction heat transfer, and can provide
a surface for potential corrosion.

Class Quiz Questions

1. What is the purpose of the negative sign in Fourier’s law of conduction heat transfer?
The negative sign provides for assigning a positive heat transfer for negative
temperature gradients.

2. |If a particular 20-cm thick material has a thermal conductivity of 17 W/ m-K, what is its

R-value?

The R-value is the thickness times the inverse thermal conductivity;

thick
R —Value = —= (20 x 107?>m)/(17 W/m - K) = 0.012 m - K/W

3. What is the thermal resistance of a 10-m? insulation board, 30 cm thick, and having
thermal conductivity of 0.03 W/m-K?
The thermal resistance is

Ax/ A-x=(03m)/(10m*)(0.03W /m-K)=1.0K /| W
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4. What is the difference between heat conduction in series and in parallel between two
materials?
The thermal resistance, or thermal resistivity are additive for series. In parallel
the thermal resistance needs to be determined with the relationship

R,=(R)(R,)/(R +R,)

eq
5. Write the conduction equation for radial heat flow of heat through a tube that has
inside diameter of D; and outside diameter of Dy.

- AT
27kl
Q=2mK ln(DO/DZ.)

6. Write the Laplace equation for two-dimensional conduction heat transfer through a

homogeneous, isotropic material that has constant thermal conductivity.
OT(%.y) , O°T(Y) _
o’ oy’

7. Estimate the heat transfer from an object at 40°C to a surface at 5°C through a heat

0

conducting media having thermal conductivity of 8.5 W/m-K if the shape factor is 30 cm.
Q =SkAT = (0.3m)(85 W/m-K)(35°C) = 89.25 W
8. Sketch five isotherms and appropriate heat flow lines for heat transfer per unit depth
through a 5 cm x 5 cm square where the heat flow is from a high temperature corner to
the four sides at a uniform lower temperature. Use one isothermal as the corner and
another isothermal as the side of the square.

9. If the thermal contact resistance between a clutch surface and a driving surface is
0.0023 m? - °C/W, estimate the temperature drop across the contacting surfaces, per
unit area when 200 W/m? of heat is desired to be dissipated.

The temperature drop is

AT = QRTCR = (200 / m*)(0.0023m* * C /W) =0.46"C

10. Would you expect the wire temperature to be greater or less for a 0.14 cm dia. copper
wire as compared to a 0.18 cm dia. copper wire, both conducting the same electrical
current?
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A 0.14 cm dia. copper wire has a smaller diameter and a greater electrical
resistance per unit length. Therefore it would be expected to have a higher
temperature than the 0.18 cm dia. copper wire.

Practice Problems

Section 2-1

1. Compare the value for thermal conductivity of Helium at 20°C using Equation 2-3 and

the value from Appendix Table B-4.

Solution

Using Equation 2-3 for helium
K =0.8762x10\T = 0.0015W /cm-K = 0.15W / m-K From Appendix Table B-4
k=0.152W /m-K

2. Predict the thermal conductivity for neon gas at 95°C. Use a value of 3.9 A for the

collision diameter for neon.

Solution

Assuming neon behaves as an ideal gas, with MW of 20, and 367K, and using Equation 2-
1

K =8.328510° | —— =8.328x10° | —2/8 _ _1805:10“W /em K
MW T (20)(3.9)

3. Show that thermal conductivity is proportional to temperature to the 1/6th power for a
liquid according to Bridgeman'’s equation (2-6).

Solution

K =3.865x102(V /x*
From Bridgeman’s equation ( S/ ”’) Also, Vs (sonic velocity) ~/E, /p

~p/? the mean separation distance between molecules x2, = (mm/p)?/3 ~p?3so

=2/3+1/2 __ -1/6 . 1/6
that X P =P r
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4. Predict a value for thermal conductivity of liquid ethyl alcohol at 300 K. Use the
equation suggested by Bridgman’s equation (2-6).

Solution

Bridgeman’s equation (2-6) uses the sonic velocity in the liquid, \/E}, /p , which for
ammonia at 300 K is nearly 1.14 x 10° cm/s. The equation also uses the mean distance
between molecules, assuming a uniform cubic arrangement of the molecules, which is

3/mm/p , mm being the mass of one molecule in grams, the molecular mass divided by
Avogadro’s number. Using data from a chemistry handbook the value of xn, is nearly
0.459 x 10”7 cm. Using Equation 2-6,

K =3.865x107" (Vs/xi)= 20.9x10°*W /cm-K =0.209% / m-K

5. Plot the value for thermal conductivity of copper as a function of temperature as given
by Equation 2-10. Plot the values over a range of temperatures from -40°C to 70°C.

Solution

Using Equation 2-10 and coefficients from Appendix Table B-8E

w
k= ko +a(T = To) =393 —-—0.019 (T — 273K)

m - K2

This can be plotted on a spreadsheet or other modes.

6. Estimate the thermal conductivity of platinum at -100°C if its electrical conductivity is 6 x
107 mhos/m, based on the Wiedemann-Franz law. Note: 1 mho =1 amp/volt = 1
coulomb/s, 1 W =11J/s = 1 volt-coulomb.

Solution

Using the Wiedemann-Franz law, Equation 2-9 gives

Kk=Lz-T=(243x10"V°/K*)(6x10" amp/V -m)(173K ) = 252.20 / m-K

7. Calculate the thermal conductivity of carbon bisulfide using Equation 2-6 and compare
this result to the listed value given in Table 2-2.
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Solution

Equation 2-6 uses the sonic velocity in the material. Thisis V; = /E,/p =
1.18 x 105cm/s, where Ej is the bulk modulus. The mean distance between adjacent

molecules, assuming a uniform cubic arrangement, is also used. This is x,,, = /mm/p
where mm is the mass of one molecule; MW/Avogadro’s number. This gives x,,, =

K =3.865x10" Y =0.0021W /cm-* C

2
0.466 x 10~7cm. then Y

Section 2-2

8. Estimate the temperature distribution in a stainless steel rod, 2.5 cm in diameter, that is
1 meter long with 7.5 cm of one end submerged in water at 5°C and the other end held
by a person. Assume the person’s skin temperature is 28°C, the temperature in the rod
is uniform at any point in the rod, and steady state conditions are present.

Solution

Assuming the heat flow to be axial and not radial and also 5°C for the first 7.5 cm of the
rod, the temperature distribution between x = 7.5 cm and out to x = 1 m we can use
Fourier’s law of conduction and then for 7.5 < x < 100 cm, identifying the slope and x-
intercept T (x) = 0.249 x + 3.135 The sketched graph is here included. One could now
predict the heat flow axially through the rod, using Fourier’s law and using a thermal
conductivity for stainless steel.
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9. Derive the general energy equation for conduction heat transfer through a
homogeneous, isotropic media in cylindrical coordinates, Equation 2-19.

Solution

Referring to the cylindrical element sketch, you can apply an energy balance, Energy in —
Energy Out = Energy Accumulated in the Element. Then, accounting the energies in and

out as conduction heat transfer we can write
= [ 4

) oT ) 10T
q =|—krAzAOQ— q =| —kArAz———
{ r} [” Grl , [ 9} [ : rﬁﬁl

r an in energy 4

_q.Z l = |:—K(I” +%} AHArZ—zl

aninenergy- an in energy
qr} = —K(r+Ar)AzA0(’;—T}
L rebr - T an out energy
C]ewe} = {"‘AFAZ %%}
L 0+A0 oxa0 an out energy
qz+Az} :{—K(;%%jAQArg—T}
L z+hz ¥ e an out energy
Ar oT
r+— ((AG-Az-Ar)c,—

The rate of energy accumulated in the element. If you put the three energy in terms and
the three out terms on the left side of the energy balance and the accumulated energy
on the right, divide all terms by (r + r/2)(46 - Az - Ar), and take the limits as Ar -0,
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Az = 0, and A9 0 gives, using calculus, Equation 2-19
10 or 1 o0 oI o orT oT
——Kr'—+—S K+ _—K_—=pc,—
ror or r- 00 00 0z oz ot

10. Derive the general energy equation for conduction heat transfer through a
homogeneous, isotropic media in spherical coordinates, Equation 2-20.

Solution

Referring to the sketch of an element for conduction heat transfer in spherical
coordinates, you can balance the energy in — the energy out equal to the energy
accumulated in the element. Using Fourier’s law of conduction

Q =| —krAfrsin 9A¢6—T}
r or |, .
A= aninterm
Qé’ = —KlAr-rsin 6’A¢8—T}
L 00 |, .
- ¢ aninterm
Q =| —xrAOAr 1 or
¢ rsiné o¢ p
R aninterm
Q = —K(r+Ar)A6’(r+Ar)sin0A¢a—T
r+Ar or ..
- —r+ar an out term
L 1 or
=| —k—rsin 9A¢rAt9—}
_Q0+A0 Lwe [ r o+a0 an out term
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2
i

oT .
PAVe, = p(rsin 6’A¢)-Ar-rA0§

= |:—K'I"A0 A.r a—T}
sors rsinf o¢ |, ,,

an out term

Which is the accumulated energy. Inserting the three in terms as positive on the left side
of the energy balance, inserting the three out terms as negative on the left side of the
balance, inserting the accumulated term on the right side, and dividing all terms by the
quantity (rsinf4¢) - Ar - A9 gives the following

x(r+Ar) sin 0A6’A¢(E;Tj —x(r) sin 6’A0A¢(2Tj
r+Ar r r

+

r" sin GArAOA ¢
Krsin0A¢A6’(aTj —Krsin9A¢A6’(aTj
9+A0 80 [

+
r* sin OArAOA
krAOAr (0T _ KAOAr(OT

rsin@ \o¢ ), ,, 1sinfd\0¢ ), oT
= cC ——
r* sin OArAOA § " ot

Taking the limits as Ar -0, A3 -0, A@ - 0 and reducing

1 0 , 0T 1 0 . 0T 1 o oT oT
S|k |t | kSNl — [t | Kk |= e, ——
r-or or ) r°siné 06 00 ) rsin"@o¢\ 0¢ ot

which is Equation 2-20, conservation of energy for conduction heat transfer in spherical

coordinates.
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11. Determine a relationship for the volume element in spherical coordinates.
Solution

Referring to the sketch for an element in spherical coordinates, and guided by the
concept of a volume element gives,

AV = (rsin 0A¢)-(Ar)-(rA6’)

Z*\
v,

Section 2-3

12. Anice-storage facility uses sawdust as an insulator. If the outside walls are 60 cm thick
sawdust and the sideboard thermal conductivity is neglected, determine the R-value of
the walls. If the inside temperature is -5°C and the outside is 30°C, estimate the heat
gain of the storage facility per square foot of outside wall.

Solution

Assuming steady state conditions and that the thermal conductivity is the value listed in
Appendix Table B-2,
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Ax 0.6 m m? - K
R —Value = —

© ~0050w/m-K_ 107w
AT _ AT 30C-(-50)_ ., W _ o B
U4=" 7 \x " R—Value 10.17 ST m2 T hr - ft2

13. The combustion chamber of an internal combustion engine is at 800°C when fuel is
burned in the chamber. If the engine is made of cast iron with an average thickness of
6.5 cm between the combustion chamber and the outside surface, estimate the heat

transfer per unit area if the outside surface temperature is 50°C and the outside air
temperature is 30°C.

Solution

Assuming steady state one-dimensional conduction and using a thermal conductivity
that is assumed constant and has a value from Table B-2,

AT w 0 _ 500
g, =k——=|39 800 =50°K _ 450k / m®
Ax m-K 0.065m

14. Triple-pane window glass has been used in some building construction. Triple pane glass
is a set of three glass panels, each separated by a sealed air gap as shown in Figure 2-49.
Estimate the R-Value for triple pane windows and compare this to the R-Value for single
pane glass. Note that the air within the gap is sealed and cannot move so that it acts as
a conducting medium only.

FIG 2-49 Triple pane window.

2-mm-thick
Glags Panes

6-mm
Ajr Gap
Inside
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Solution

Assume the air in the gaps do not move so that they are essentially conducting media.
Then the R-Value is

A A 0.002 0.006
R —Value = 3(2) giass + 2(Dair = 3(-) + 2(55,2) = 04658 m? -

2=

The R-Value for a single pane window is

R — Value = (A—x) =2002m _ 1429 m?- £
K /glass 14— w

The ratio of the R-Value for the triple pane to the R-Value for a single pane is roughly
324

15. For the outside wall shown in Figure 2-50, determine the R-Value, the heat transfer
through the wall per unit area and the temperature distribution through the wall if the
outside surface temperature is 36°C and the inside surface temperature is 15°C.

Solution

The R-Value is the sum of the three materials; pine, plywood, and limestone, with
thermal conductivity

R—Value=R, = (3] + (gj J{HJ _004 002 006 46om . k1w
pine plywood limestone

K K k S 0.15 012 2.15
values obtained from Appendix Table B-2.The conversion to English units is 0.176
m2K/W = 1 R-Value so that R — Value = 2.62 . The heat transfer per unit area is
_ AT 36-15
977 " 0462

=45.45W | m®
The temperature distribution is determined by
noting that the heat flow is the same through each material. For the pine,

T,-15°C  T,-15
0.04/0.15

qA’pme =45.45W | m* =
V.pine so that T; at the surface between the
pine and the plywood, is 27.1°C. Similarly, to determine the temperature between the
plywood and the limestone, again noting that the heat flow is the same as before
-1, T,-27.1
R 0.02/0.12

q,= 45.45 =

V, plywood
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so that T is 34.6°C. This is sketched in the figure.

: o,
(o
34-6.C P e /4)1- 3‘

i [ Ry o '
é ‘ '
. Y et
e T
Pvs ‘\ : |
T L S
/NS 108

16. Determine the heat transfer per foot of length through a copper tube having an outside
diameter of 5 cm and an inside diameter of 3.8 cm. The pipe contains 80°C ammonia
and is surrounded by 25°C air.

Solution

Assuming steady state and only conduction heat transfer, for a tube cylindrical
coordinates is the appropriate means of analysis. Then

2meAT  2m(400 W/ )(80°C — 25°C)

q@ = D 5cm
In ( O/Di) ln(3.8 cm)

= 523,980 B/ o

= 503,690 W/,

17. A steam line is insulated with 15 cm of rock wool. The steam line is a 5 cm OD iron pipe
with a 5 mm thick wall. Estimate the heat loss through the pipe per meter length if
steam at 120°C is in the line and the surrounding temperature is 20°C. Also determine
the temperature distribution through the pipe and insulation.

Solution

Assume heat flow is one-dimensional radial and steady state. The heat flow is then the
overall temperature difference divided by the sum of the radial thermal resistances. We
have
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AT -
( )uverall (120 20) = 1291W/m2

T ] T

27K 27K 2751 27-0.04

To determine the temperature distribution through the pipe and wool insulation the
radial heat flow will be same through the iron pipe and the wool insulation. The
temperature at the interface between the iron pipe and the insulation is determined by
27[(51)
=1(20-T, —_—
g, =120~ Tnon) In(5/4)

From this the interface temperature, Tpipeos =119.991°C
=Twoonp The temperature in a homogeneous radial section is (r) = T, + Clnr . For the
iron pipe, the two boundary conditions 1.) T=120°C@ r=2 cm and 2.) T=119.991°C @
r=2.5 cm can be used to solve for T(r) and resulting in two separate equations. Solving
these two simultaneously gives that To= 120.028°C and C = -0.040. For the iron pipe then
T(r) = 120.928 — 0.040lnr . For the wool insulation the two boundary conditions 1.) T
=119.991°C@ r=2.5cmand 2.) T=20°C @ r = 17.5 cm can be substituted into the
equation to solve for T{r). Solving these two equations simultaneously for Tp and C gives
that Top = 167.07 and C = -51.385. For the wool insulation T(r) = 157.07 — 51.385Inr.
the following sketch indicates the character of the temperature distribution.

y & & ot

.
L]
L
T

1
A3

? R
o S | Demun L - 20 v

18. Evaporator tubes in a refrigerator are constructed of 2.5 cm OD aluminum tubing with 3
mm thick walls. The air surrounding the tubing is at -5°C and the refrigerant in the
evaporator is at -10°C. Estimate the heat transfer to the refrigerant over 30 cm of
length.
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Solution

Assume steady state one-dimensional radial conduction heat transfer and using a
thermal conductivity value from Appendix Table B-2

w
o= 27rzo;cL T T = 2n(213§5 C,/nm (0.3 m)
In( /ri) ln( ' /(0.95 cm))

=8,105W

(—=5°C — (—=10°0))

19. Teflon tubing of 4 cm OD and 2.7 cm ID conducts 1.9 W/m when the outside
temperature is 80°C. Estimate the inside temperature of the tubing. Also predict the
thermal resistance per unit length.

Solution

Assume steady state one-dimensional radial conduction heat transfer. Reading the
thermal conductivity from Appendix Table B-2, applying the Fourier’s Law of conduction

2K

q P
for radial heat flow l ln(FO/rz')

(1.9W/m)1n(2cm/1.350m)
27z(o.35W/m 0 c)

(T-7,)=1.9W/m

and solving for T;

T=T,+ =80.34"C

l

and the thermal resistance per unit of length is

_In(r/r,) In(4/2.7)

R, = = =0.1787m-K | W
" 2w 27(035)

20. A spherical flask, 4 m in diameter with a 5 mm thick wall, is used to heat grape juice.
During the heating process the outside surface of the flask is 100°C and the inside
surface is 80°C. Estimate the thermal resistance of the flask; the heat transfer through
the flask, if it is assumed that only the bottom half is heated; and the temperature
distribution through the flask wall.

Solution

Assume steady state one-dimensional, radial conduction heat transfer with constant
properties. Since only the bottom half is heated you need to recall that a surface area of
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a hemisphere is 2mr? rather than 4mnr?. Then

: 2m< T, - T) 27(1.4W /m-K)(100-80°C)
Q= = ] : = 7056
?,._Z 1.905m 2m

The thermal resistance for the full flask would be

R = l_l( ! jz( 1 _Lj 1 —0.001417m K /W
ror, \ 4k 1.905m 2m 47r(1.4W/m-K)

For such a small thermal resistance, the temperature distribution will be nearly constant

through the wall. Yet for the bottom half of the flask we can write

O 1 70560 ( 1 1)

T(r)=T +=| ———|=80"C+
2ac\r r 27(1.4W/m* C)

T(r)=80"C+401m "’ C(0.525 m_l—lj

r

1.905m r
or

21. A Styrofoam spherical container having a 2.5 cm thick wall and 60 cm diameter holds
dry ice (solid carbon dioxide) at -65°C. If the outside temperature is 15°C, estimate the
heat gain in the container and establish the temperature distribution through the 2.5-
cm wall.

Solution

Assuming steady state one-dimensional radial conduction heat transfer and using the
thermal conductivity value for Styrofoam from Appendix Table B-2

. 4k 41(0.029

0=——-(T,—T) = ( /m K) (15°C — (=65°C)) = 962 W
1_1 1
T, 0.275m 0.3 m

The temperature distribution for T(r) is

o) = —eseC 96.2 W 1 1
"= T 0029 W] ) (0.275 m r)
. 1 1
= —65°C + 264.11 (m _ ;)

where ris in meters.
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22. Determine the overall thermal resistance per unit area for the wall shown in Figure 2-51.

Exclude the thermal resistance due to convection heat transfer in the analysis. Then, if
the heat transfer is expected to be 19.0 W/m? and the exposed brick surface is 10°C,
estimate the temperature distribution through the wall.

FIG 2-51 Structural wall.
[—o03m—] r}

25em

I (.1 m
Face Brick

Concrete

Styrofoam

Solution

23.

The overall thermal resistance will be the sum of the thermal resistances of the three

0.3m 0.025m 0.1m

R, = + + =1.192m* - K /W
components, 1.6W /m-K  0.029W /m-K 0.7W /m-K

Since there is expected to be 19.0 W/m? of conduction heat transfer through each of the
three components, the temperatures at the inside surface and the two interface

iae = (19:0W /m* ) (1.192m> - C/ W ) +10°C =32.6°C

surfaces are which is the

inside surface temperature. The temperature between the concrete and the Styrofoam
iS c—styr
and the temperature between the Styrofoam and the brick facing is

=T . —Q-Rmm =32.6"C—(19% /m*)(0.1875m> ' C/ W ) =29.0°C

T =T, +Q-R,m.ck =10"C+(19% /m*)(0.143m> - C /W) =12.7°C

styr—brick

Determine the thermal resistance per unit length of the tubing (nylon) shown in Figure
2-52. Then predict the heat transfer through the tubing if the inside ambient
temperature is -10°C and the outside is 20°C.
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FIG 2-52 Tubing.

10mm
thick

Mylon Tubing

40-mm ID

Solution

The nylon tubing has properties of Teflon, the inside diameter is 40mm, and the outside
diameter is 60mm. Then

_ In(D,/D;) _ In(r,/r) _ In (60mm/40mm) 0184m. KT
. 27K 2z 27(0.35W /m-K)

Assuming steady state one-dimensional radial conduction heat transfer,

AT 30°C

=22 = =162.7W I m
9=R, “0184m o C/w

24. Determine the temperature distribution through the wall of Example Problem 2-5 if the
thermal conductivity is affected by temperature through the relationship

Kk = 0.638 + 0.00270 T Y.

m2-K
where T is in Kelvin.

Solution

In Example 2-5 the wall is 40 cm thick, has a temperature of 12°C on one side and 40°F
on the other. Assuming steady state one-dimensional conduction heat transfer

= e 0638+ 000270 T)
A4 = de_ ' ' dx

separating variables and integrating
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Q4 f dx = §,(40 cm) = — f(0.638 +0.00270 T)dT
1
= ~9.2(12 - 40) — 5 (0.00270)(12* ~ 40%)

and then solving for the heat transfer per unit area gives

T4 = L [2576W Cm+196W Cm]—649 w
qA_40 ' m?2 ' m2 | 7 m?2

25. Determine the temperature distribution through a slab if k = aT%%?, T is in Kelvin, and a
is a constant. Then compare this to the case where k = a.

Solution

é :_Kﬂz_aTo.omd_T

4 dx dx If the variables are now separated and integrating
q J‘dx:q x:_aJ‘To.ode:_ a 7100 _ o

4 4 1.001 defining a boundary condition of T

_ a4 Lioo
- 1001 "°
=To@ x = 0 allows the constant C to be defined as . the temperature
T(x) = 1_00\1/]61.001 -q x(l.OOlj
A

distribution is then a
Fork=aand T=To@ x=0 4a

Section 2-4

26. Show that T(x,y) = (a sin px + b cos px)(ce™PY + dePY) satisfies Laplace’s equation

92T (x, 92T (x,
xy) + xy) =0
0x2 ay?

Solution

oT . _
— =(apcos px—bpsin px)(ce g de”y)
Taking first and second derivatives Ox

o°’T : .
— = —(ap2 sin px +bp’ cos px)(ce g de”y)
and Ox taking the first and second
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partial derivative with respect to y give, for the second derivative that

o°T : . ,
— =(asin px+bcos px) p* (ce P+ de?” )
oy summing these last two equations gives

Laplace’s equation.

27. For the wall of Example Problem 2-11, determine the heat transfer in the y-direction at
3 feet above the base. Then plot the temperature distribution at this level.

Solution

v/l . TTX
T(x,y) =(500F)e YL gin ==
The solution to the wall temperature of example 2-11 is L
The heat transfer in the y-direction can be determined,

; oT tor Vg X
=—kA —=—kW|—dx=—xkW (—SOOF)(—je"”y/L sin—
Q. "o lay I L For W=1ft L=

3 ft, and y = 3 ft this equation can then be finalized

. 3 3t
Q = —(SOOF) Ll J. e sin 22X dx =(SO°F) LS P 3—ﬁcosﬂ =(500F)(K)e"” (2)
¥ 3ft) 31t 31t V4 3ft 0
For a thermal conductivity of 0.925Btu/hr-ft °F from Appendix Table B-2E, the heat

transfer is about 4.00 Btu/hr. The temperature distribution aty = 3 ft for 0 < x < 3ft is

. X
T(x,y=3ft)=2.15sin—
(x,y=3/1) 30

28. Write the governing equation and the necessary boundary conditions for the problem of
a tapered wall as shown in Figure 2-53.
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FIG 2-53 Tapered wall with heat transfer.

X
N . T " —
/
hyTy |
I ,-"l
/
oyl
Solution
N . . . . . a2T

For steady state conduction in two-dimensions the governing equation will be 3z +
a2T

7 = 0. Calling Tythe ground temperature the following four (4) boundary conditions

may be used:

B.C.1 T(x,0) = T,
B.C.2 T(X,y) = T,

B.C.3 T(x,L) = T,

for0<x <X
for0<y <L

forX—A<x <X

BCA4Ty) =Ty for0<y<L and y= (L/X—-A)x

29. Write the governing equation and the necessary boundary conditions for the problem of
a heat exchanger tube as shown in Figure 2-54.

FiG 2-54 Heat exchanger tube.

T, T
| ._____-d' |
B If.-' h, ;
F / ?
/
/
fi
Il.I'."
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Solution

A heat exchanger tube with convection heat transfer at the inside and the outside
surfaces can be analyzed for steady state one-dimensional radial heat transfer with the

1d, dr_
equation ” dr dr and with, as a possibility, the following two boundary
conditions

B.C.1¢G, =2nrihy(T;, —T)@r=r

B.C.2 G, = 2nroho(T —Ty) @ r=ro

30. Write the governing equation and the necessary boundary conditions for the problem of
a spherical concrete shell as sketched in Figure 2-55.

FIG 2-55 Spherical thick walled shell.

Solution

For steady state one-dimensional radial conduction heat transfer in spherical
coordinates the governing equation for analyzing this and two suggested boundary

Ld, .dl

S — K1 — = 0
conditions are 7"~ dr dr

BC.1T=To@r=ro

BC.2T=Ti@r=r;

31. Determine the Fourier coefficient A, for the problem resulting in a temperature
distribution of T(x,y) = Y2 A,e "™/Lsin(nmx /L) involving a boundary
temperature distribution given by T'(x, 0) = cos(mx/L) forO<x < L.

41

© 2016 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



Solution
The Fourier coefficient is defined as

L L
A, = [ x.0psin| "2 s =2 foos| % Jsin[ 222
Ly L Ly L L

and using an identity

251( . (mzx ﬂxj ) (mrx ﬁxJ 15 . (nﬂx ﬁx) ) (
An:—J— sin| —+— |+sin| ———— x:—j sin| —+— |+sin| ————
L2 L L L L Ly L L L

For n = 0 the Fourier coefficient, Apobecomes
For n = 1 the Fourier coefficient becomes

1¢. (2 L 27x Y
4 = 7 sm(%}dx = —ﬁcos(%j =0
0 & 0 For n = 2, the Fourier coefficient is

1% . (37x . [ mx 1 37x 1 X 2 2
A2=—J. sin| — [+sin| — | |dx = ——co0s| — |-—cos| — |=—+—
L+ L L RY/4 L T L RY/ 2

A =—+—
n =4 57 37 For any even integer of n, such as 6, 8, 10, etc. the Fourier

2 N 2
(n+1)7z (n—1)7z

For

A4 =

coefficient is By reviewing the first coefficient, A;it turns out

that for all odd integers of n, such as 3, 5, 7, 9, 11, etc, the Fourier coefficient is zero, 0.

32. Determine the Fourier coefficient A, for the problem involving a boundary temperature
distribution given by T(x,0) = T, (1 — %) and where the solution to the temperature
field is T(x,y) = Yoo Ape "™/ Lsin(nnx/L).

Solution
2% nrTx 2% X
4, == [T(x,0)sin——dx :—I%(l——jsin—dx
Ly L Ly L

By inspection Ap =0 forn=0.
Forn=1
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2T, ¢ . 2T, ¢ .
4, =" 51n%dx—L—fjx51nﬂdx
0 0 Using integral tables in Appendix Table A-4
oT,( L ax\ 2T,(I . ax L _mx) 4T, 2T, 2T,
A =—|—-—cos— | ——| —sin—-——cos— | = - =
L T L), L\« V4 L) = =&
Forn
even,suchas?2,4,6,8,....
Lo
7 and for nodd, suchas 3,5,7,9,....
L2

A7 \which is the same as for n even

33. Plot the Bessel’s function of the first kind of zero and first order, J, and J;, for arguments

from 0 to 10.

Solution

Appendix Table A-10-1 tabulates the Bessel’s Function of arguments from 0 to 10. The

plot is shown.

© 2016 Cengage Learning®
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34. Plot the Bessel’s Function of the second kind of zero and first order, Yo and Y; for
arguments from 0 to 10.

Solution

The Bessel’s Functions of the second kind of zeroth and first order are tabulated in
Appendix Table A-10-1, plotted in Appendix Figure A-10-2, and here shown.

35. Assilicon rod 20 cm in diameter and 30 cm long is exposed to a high temperature at one
end so that the end is at 400°C whereas the remaining surfaces are at 60°C. Estimate the
centerline temperature distribution through the rod.
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Solution

The ratio of the length to radius, L/R is 3.0 so, using Figure 2-22 the following values can

be read:
x/L (T—=To)/(T¢—To) T(x) °Celsius
0.0 0.000 60.00
0.2 0.002 60.68
04 0.020 67.20
0.6 0.086 90.96
0.8 0.360 189.6
1.0 1.000 400.0

The values for T(x) are computed from the equation

T(X,0)=(;_? ](400—60°C)+60°C

0

36. A Teflon rod 15 cm in diameter and 60 cm long is at 110°C. It is then exposed at one end
to cool air so that that end reaches 25°C whereas the cylindrical surface cools to 65°C.
The other end remains at 110°C at steady state. Determine the expected temperature
distribution.

Solution

To determine the centerline temperature distribution you can use Figure 2-22b. Since
the L/R value is 60/7.5 = 8 we need to extrapolate on the graph for approximate values.
Also, the centerline temperature will not change significantly for values of z/L less than
about 0.6. In addition, a principle of superposition will provide the rigorous solution.
Yet, since the axial lengths are such that the distance from the 110°C end will be the
total length minus the length from the 27°F end, z;19 = L — z57 . Since the
temperature of the center of the rod, axially, does not change significantly from the
65°C (To) for z/L < 0.6, we can just consider each end separately. For the model of a rod
at 65°C with one end at 25°C we have, say at z/L of 0.8, from Figure 2-22b that (T—
To)/(25°F — To) = (T — 65)/(25 — 65) = (T — 27)/(-40) has a value of about 0.15. Therefore,
at z=12 cm (corresponding to z = 48 cm from the 65°C end) from the 25°C end the
centerline temperature is T(12 cm, 0) = (0.15)(25 — 65) + 65 = 595°C). At say z = 21
cm (0.4 m from the 65°C end), z/L = 0.65, and from Figure 2-22b, (T — To)/(25°F — Ty) =
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0.03 and then the centerline temperature at 21 cm from the 25°C end is T(21 cm, 0) =
(0.03)(25 — 65) + 65 = 64.4°C . Similarly, for the end at 110°C with the rod at 65° C,

at z/1=0.8, corresponding to 12 cm from the 110°C end, the centerline temperature is

T(12 cm,0) = (0.15)(110 — 65) + 65 = 72°C) At z/L = 0.65 (corresponding to 21 cm

from the 110°C end) the centerline temperature is T(21 cm, 0) = (0.03)(110 — 65) +
65 = 66.4°C

Section 2-5

37. A water line of 5-cm diameter is buried horizontally 1.2 m deep in earth. Estimate the
heat loss per foot from the water line if water at 10°C flows through the line and the
outside temperature of the line is assumed to be 10°C. The surface temperature of the
earth is -30°C.

Solution

Using the shape factor from Table 2-3, item 8, where L » r

s 2rL 2rL 2rL
1Y - 12m 4.564
1 1
cosh™ = cosh 5T % 10-2

The thermal conductivity of earth is about 1.5 W/m-K from Appendix Table B-2 so that
the heat transfer per unit length is

q, = SkAT(1/L) = (426%) (1.5 %) (40°C) ~ 81%

38. A chimney is constructed of square concrete blocks with a round flue as shown in Figure
2-56. Estimate the heat loss through the cement blocks per meter of chimney if the
outer surface temperature is -10°C and the inner surface temperature is 150°C.

FIG 2-56 Chimney and flue.

2
",
A g

20-cm
diameter
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Solution

Assuming steady state conduction and using the shape factor from Table 2-3, item 4, the
heat loss can be estimated. From Appendix Table B-2 the thermal conductivity of

S 2T 475
L ln(0.54Wj In(0.54(7))
concrete may be taken as 1.4 W/m-K so that r
The heat loss can then be calculated from
) S w 0 kw
=—xAT =(4.725)| 1.4—— |{150—(-10) C|=1.058——

39. Nuclear waste is placed in drums 50 cm in diameter by 100 cm long and buried in sand.
Water lines are buried adjacent to the drums to keep them cool. The suggested typical
arrangement is shown in Figure 2-57. Estimate the heat transfer between a drum and
the water line.

FIG 2-57 Nuclear waste drums.

r—— 50 oo ——a
el
- Sand

' Water Line
Drum L -1 TER
sl * 159
ik
fy J1 10-cm
i e : diameter
Ly - N =
S0)-cm I :
diameter
T, =150°C

Solution

Assume steady state, infinite media, and all heat transfer occurs between the 100 cm
long drum and an adjacent 10 cm long water line. Using, item 11 from Table 2-3 with r =
ri/ro=25/5=5, and L =50 cm/5 cm = 10, gives
2 B 2
cosh™! (Lz —l—rzj cosh™ (7.4)
2r

S = =2.336

Assuming dry sand with a thermal
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conductivity from Appendix Table B-2 of 0.3 W/m-K, the heat transfer is

Q =SKLAT = (2.336)(0.3%)(1;71)(1351{) =94.6W

40. Steel pins are driven into asphalt pavement as shown in Figure 2-58. Estimate the heat
transfer between a pin when it is at 15°C and the surface when it is at 45°C.

FIG 2-58 Steel pins in asphalt.

T, = 45°C

45cm Asphalt

15°C

— —
2.5cm

diameter

Solution

Assume steady state conduction. Using a value of 0.062 W/m-K for the thermal

conductivity of asphalt from Appendix Table B-2, a uniform pin temperature of 15°C and
the asphalt surface is 45°C,

)=3S AT——Zn AT——ZH(MS m) 0062—W 45°C — 15°C
o= _an_LK O 2(0-45111)(' m-K>( —15°0)
R 15025 m

=147W

41. A heat treat furnace sketched in Figure 2-59 has an inside surface temperature of
1200°C and an outside surface temperature of 60°C. If the walls are assumed to be

homogeneous with thermal properties the same as asbestos, estimate the heat transfer
from the walls, excluding the door.
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FIG 2-59 Heat treat furnace.

15 cm
(typical) «_

60 cm

T

T 70 cm

&0 cm

Solution

The heat transfer between the inside and the outside is Q = pr + Qpottom +

Qback + ZQside + 4'Q.sideedge + 2.Qbackedge + ZQuprightedges + 4'Q.corners . All of these
can be modeled with shape factors from Table 2-3. The first four terms are just one-
dimensional conduction through a sheet, or plate. The next three are edges and the last

0= £[30x650m2 +30x65+30x40 + 2x40x65] n
is a corner. Combining all this Ax

KAT[4(0.559)(65)+2(0.559)(30)+2(0.559)(40) +4(0.15)(15)]

substituting the thermal conductivity, the thickness Ax, and the temperature difference

Q =1634.8W

42. A small refrigerator freezer, 40 cm x 40 cm x 45 cm outer dimensions, has an inside
surface temperature of -10°C and an outside surface temperature of 25°C. If the walls
are uniformly 7.5 cm thick, homogeneous, and with thermal properties the same as
Styrofoam, estimate the heat transfer through the walls and door of the refrigerator.

Solution

Using shape factor methods we can list

Q - Qduor + Q back + Qtop + Q bottom + 2Qsid€ + 4Q edge + 4Qupedge + 4Qback/ frontedge + 8Q corner

The thermal conductivity of Styrofoam is 0.029 W/m-K, the temperature difference is
35°C. The first five terms are just heat transfer through a flat plate, the next three are
edges, and the last is a corner. Using items 1, 17, and 18 from Table 2-3 we get
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. KAT
Q= [0.25 X 0.25 cm? + 0.25 X 0.25 cm? + 0.25 X 0.3 cm? + 0.25 X 0.3 cm?

Ax
+2 % 0.25x 0.3cm? ] + kAT (0.559)(4 X 0.3 + 4 x 0.25 + 4 x 0.25)
+ KAT(8 X 0.0125 * 0.075)

The total heat transfer is then

0=103W

43. Using graphical methods, estimate the temperatue distribution and the heat transfer
per meter depth between the two surfaces at the corner shown in Figure 2-60. Notice
that the scale is 1 to 8, or that the figure is only one-eighth the actual size.

FIG 2-60 Heat transfer at a corner.
Styrofoarn
30°C
— B0
Scale: 1 to 8
Solution

The sketch shown shows that there are 11 heat flow paths, M = 11, and 4 temperature
steps, N = 4. Thus, the shape factor is roughly M/N = 2.75 and the heat transfer is

Q = SKAT =(2.75)(0.029% / m-K )(110K ) =8.7725W / m

e
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44. Using graphical methods, estimate the temperature distribution through the phenolic
disk surrounding the silicon chip sketched in Figure 2-61. Then estimate the heat

transfer per millimeter of depth.

FIG 2-61 Silicon chip embedded in phenolic.

25°C

80°C /
__~ Phenolic

X

/
! O
\\\

~ Silicon Chip

Scale: 100 to 1

Solution

Here we have that the shape factor is the heat flow paths, M, divided by the
temperature steps, N, so that S = M/N. From the sketch shown there are about 25 heat
flow paths and 4 temperature steps. Using a thermal conductivity of 0.35 W/m-K for
nylon as an approximation for phenolic from Appendix Table B-2, we have

5, =S AT—25<035 w )(80°C 25°C)—1203W
Q=K 4\ " m-K B “m

L

45. Using graphical techniques estimate the temperature distribution through the earth
around the electrical power line shown in Figure 2-62. Then estimate the heat transfer
necessary between the line and the ground surface for steady state conditions. Express

your answer in W/m.
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FIG 2-62 Buried high-power line.

rC

\‘-,-"’-' 10°C

Solution

The temperature distribution and the heat transfer can be approximated with a sketch
of the heat flow lines and isotherms. These two sets of lines need to be orthogonal or
perpendicular at all times and the spacing between adjacent isotherms and heat flow

=i o =
:_",////,4,\ W
/7 /J///m\ AT
\x/ﬂquﬂxkﬁ\/

N H
4 9. Iy
. \

=
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lines need to approximate a square. The Shape factor, S, will be the ratio of the heat
flow paths, M, to the isotherms, N. The sketch shows a possible approximate solution
where the temperature steps or isotherms is seven (7) and the number of heat flow
paths is twenty seven (27). Then

q,=SKkAT N =2(0.52LJ(20K) 4017
! N m-K m

Notice that the shape factor is 27/7 = 3.86, which is a value in close agreement with
item 8 of Table B-3 for a buried line,
2 2
S= % = =4.77
cosh'= cosh™'=
R 2

46. Using graphical techniques, estimate the temperature distribution through the cast iron
engine block and head shown in Figure 2-63.

FIG 2-63 Sketch of a gasoline engine.

95"
.-'"'FH--FFH
e
-
70°C
- Chotside
A Surface
S -
= 3157 &
Scale 1 to 3

Solution

Referring to the sketch of the piston-cylinder and assuming symmetry, there are five (5)
isothermal steps so N = 5. Also there are estimated to be twenty-two (22) heat flow
paths for one half the cylinder for heat exchange between the cylinder at 315°C and the
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surroundings at 70°C. From Appendix Table B-2 the thermal conductivity for cast iron
may be taken as 39 W/m-K. Then the heat transfer is

_ M W\ /22
Gr =K AT = (39 —) (?) (315°C — 70°C) = 42042

m-K m - radious

and if we assume an effective radius of 0.09 m and rotate the 22 heat flow paths
through one revolution, 2rmtr, then the heat transfer will be

W
0 = 27T fectivedr = 2(0.09 m) (42042 E) =23,774W

47. A Bunsen burner is used to heat a block of steel. The surfaces of the steel may be taken
as 50°C except on the bottom, where the burner is heating the block. Figure 2-64 shows
the temperature profile at the bottom surface and the overall configuration of the
heating process. Using graphical techniques, estimate the temperature profile through
the block and the heat transfer through the block.

FIG 2-64 Bunsen burner and steel block.

SIC
25-CIm Stedl Block
cube | spe i
e

}

SIC

r o
[ERpFIEHS (SR | [

By

-

_—
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Solution

55¢

2=

' ﬁ(—_’_"\\'\

: C

850 —— T—-\

Using graphical techniques requires that a web of approximately square elements are
formed between adjacent heat flow lines and isotherms. An approximate solution is
shown, noting that the 850°C is assumed to be in the block. The number of heat flow
paths for one-half the block is nine (9) and the number of isotherms is five (5). Assuming
a carbon steel the thermal conductivity is taken as 60.5 W/m-K from Appendix Table B-
2. Since the block is 25 cm square

0= kLM AT = (60.5Lj(0.25m)(2j(850—SOK) =21.78kW
N m-K 5

Section 2-6

48. Estimate the heat transfer from the fin shown in Figure 2-65. Write the necessary node
equations and then solve for the temperatures. Assume the fin is aluminum.
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FIG 2-65 Fin heat transfer.

T..=30°C
h,=43 W _
m-- K
Ay
.- 2 & ——
N Ax
» - * »
el /
& L
160°C
Solution
/
s

Referring to the sketch, assuming symmetry so that only 9 nodes need to be identified
and using node neighborhoods of 2.5 cm squares (Ax = Ay = 2.5cm), and assuming the
temperature of node 5 is 160°C the node equations can be written for steady state
conduction two-dimensional heat transfer. The thermal conductivity of aluminum is 236
W/m-K from Appendix Table B-2. For node 1:

K(gj{n—n},{&j{ﬂjwﬁ(&_Tl):o
2 Ax 2 Ay 2 substituting into this node

equation, for the Temperature matrix
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[ 289.5 7

293.3
289.29

289.09
296.15
290.78

288.38
1284.56

49. Write the node equations for the model of heat transfer through the compressor
housing section shown in Figure 2-66. Then solve for the node temperatures by using
EES, Mathcad, or MATLAB.

FIG 2-66 Compressor housing section.

b, = 180 Wim*ag
T,=35°C

Cast iron, Scale: 1"= 6"

Solution

Referring to Figure 2-66, which is a scale 1 to 6, the inner radius is assumed to be 21 cm
and the outer radius is then 30 cm. The housing is cast iron so that the thermal
conductivity is 39 W/m-K from Appendix Table B-2 and assuming that the slots have
quiescent fluid at with a thermal conductivity of 1 W/m-K, the node equations may be
written out. Referring to the following sketches some of the nodes are identified, others
need to be to be inferred, and node 1 is shown in some detail.
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Node 1 neighborhood. The angular displacement between nodes is 11.25°0r 0.196
radians. For node 1

A | 1) K(0.196md2)(0.285m)[T2A—rT1)+h0(%2(0.3711))(350(3_T1):O

—(T.
2 (0.196)(0.3m)( ’
Substituting the thermal conductivity, convective heat transfer coefficient, and radius

9.95(T, —1;)+36.3(T, — ;) +5.292(35-T;) = 0

change which is the equation for

node 1

An energy balance for node 2 gives

Y S 0.196(0.285m) (TI_TZ}LK 0.196(0.255m) (7’3—7’2):()
0.196(0.27m) 2 Ar 2 Ar

o 22T, ~T,)+36.309(T, ~T,) +32.487(7,~ ;) = 0

which is the equation for
node 2. An energy balance of the heat flows to each of the nodes can be made and the
following equations result
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24.872(T, ~T;)+32.487(T, ~ T, ) +28.665(T, ~ ;) = 0

t which is the equation for

14.21(T, - T,) +28.665(T, ~T,) +7.82(300~T,) = 0

node 3, which is the equation

for node 4. After applying energy balances to all of the 20 nodes the following set of
equations result

51.542T; — 36.3T, — 9.95T5 = 185.22
90.896T, — 36.3T; — 22.1Ts — 32.487T; = 0
86.024T; — 32.487T, — 28.665T, — 24.872T, = 0
50.695T, — 28.665T; — 14.21Ty = 2346
103.084T5 — 9.95T; — 72.6Ts — 9.95T, = 370.44
142.077Tg — 22.1T, — 72.6Ts — 36.32T, — 11.057T;5 = 0
130.96T, — 24.87T; — 36.32T — 57.33T5 — 12.44T;; = 0
101.39Tg — 14.21T, — 57.33T, — 14.21T;, = 4692
103.084Ty — 9.95T5 — 72.6Ty — 9.95T;5 = 370.44
94.757Ty — 11.057Ts — 72.6Tg — 0.043T;; — 11.057T;, = 0
82.253Ty; — 12.44T, — 0.043T;, — 57.33T;, — 12.44T;5 = 0
101.39T;, — 14.21Tg — 57.33Ty; — 14.21T;5 = 4692
103.084T; 3 — 9.95Ty — 72.6Ty, — 9.95T;, = 370.44
22.114Ty, — 11.057Tyy — 72.6T;3 — 0.043Ty5 — 11.057T;5 = 0
82.253T;5 — 12.44T;; — 0.043T;, — 57.33Ty¢ — 12.44Ty9 = 0
101.39T;¢ — 14.21Ty, — 57.33Ty5 — 14.21Ty, = 4692
51.542T;, — 9.95T;5 — 36.3T;5 = 185.22
47.3785T;g — 11.057T;, — 36.3T;, — 0.0213Ty = 0
41.126Ty — 12.44T;5 — 0.0213T5 — 28.665T,5 = 0
50.695T,o — 14.21T;4 — 28.665T;9 = 2346

With this set of equations the temperatures can be determined. Using Mathcad, noting
that the results are tabulated in the final column with node 1 being listed as 0, node 2 as
1, and so on.
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Solving for the temperature field in an air compressor using Mathcad:

Guess Values T1 =40
T2 :=80
T3 =150
T4 =250
T5 =40
T6 =80

T7:=150
T8 :=250

T9 =40

T10 :=70 THESE VALUSS

T11:=180 wenrs
T12 :=260 eST/IMATSY FRom

T13 =40
T14:=70 TH BOUNDHZ)/
T15 :=200 cove)TION'S

T16 :=270
T17 :=40
T18 =80
T19 :=160
T20 :=280

Given

51.542-T1 - 36.3-T2 — 9.95-T5=185.22

90.896-T2 — 36.3-T1 — 22.1-T6 — 32.487-T3=0

86.024-T3 — 32.487-T2 — 28.665-T4 — 24.872- T7=0

50.695-T4 — 28.665-T3 — 14.21-T8=2346

103.084-T5 — 9.95-T1 — 72.6-T6 — 9.95-T9=370.44
143.167-T6 — 22.1-T2 — 72.6-T5 — 37.133-T7 - 11.333-T10=0
132.093-T7 — 24.87-T3 — 37.133:T6 — 57.33-T8 - 12.76-T11=0
101.39-T8 — 14.21-T4 — 57.33-T7 — 14.21- T12=4692

103.084 - T9 — 9.95-T5 — 72.6-T10 - 9.95-T13=370.44
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96.9 T10- 11.333-T6 — 72.6-T9 - 1.65-T11 - 11.333-T14=0

84.5-T11 - 12.76. T7 - 1.65-T10- 57.33-T12- 12.76: T15=0

101.39-T12- 14.21-T8 — 57.33-T11 - 14.21-T16=4692

103.084-T13 - 995-T9 - 72.6-T14 — 9.95-T17=370.44

96.9-T14- 11.333-T10- 72.6-T13 - 1.65-T15- 11.333-T18=0

84.5T15- 12.76 T11 - 1.65-T14 - 57.33-T16 - 12.76-T19=0

101.39-T16 1421-T12 57.33-T15 14.21-T20—4692

e 0

0 [ 149.086
T768.279
196333
751284
139.743
1158633
50422
258297
8 [ 103.989
Find(T1,T2,T3,T4,T5,T6,T7,T8,T9, T10, T11,T12,T13, T14,T15,T16,T17, T18,T19,T20) = [ & 11 7.481
10[ 244.077
1] 25353
12| 5696
13| ©92.856
14| 258605
5] 26 5.758
16| 62177
7] §7.743
18] 26 2.428
19] 26 5.157

51.542:T17 995-T13 36.3T18 18522

48.458-T18 11.333-T14 36.3-T17 0.825T19 0

42.25-T19 12.76-T15 0.825-T18 28.665°T20 0

50.695-T20 14.21-T16 28.665-T19 2346

50. Write the node equations for describing heat transfer through the buried waste shown
schematically in Figure 2-67. Notice that there is energy generation that occurs due to a
pyrolytic reaction of the waste (slow chemical reaction) and that there are boundaries
that require reference to Table 2-6.
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FIG 2-67 Buried waste mass.

T -
¢ =30 kW
gen -3

m

Earth
Ax=Ay=10cm

Solution

For doing a finite difference analysis the following grid may be used. Then the heat from
the waste mass per unit depth (1 m) is E; = 30 kW /m? (0.2m)? = 1.2 kW. Estimate
that the power or heat to node 1 is 0.6 kW and 0.3 kW to node 2. Using a thermal
conductivity of 0.52 W/m-K for earth or soil from Appendix Table B-2, and utilizing
symmetry in the x-direction, one-half of the neighborhood for node 1 will be 0.05 m

K(ﬂj(—ﬂ 1 JH{QJ(—E 1 j+600W =0
wide and 2 Ay 2 Ax or, for node 1

(0.52)(%}(0.26)@2 ~T,)+600W =0

Similarly, for the remaining nodes,

(0.26)(T; - T,)+(0.52)(T; - T, ) + 300 =0

which is for node 2,

J2vC.
-5

&———0
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(026)(T;~13)+(0.26)(T, ~1,)+(0.52) (T, ~T,) =0

which is the node equation for

node 34 =L -hL-TL,-1, =0

S-S T =T, =6'C

4T, ~T,~T,~T,;=12°C
4T, ~T,~T,~T,=12°C

2T, - T, =12°C

51. Write the node equations for determining the temperature distribution through the cast
iron lathe slide shown in Figure 2-68. Notice that the sliding surface is assumed to be
adiabatic and that there are irregular boundary profiles.

FIG 2-68 Lathe slide.

Btu
hr-fit?

g = 3150 W/m®

I
I
I
Ho]exa R e
S =l s bl el S T Y R
I I " “ miK
‘ - _:_ - |_—4-Ci\-|—-|
[ P A
; \“:’/ Lol a2 _l_
I I I I I I Ay (Typical)
L I -
[ B T

Ax=Ay=25cm
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Solution

A proposed node layout is shown

The node neighborhoods are Ax = Ay = 2.5 cm, assume the hole has air at 30°C with a
convective heat transfer coefficient of 10.4 W/m?2-°C, and the thermal conductivity for
cast iron may be taken as 39 W/m-°C from Appendix Table B-2. Applying an energy
balance to node neighborhood 1, the following equation results

w

Substituting for thermal conductivity and node neighborhood size,
2T, — T, — Tg = 2.0°F

For nodes 2 through 6
3T2 - T3 - T7 = _15.70F

1.044Ts — T, = 3.5°F

2T6 - T1 - T7 - T10 = 17.8

Nodes 7, 8, 11, and 12 require some adjusting. Referring to the sketch for node 7
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The energy balance can be approximated by

o0

A A A Ax Ax
ko (T =Tk (= T )bk (T =Ty ) (5 =T ) %(7}(90°F—T7)=0

2Ay
Ay Ay Ay Ax
KA_x(T6 -T;) +KA_x(T2 -T;) +Km(T8 -T;) +Km(T11 -T;)
+h "(Ax) (30°C—T,) = 0
002 2 7) —

which becomes  3.017T, — T¢ — T, — 0.5Tg — 0.5T;; = 0.57

Similarly, for node 8 3.017Tg — T, — Tg — 0.5T, — 0.5T;, = 0.57

And for nodes 11 and 12 3.017T;; — Ty9 — T35 — 0.5Ty, — 0.5T, = 0.57
3.017Ty, — Ty — Ty3 — 0.5T;1 — 0.5Tg = 0.57

The remaining node equations are straightforward energy balances and are,

For node 9 33.022Tg — T, — Tg — Ty3 = —536.2°C
For node 10 3Tio— Te— T11—T14 =0
For node 13 33.022T;3 — Ty — Ty, — Ty, = —536.2°C
For node 14 3Ti4— Tig— Tys — T =0
For node 15 ATi5 — Ti1— T14—Tig— T51 =0
For node 16 4T — Tip — Tis—Ti7— Ty =0
For node 17 3.511T;; — Ty3 — T16 — Ty3 — 0.5T;5 = 0.34°C
For node 18 2.022T g — Ty7 — Ty — Ty, = 18.5°C
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For node 19 1.533T19 - 0'5T18 - T25 = 0.490C

For node 20 2Ty — T14—Ty1 =0

For node 21 3Ty1 — Tys — Tog— Ty, =0
For node 22 3Ty, — Tie— Ty —To3 =0
For node 23 3Ty — Ty7— Toy — Ty =0
For node 24 3Ty — Tyg— Ty —Tos =0
For node 25 2.022T,5 — T19 — Toq = 0.72°C

52. A concrete chimney flue is surrounded by a Styrofoam insulator as shown in Figure 2-69.
Construct an appropriate grid model and then write the node equations needed to
determine the temperature distribution.

FIG 2-68 Chimney flue.

{Concrete o T=30°C
G0-Cm 30-cm 3 cm of
sqjuare squars Styrofbam
1\
1
1
1
1
II
Ty= 130°C

Solution

Assume symmetry for the chimney so that only one quarter of the section needs to be
considered, as shown in the sketch
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Writing the energy balance for node 1

I<-C(N’lg 130_7} +KconAy ]-'2 _]-i +KCOY!£ 7—'5 _7—1 :0
2 Ay Ax 2\ Ay

Which can be reduced to 2T, — 0.5Ts — T, = 65°C
Fore node 2 AT, — T, — T, — T3 = 130°C
For node 3 AT, —T,—-T,— T, = 130°C
For node 4 2.25T, — T; — Tg = 32.5°C

For nodes 5 through 9 the Styrofoam impacts the energy balance so

T —T-. T —T. -
(B o (B o, 52T o
Y y/ Also, since the

boundary temperature between the Styrofoam and the concrete is not yet known we

; Ax(T -T, Ax(30-T,
Q = Kcon N = Ksty Y
30C—node5 2 Ay / 2 2 Ay / 2

and substituting back into the node equation gives

write JSoIving this equation for T

Ksty _ _ — & 0
(1.5 + oot Koro KSw) Ts — 05T, =T = KcontKsty (30%)
Ksty _ _ _ — & 0
For node 6 (3 + PR Ksty) Te—Ts—T, = 17 = Kcon+Ksty (300
Ksty _ _ — — KS# 0
For node 7 (3 + P ,Cm,) T;—Tg—Te— T3 = Keont+Ksty (300
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For node 8 (3 + &) To—Ty =T, — Ty = —2(30°)

Kcont Ksty KcontKsty
Ksty Ksty 0
For node 9 14+ 52 )7, 7, = — 5 (300)
Kcont Ksty KcontKsty

53. Consider the chimney flue of Figure 2-69. If the Styrofoam is removed and the outer
boundary condition is the same, write the necessary node equations and solve for the
node temperatures. What is the heat transfer through the chimney flue?

Solution

Using the same node arrangement as for Problem 2-52 and referring to the sketch, the

node equation for node 1 is 2T, — 0.5Ts — T, = 65°C
For node 2 AT, — T, — T3 — Tg = 130°C

For node 3 AT; —T,—T, — T, =130°C

For node 4 2.25T, — T3 — Tg = 32.5°C

For node 5 2.5Ts — 0.5T; — Tg = 15°C

For node 6 5T —T,—Ts — T, =60°C

For node 7 5T, —T; —Tg — Tg = 60°C

For node 8 5Tg —T,— T, — Ty = 60°C

For node 9 3Ty — Ty = 60°C

The heat transfer can be approximated by the equation
8(Q1_5 +Qy_g+ Q3_7 + Q4_8) which can be written

Qrotar = 8k [0.5T; + Tp + T3 + Ty — 0.5Ts — Ty — T, — Tg]
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The temerature field is determined by solving for the nine node equations. Using Mathcad:

20 =100 SO O )
Sl [P e R | T
oI (R B (R B IS ]
0ol =1 2250 00 el gt =10
M=-05 0 0 0 25 -1 0 0 0
[ [ ) N (SR [ 1y
00 =1 g 0 -
IS ¢ S S e IR IS (B e
| 0 =0 0 e e ] e
- 65 1
130
130
325
v:i=| 15
60
60
60
_60.

soln :=lsolve(M, v)

[86.375]
86.7
83.363
70.233
soln = | 42.101
47.064
46.517
42.161
| 34.054 |
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k=16

T1 :=86.375

T2 :=86.7

T3 :=83.363

T4 :=70.233

T5 :=42.101

T6 :=47.064

T7 :=46.517

T8 :=42.161 il

O =8k (05 Fl e I T T4 = 0515~ T6 2 T7.= T3)
w
5 e
Q= 16210 —

54. Write the node equations for the nodes 1 and 2 of the model of the oak beam sketched
in Figure 2-32.

Node 4015 an Internzl node
Numbers refer to nodes
Some nodes have been
deleted for clarity.

Az = 10cm
Ar=5cm
A = 225*

(b} Finlie defference model. Numbers refer to nodes. Some nodes are deleted for clarity.
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Solution

The model of the round beam is such that axial symmetry is assumed so that a
hemispherical section will suffice for nodes. In Figure 2-32 the node numbering scheme
follows the pattern of number 1 is in the center, 2, 3, and 4 are radially outward to the
outside surface. Then on a 22.5%rotation numbers 5, 6, and 7 occur. On the next 22.5°
rotation numbers 8, 9, and 10 occur. Continuing in this pattern there are three nodes at
every 22.5%rotation for the first 28 nodes. On the next hemisphere axially parallel to the
first hemisphere node number 29 will be on the center position with numbers 30. 31.
And 32 outward. Again at a 22.5°rotation numbers 33, 34, and 35 occur. Continuing, the
pattern is such that nodes on the hemisphere parallel to the succeeding hemisphere will
have a number of the previous node plus 28. Thus, node 2 will be adjacent to nodes 29,
axially, and also to nodes 3, 5, and 1. This model is sketched. Node 1 has nine (9)
adjacent radial nodes; 2, 5, 8, 11, 14, 17, 20, 23, and 26. Node 1 also has an adjacent
node on the axis, number 29. This model is sketched.

/7,250

3

For node 2 there four adjacent nodes with the thermal resistances of

64 32 Az 64
Rrpi1-2 = ez’ Rrrz_p = e Rrz30-2 = m(i)(rz—ﬁ) i and
16 4
R _ @)@ _ s that the nod tion for node 2 can be formed
T05-2 = (1 par - ledz so that the node equation for node 2 can be formed.
Noting that Q = AT/RT the node equation becomes
KT KAz 3xmA\r 16Az

(T -T)+— (1 -L)+— (T~ L) +——(L-1,) =0
32 64 e

64
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The thermal resistances for conduction between node 1 and 3, 5, 8, 11, 14, 17, 20, 23,
and 26 are

64

R, _—
KTAZ and

7

2-1 RT

26-1

32
RTr,S—l = RTr,S—l = RTr,l -1 = RTr,1471 = RTr,1771 = RTr,2O—1 = RTr,23=1 = Az
KTIAZ gnd for node 29
8Az
R

T2,20-1 — P
tol KZAT" and the node equation or energy balance for node 1 is
KAz

KAz KAr?
(TZ+T26_2]})+?(TS+];+Til+]-i4+]-i7+T20+T23_7Ti)+ SAz (T29_T1):O

55. Figure 2-70 shows a section of a large surface plate used for precision measurements. A
person touches the surface and thereby induces heat transfer through the plate.
Neglecting radiation involved, write the node equations for nodes 1, 5, and 12 of the

node model of the plate shown in the figure. Assume steady state conditions and that
the plate is 65°F beyond the nodes indicated in the figure.
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FIG 2-70 Surface plate.

\

/\
2

| | 3 s T,=18C

! ! ! ! ! h,=17.3W/m?- K
__J____I____I____J.___J____L -

61 71 81 9 110

1 1 1 1 1 Ay

| | | | |
e Bt bl ittt Bl el

1 12, 13, 14, |15 1

'16 7 '18 e o

Insulated Ax=Ay=5cm

Solution

The sketch of the granite surface plate is shown.

For node 1, the energy balance becomes

Ay /18°C—T, T, —T,\ Ay /T,—T,
A = AX(Te —Ty) =
K 2( Ax )+"x( Ay )+"2( Ax )+h *( 1) =0

which reduces to

3.035T; —0.05T, — Tg = 28.15°C
In a similar fashion, the node equations are
3.035T; — 0.05T, — T;o = 28.15°C

for node 5, and f or node 12
4le _T7 _Tl3 _Tl7 -1, = 0
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56. Write the complete set of node equations for the surface plate shown in Figure 2-70 and
estimate the temperatures and the heat transfer through the plate.

Solution

Referring to the sketch for the nodes of the surface plate, shown in the solution to

Problem 2-55, the twenty node equations become

3.035T; — 0.5T, — Ty = 28.15°C

3.035T2 - 0.5T1 - 0.5T3 - T7 = 37.04’0C

3.035T; — 0.5T, — 0.5T, — Ty = 37.04°C

3.035T, — 0.5T; — 0.5T5 — T = 19°C
3.035T5 — 0.5T, — T;, = 28.15°C
4T¢ — Ty — T, — T;; = 18.33°C
AT, — Te—T, —Tg—T12 =0
ATg— T; — T3 —To—T13=0
4Tg — Tg =Ty —T1o—T14 =0
4T o —Tg — T — T15 = 18.33°C
4T1 —Tip — T16 — T = 18.33°C
4T1— T11 —T;—T13—T17 =0
4T13 — T1 —Tg—T14 —T1g =0
4T14 — T1z3—Tog—Ti5 —T19=0
4T 5 — T4 — T19 — Tyo = 18.33°C
2Ty — 0.5Ty; — Ty7 = 9.17°C
2Ty7 — Ty — 0.5T;4 — 0.5T1g =0
2Ty — T13 — 0.5T;7 — 0.5T1o =0
2T19 — Ty4 — 0.5T 13 — 0.5, =0
2T59 — 0.5Ty9 — Ty5 = 9.17°C
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This set of 20 x 20 matrix ca be solved with a computer

19.27
211

28.7
211

19.2
19.5

21
22.9

20.9
19.4

19.5
20.5

21.2
20.4

19.4
19.6

20.3
20.7

20.2
£19.34

57. A plutonium nuclear fuel rod shown in Figure 2-71 has energy generation in the amount
of 112 MW/m3. For the grid model shown, write the node equations and solve for the
temperatures. Assume Kk = 10 W/m-K.

FIG 2-71 Plutonium fuel rod.

7.5
lem
diameter

h., = 690 W/m?® - K
T, = 315°C
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Solution

From Figure 2-71, it can be assumed that the heat flow is radially outward and axially
and angularly and axially symmetrical. The node model is sketched

Then for node 1 the adjacent nodes are 4 and 2 plus a convective heat transfer.
Referring to the sketch for node 1

The node equation is
Ar Az\ (T, — Ty Ar?\ (T, — T, Ar?
5@ (3) (P e (T)( 5 ) e () T

+ (112 x 106 MW) (AZ) mATTN _ 0
m3/\2 4 |

Using the following values,

he = 690 —— , Tp, = 315°C, k = 10—, Ar = 0.0375 m, and Az = 0.3 m
m4-K mK

the following node equation results
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0.56586T; — 0.5T, — 0.0009766T, = 528.3

A similar analysis for node 2, noting that it has three adjacent nodes, 1, 3, and 5, plus a
convective heat transfer and energy generation, yielding

1.79417T, — 0.5T; — 9.75T; — 0.0347Ts = 4386.7

For node 3, the energy balance reduces to
17.727T; — 91.5T, — 0.00684T, = 10267

For node 4,
1.001954T, — 0.000977T; — 0.000977T, — Ts = 1013.9

Node 5 is a bit more complicated. Referring to the sketch the node equation becomes

4.015625T5 — T, — 3T — 0.0078125T, — 0.0078125T; = 4055.6

Node 6 has three adjacent nodes plus convection and energy generation so its node
equation is

20.3Tg — 3T — 0.00684T; — 0.00684Ty = 9754.2
Node 7 energy balance similar to node 4, becomes
1.001954T, — 0.000977T, — 0.000977T,, — Tg = 1013.9

For the node 8 node equation, similar to node 5
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4.015625Tg — T, — 3Ty — 0.0078125Ts — 0.0078125T;; = 4055.6
For node 9, similar to node 6
20.3Ty — 3Tg — 0.00684T, — 0.00684T,, = 9754.2

The energy balance for node 10 is similar to node 7 except it is only one-half as long as
node 7 and there is no lower surface heat transfer.

0.500977T;o — 0.000977T, — 0.5T;; = 506.94
Node 11 equation is
1.328T;; — 0.5Ty3 — 0.75T;, — 0.0078125Tg = 4054.3
And Node 12 is
9.409T;, — 0.75T;; — 0.00684Ty = 6278.9

Using Mathcad for the prediction of the 12 node temperatures, the results are

14042.87
3988.9

826.7
3566.7

2552.2
858.3

3579.4
2561.1

859.4
745.6
645
L 1195 -

Section 2-7

58. Determine the heat transfer and fin efficiency for a copper fin shown in Figure 2-72. The
fin can be assumed to be very long and its base temperature taken as 93°C.
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FIG 2-7T2 Problem 2-58.

Copper Fin
u'h“kﬁ el -
o

L!,r‘, -"rg!

;
l 3 mm thick

T b, =120 Wm*K
T.= 25°C

Solution

For very long fins the fin efficiency is

. ! /KA
fim = TAl 7T p
LN hP where L=10cm=0.I1m

k =400 W/m-k From Appendix Table B-2
A=0.6 m x (0.003 mm) = 0.0018 m?
h =120 W/m? -K
P =perimeter =1.2 m
Then 0.30=30%

The heat transfer of the fin is

Q =1finQo = (0.3)(hAs)(93 — 25°C) = 0.293 W/fin

59. A square bronze fin, 30 cm wide, 1 cm thick, and 5 cm long is surrounded by air at 27°C
and h = 300 W/m? -K. The base temperature of the fin is 170°C. Determine the fin tip
temperature, the fin heat transfer, and the fin efficiency.
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Solution

For a finite length fin the temperature distribution is given by the equation

cosh |:m (L- x):l + ’:Ksinh |:m (L —x):l

0(x)=T(x)-T, =0, -
coshmL +—sinhmL
mk
For this fin h =300 W/m’K
k=114 W/m-K
fin thickness, Y =0.01 m, fin width W=0.3m
fin length L=0.05m

perimeter, P=2W +2Y=0.62m, Area, A=WY =0.003 m?

60. A square aluminum fin having base temperature of 100°C, 5 mm width, and 5 cm length
is surrounded by water at 40°C. Using h of 400 W/m?-K, compare the heat transfer of
the fin predicted by the three conditions: a) very long fin, b) adiabatic tip, and c) uniform
convection heat transfer over the fin, including the tip. Assume a width of 1 m.

Solution
From the Appendix Table B.2, kuum =236 W/m-K Also,
©p=100-40=60K T..=40°C, h=400W/m?*K, t=0.005m, L=0.05m, W=1m

P=2t+2W+2W=2.01m, A=LW=0.05m? and

=26.1m™!

i3

QOfin = 6oVhPKA = 1848 W

For the very long fin, a)

P / — 1595
For a fin with an adiabatic tip, ooy = gtEniianbigmid =200
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For a finite length fin,

. h ]
sinh mL + —coshmL |

_(,_.)ﬁﬁ. = 80 Y| ;}PKA 4 ”;L =1624W
‘ coshml + —} sinh ml |
mL ]

61. Show that the fin heat transfer for a square fin having an adiabatic tip is

Qﬁn zﬁoxth](A tanh mL

Solution
For a square fin with an adiabatic tip the temperature distribution is

cosh [m (L- x)]
coshmL

0(x)=T(x)-T, =6,

The heat transfer is

0y, =—x4 (%Tj e (%j

X

and

09 m@sinh[m(L-x)]

ox coshmL

At x = 0 this is

( @j __mbsinhml o anhmL
ox )y coshmlL

The fin hat transfer is then
Qﬁn =—kA(—mb, tanh mL)

Ph
m=,|—
but KA
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so that

Qf = 0,~ Phx A tanh mL

62. Show that the heat transfer for a fin that is square and has fin tip convective heat
transfer coefficient h, can be written

. sinh mL + h—L coshmL
Qf = O\ hPx A Km

coshmlL + h—L sinh mL
Km

Solution

For square fin with convective heat transfer coefficient h; at the tip, the temperature
distribution is

cosh |:m (L —x):l + ’Z;sinh |:m (L —x):|

coshmL + h—L sinh mL
mKx

The fin heat transfer is

0. w2)
fin ax x=0 a‘x x=0

Also
—msinh [m (L- x)] _mhy cosh [m (L- x)]
% - mK
Ox coshmlL + ﬂ sinh mL
mK

Since

_[Pn

T kA

. sinh mL + h—L coshmL
Qf = O\ hPx A mK

coshmlL + h—L sinh mL
mKx
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63. Derive an expression for the heat transfer from a tapered fin having base of Y thickness,
L length, k thermal conductivity, ho convective coefficient, and Ty base temperature.
The surrounding fluid temperature is T..

Solution

Referring to the sketch,

From a heat balance through the fin

2
KA% = h,PO
X
where 8 =T — T, 0p=Tp— T

P=2y+2W =2W for y« W,

Then

1d’0 hy2WL 2h,L

0 dc> kWY (L-x) - kY (L-x)

Using X=L—-x and C=2hol/kY

1d
6 dx*

<
X with two boundary conditions: B.C.1,0=0, @ X=L
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B.C.2, 9=0@ =0

Now, assuming a series solution so that
O=c,+c X+, X +e, X +e, X +e X0+ 4+, X" +...
From B.C. 2, ¢co = 0 and then

O=cX+c, X +c X +e, X +e. X +.c4c X" +... o
1 2 3 4 3 n for the second derivative

d’o
e =2¢, +6¢,X +12¢,X* +20c, X +30c, X* +42¢,X° +56¢,X° +72¢, X +90c,, X* +...
X
Using the differential equation — %2 = g t
sing the dirrerential equation ax? X we ge
2¢, +6¢,X +12¢, X +20c,X° +30c, X* +42¢, X7 +......= —£(ch +o, X+, X +e, X +e X+ )
X
Comparing coefficients, 2c, = —Cc; or cy = —gcl
CZ
, 6c3=—Cc, or €3 =501
C3
, 12¢4 = —Cc; or C4=—1aC1
C4
20c5 = —Ccy or €5 = Sag0 C1 and so on...

For C less than or equal to 1.0, using the first four terms is suitable as higher terms will
be significantly smaller. Then,

2 3
Gzch—gchz JrC—ch3 —C—ch4 +..
2 12 144 and using B.C.1
2 3
0=0,= clL—gclL2 JrC—clL3 —C—clL4
2 12 144 Solving this for c;and substituting
2 3
0, x-Sx Cxp iy
0 2 12 144

2 3
L—ELZ +C—L3 —C—L“ +...
2 12 144
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64. Show that the fin effectiveness is related to the fin efficiency by the equation

A A
gﬁnzl_( ﬁn_ﬂﬁn ﬁnj
A, oA,

Solution

For a fin and a base area between succeeding fins, the fin effectiveness is

— Qﬁn + Qbase
n .
Qo where

&

Q, =h4,,0,+h4

base

0, = h4,0,

Where Ar = Afin + Apase

Also,

Q fn = 77ﬁnhAﬁn90

And

Qbm =hd, .0,

Substituting into the effectiveness equation

UﬁnhAﬁneo +hAbase00 UﬁnhAﬁneo +h(AT _Aﬁn)90
s hA, 6, hA,6,

Cancelling the h’s, Oy’s, and rearranging,

A, —ﬁzl— A, _ A,
AT AT AT - AT

& fin :1+77ﬁn

65. A circumferential steel fin is 8 cm long, 3 mm thick, and is on a 20 cm diameter rod. The
surrounding air temperature is 20°C and h = 35 W/m?K, while the surface temperature
of the rod is 300°C. Determine a) Fin Efficiency, and b) Heat transfer from the fin.
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Solution
Referring to Figure 2-41

L=8cm=0.08m, r;=01m, y=3mm=0.003m, ry=L+r;, Lc=L+y/2=0.0815
m, rac =r1+Lc=0.1815m, and Am=y(rx -ri) =0.0002445 m?  Using a thermal
conductivity of 43 W/mK for steel from Appendix Table B-2

i U VY Be _1815
KA, and d . Then, from Figure 2-41,
a) Nein =44 %
b)
. W w
Qﬁn = nﬁnhAﬁnHo = (0.44)(35 msz[(ﬂ)(,,ZZ _,/12 ) + 27;;»2);](300 —20K) = 318%

66. A bronze rod 1 cm in diameter and 30 cm long protrudes from a bronze surface at
150°C. The rod is surrounded by air at 10°C with a convective heat transfer coefficient of
10 W/m?K. Determine the heat transfer through the rod.

Solution

=

L= 30m

Assume the bronze has the same thermal conductivity as brass, 114 W/mK from
Appendix Table B-2. Some of the other parameters are: h =10 W/m?K, T =10°C, To =
150°C,

Oo=To-T =140°C, P=nD=0.0314159m, A=nr?=0.00007854 m?, and

87

© 2016 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



hP
m=, /— =5.923m™
KA and using the case Il fin equation, the finite length fin,

sinh mL + i coshmL

Qf = 0, hPK A m}’lf =7.024W / rod
coshmL +—sinhmL
mK

67. A circumferential cast iron fin attached to a compressor housing is 2.5 cm thick, 7.5 cm
long, 7.5 cm diameter, and the convective heat transfer coefficient is 28 W/m?2K. If the
base temperature is 70°C and the surrounding air is 25°C, determine the fin efficiency
and the heat transfer through the fin.

Solution
Referring to Figure 2-41, the following parameters are:
ri=3.75cm=0.0375m, r;=0.112m, L=0.035m, y=0.025m,

Lc =L+Vy/2=0.05m, rxc =r1 +Lc =0.09m, Am =y(rxc -r1) =0.00125 m?,

L? /% =0.486
rac/r1 =2.333, and K :

From Figure 2-41
Nin = 82%.
The heat transfer is
Qrin = NpinhAsin(Ty — Too)

= 0.82 (28

- K) ()2 — 12 + 2r,y)(70 — 25°C)

=181.2W

68. A handle on a cooking pot can be modeled as a rod fin with an adiabatic tip at the
farthest section from the attachment points. For the handle shown in the sketch,
determine the temperature distribution and the heat transfer through the handle if the
pot surface is 88°C, the surrounding air temperature is 30°C, and the convective heat
transfer coefficient is 277 W/m?2K.

88

© 2016 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



Solution

FIG 2-73 Cooking pot handle.

Yiew A
1.5 cm dlameter rod
-
_. Iron Handle | o
L
I - N
-l Y 4L 75 om radns
View A

Treating this handle as a fin with an adiabatic tip, the important parameters are:
Thermal conductivity of 39 W/m?2-K from Appendix Table B-2, L = rtr/2 = (0.075/2) m =
0.12 m, P =m(0.025) m = 0.078 m, A =m(0.025)?(1/4)=4.9 x 10* m?, and

_ | _ | 277x0078
M= A~ |39xa9x10-% > >°™M

For an adiabatic tipped fin,

cosh[m(L —x)] o €Osh[33.6(L — x)]
= (58°0) cosh 7.255

=0 ——— = (0.082) cosh[33.6(L — x)]

At the extreme outer point of the handle,
6 =0.079°C or

T=30.079°C

The heat transfer through the fin is
Qfin = 0oVhPKA tanmL = 39.8 W

Since the handle has two fins, so to speak,

Qhandle =79.69 W
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69. An aluminum fin is attached at both ends in a compact heat exchanger as shown. For
the situation shown, determine the temperature distribution and the heat transfer
through the fin. Notice that the analysis requires using the governing equation
d? 0(x)/dx? = m? 0(x) with appropriate boundary conditions to determine the
temperature distribution.

Solution

FIG 2-T4 Compact heat exchanger fin.

- 20 cm =
1-cm diameter -
T JE'i'I}'"IL:? Z'J" 260°C
il

b= 100 W/m®-°C
T,= 100°C

For the fin
d*o

= m*0
dx

with boundary conditions, B.C.1 6 =6,=T;, — T, =180°C @ x =0
BC.2 0=60,=T,-T,=160°C @ x =L

From this equation and the boundary conditions Equation 2-114 is

[P _ |[(100)z(001m) _

x4\ (236)7(0.005)

where L=0.2m,

And then mL =2.6 so that

0(x)="T(x)-100= ({18062 ~160¢*} & +{160¢* ~180} ¢ |

52 _
The maximum or minimum temperature occurs at the location predicted by Equation 2-
115,
1 (eleZmL _ ezemL

m

x =—1In i =0.1079m
O,e™ -0,

2m Using x =0.1079 m in the above equation

for the temperature distribution,
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T =186.08"C

min fmum The fin heat transfer is the sum of the two adiabatic stems

Qf = Qf 1 +Qf , = 180vhPxc A tanh m(0.1079 m) + 1607 hPxc A tanh m (0.2~ 0.1079m ) = 70.63W

70. For the tapered fin shown, determine the temperature distribution, the fin efficiency,
and the heat transfer through the fin.

Solution
Referring to the figure,

FIG 2-T5 Tapered fin.

100°C

T
by, = 1000 Wym?-°C

_,—'-"'"_FH-H-'

60 cm

T, = 50PC | =

6om

The following parameters are known: L=Lc=0.06 m, Y =0.02m, An =LY/2 =
0.0006 m?,

K =236 W/mK, h=1000 W/m? K, and

h
ngz = 7 = 1235
K From Figure 2-40, 15, = 62% and the heat transfer is

Q.. =1uQ, =116, =(0.62)(1000)(0.073)(50) = 2263w

71. Determine the expected temperature drop at the contact between two 304 stainless
steel parts if the overall temperature drop across the two parts is 100°C.
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FIG 2-T6 Heat transfer at contact surfaces.

Icm 3cm
! T,— T,= AT
04 (304 | E_jpge
55 | S8
Tl Tz
Solution

From Table 2-12, using a value for thermal contact
AT, _TL-T,_ L-T,

T Re-a” IR, 2(“) + Ry A
K /30455

resistance of 304 stainless at 20°C,
assuming it will be unchanged at 100°C, 0.000528 m? - °C/W, then

g = T-T, 100 W
- - )
4 2(01.33}0'000528 0.0048137 m

then

_0.000528

=——"22 (100°C)=10.97°C ~11°C
re 0.0048137( )

72. A mild steel weldment is bolted to another mild steel surface. The contact pressure is
estimated at 2 MPa and the expected heat transfer between the two parts is 136 W/m?.
Estimate the temperature drop at the contact due to thermal contact resistance.

Solution

H i

g
/

The temperature drop across the contact surface is

miLD STSEL
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, w
Arc = da- Ry A) = (136—) (Rry - A)

The thermal contact resistance, from Table 2-12, is

20
Ryc - A = 0.000394

so that

ATy = 52.8°C

73. For Example Problem 2-26, estimate the temperature drop at the contact surface if the
heat transfer is reduced to 9.5 W/m?>.

Solution

The thermal contact resistance of the concrete block/styrofoam for example 2-26 is
1.1m?2-°C/W. If the heat transfer is reduced to 9.5 W/m? the temperature drop will be,

ATTC = qA - (RTC . A) = 174’0C

74. A guarded hot plate test results in the following data:

FIG 2-77 Thermal Conductivity Data for Problem 2-74.

Thermocouple
Drata
Heater Data {millivolts, mV)
Test

No. A, amps ¥, volts 1 2
1 0.05 & 2660 2776
2 0.055 8.4 2672 2.TBO
3 0.049 8.8 2,682 2771

Thermocouple conversion: 22%mV

| [
PO [

Diagram of testing device

i R
.
2

Estimate the thermal conductivity of the test material.
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Solution
The arithmetic averages are

Amps = 0.05133, volts=8.6, thermocouple 1=2.6677 mv, thermocouple 2 =2.7753
mv.

The average power is = amps-volts = 0.44147 W. the average millivolt difference
between 1 and 2 is 0.10756 mv. For a 22°C/mv setting, the average temperature
difference will be 2.366°C. From Fourier’s law

Q= kAL _ o 4417w
Ax For a sample thickness of 2 cm (0.02 m) and a test area of
0.01 m2
Ax
= O g
AAT m-K

75. A steam line has an outer surface diameter of 3 cm and temperature of 160°C. If the line
is surrounded by air at 25°C and the convective heat transfer coefficient is 3.0 W/m?2K,
determine the heat transfer per meter of line. Then determine the thickness of asbestos
insulation needed to provide insulating qualities to the steam line.

Solution

The heat transfer is by convection so

g =haD(T, —Tw):(3 fVszz(O.03m)(160—25K)=38.17W/m
m .

The critical radius of insulation needed to make the convection equal to the conduction
through the line is
K 0.156W/m-K

r,=—=—p">——=52cm
h, 3W/m* - K
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76. Electric power lines require convective cooling from the surrounding air to prevent
excessive temperatures in the wire. If a 2.5 cm diameter line is wrapped with nylon to
increase heat transfer with the surroundings, how much nylon can be wrapped around
the wire before it begins to act as an insulator? The convective heat transfer coefficient

is 8.7 W/m? -°C.
Solution
The critical thickness determines how much insulation wrapped around a cylinder

decrease heat transfer. Using properties of Teflon from Appendix Table B-2E,

0
_ K& _ 02023 Bau/hr- fi* F 0,04 fi = 0.48in

r =
“ h,  S5Btulhr-ft*°F

0.35W/(m- &)

K
Toc = E = 8.7 W/m2°C =0.04m =40cm

77. Estimate the temperature distribution through a bare 16 gauge copper wire conducting
1.5 amperes of electric current if the surrounding air is at 10°C and the convective heat

transfer coefficient is 65 W/m?> K.
Solution

Equation 2-123 will predict the temperature distribution through the wire.

: 1
T(l"):TOO +egen {%4—@(’”02 _rz):|
0

Here T, = 10°C ho = 65W/m?K, k=400 W/mK from Appendix Table B-
2. Then, from Appendix Table B-7, 1, = 25.41 mils = 0.0006454 m
Ao = 2,583 cir.mils = 16.664 x 1077 m?

R, = 4.016 ohms/1000ft = 13.1756 x 10~ 30hms/m

The energy generation is

2 -3
I’R 1.5amps) (13.1756x107 Q/m
Coon = e=( ps) | — / )=1.779x104W/m3
& A4, 16.664x10""'m H
e temperature

distribution is
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W | _0.0006454m 1
m*| 2(65W/m*-K)  4(400W/m-K)

T(r)=10°C+17,790 (0.00064542m2 —rz)

and

T(r)=10°C+0.0883°C+11.11875(r; — )
where ro = 0.0006454 m

At the center, wherer=0 T(r) =10.088305°C

And at the outer surface, herer=rg T(r) =10.0883°C

78. Aluminum wire has resistivity of 0.286 x 10”7 ohm-m where resistivity is defined as
(ohm)-area/length. Determine the temperature distribution through an aluminum wire
of 6 mm diameter carrying 200 amperes of current if it is surrounded by air at 25°C and
with a convective heat transfer coefficient of 345 W/m?K.

Solution

Equation 2-123 predicts the wire temperature distribution

: 1
T(r)=T, + € gen {—;]‘; +—4K(r02 _rz)}
0

Here, T, = 25°C, hy = 345 W/m? - K

ro =3mm=0.003m, «k=236W/m-K, [=200amps, Ao = 2.83x10° m?

R 0.286 x 1077 Q -m

Ro= 4= —gax 10 mr = 0010 &/m
and
IR 200 amps)?(0.0010 Q /m w
€gen = e _ p)(_ /)=1.41><106—
A, 2.83 X 1075 m? m3
then

W) 0.003 m

T(r) = 25°C (1.41 X 106 —
() T m3) [2(345 W/m? - K)

0.0032 m? — 72
T 1236 Wm B m* =7
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or
T(r) = 31.14°C — 1493.6 12
T(r) = 31.14°C at the center, r=0

T(r) = 31.153°C at the surface, r=ro

79. Determine the temperature distribution through a uranium slab shown. Assume energy
generation of 2.8 MW/m? and the slab is surrounded by water at 90°C with a convective

5 )
heat transfer coefficient of 780 W/m? -K. Use the equation % + eg% = 0 with

appropriate boundary condition must be made to obtain the temperature distribution
function.

FIG 2-78 Uranium slab.
¥

T

a5cm

z Wery Large
’i‘:‘\x inyandz
Directions

Solution

Using the figure shown and the governing equation for one-dimensional conduction

heat transfer with energy generation
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d’T , Cuo

=0
dx’ K with two boundary conditions: B.C.1
2.8 x 10° w
—— ] (0.065 m) = 91000 — = hy(T — 90°C)
2 m?2
atx=0
And =0 @ x=1L/2

Separating variable once gives,

dT en
4w
dx K and then again

T(x)= —%xz +Cx+C,

FromB.C. 1

91000 W /m?

= 90°C = 206.7 °C
780W/m? K

atx=0. This means that C, = 206.7 °C

From B.C. 2
G z—ege" L
2K so that the temperature distribution becomes
égen 2 égen
T(x) = — 2242 + L + 206.7°C
2K 2K

At the center of the slab, where x = 3.25 cm =0.0325, T=159.5°C

98

© 2016 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



80. Plutonium plates of 6 cm thickness generate 60 kW/m3 of energy. It is exposed on one
side to pressurized water which cannot be more than 280°C. The other surface is well
insulated. What must the convective heat transfer coefficient be at the exposed
surface?

Solution

Using the governing energy balance equation

d*T "
2 &g ar
dx K With B.C.1, <=0 @ x=0
B.C.2 égenl = ho(T—T»)  @x=L

Separating variables and integrating

dx K

A\

b=r0 W

m-j é
2

A

= :r_L :10617/\

R

e

L

G

And separating variable once more, integrating gives,

—_

e en
= +Cx+C,
2K FromB.C.1C;=0

Pﬂ

(x

N—"
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