Chapter 2 Solutions

2.1.

- a) 1000010
- b) 110001
- c) 1000000001
- d) 1101100000
- e) 11101101001
- f) 111111011111

2.2.

- a) 30_{10} , 36_8 , $1E_{16}$
- b) 26, 32, 1A
- c) 291, 443, 123
- d) 91, 133, 5B
- e) 878₁₀, 1556₈, 36E₁₆
- f) 1514, 2752, 5EA

2.3.

- a) 01100110
- b) 11100011
- c) 00101111111101000
- d) 0111111000010
- e) 0101101000101101
- f) 1110000010001011

2.4.

- a) 000011101010
- b) 111100010110
- c) 000010011100
- d) 1011111000100
- e) 111000101000

2.5.

	Decimal	Octal	Hexadecimal
a)	-53	713	СВ
b)	30	36	1E
c)	-19	55	ED
d)	-167	7531	F59
e)	428	654	1AC

2.6.

- a) 11100101; 229
- b) 10110001; 177
- c) 111010110; 214
- d) 101011101; 93

2.7.

- a) 11100101; –27
- b) 10110001; -79

- c) 111010110; –42
- d) 101011101; 93

2.8.

- a) 01101111; 111
- b) 11001001; 201 c) 11110000; 240
- d) 10110001; 177

2.9.

- a) 01101111; 111
- b) 11001001; -55
- c) 11110000; -16
- d) 10110001; -79

2.10.

Binary calculations	Unsigned decimal calculations	Signed decimal calculations
1001 + 0011 = 1100 No overflow	9 + 3 = 12 No overflow error	-7 + 3 = -4 No overflow error
0110 + 1011 = 1 0001 Overflow	6 + 11 = 1 Overflow error	6 + (-5) = 1 No overflow error
0101 + 0110 = 1011 No overflow	5 + 6 = 11 No overflow error	5 + 6 = -5 Overflow error
0101 – 0110 = 1111 No overflow	5-6=15 Overflow error	5-6=-1 No overflow error
1011 – 0101 = 0110 No overflow	11 - 5 = 6 No overflow error	-5-5=6 Overflow error

2.11.

х	у	Z	x'y'z'	x'yz	xy'z'	xyz	F
0	0	0	1	0	0	0	1
0	0	1	0	0	0	0	0
0	1	0	0	0	0	0	0
0	1	1	0	1	0	0	1
1	0	0	0	0	1	0	1
1	0	1	0	0	0	0	0
1	1	0	0	0	0	0	0
1	1	1	0	0	0	1	1
					(a)		

х	у	Z	xy'z	x'yz'	xyz	xyz'	F
0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	1	0	0	1	0	0	1
0	1	1	0	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	0	0	0	1
1	1	0	0	0	0	1	1
1	1	1	0	0	1	0	1
			•	(b)	•		

w	х	у	Z	w'xy'z	w'xyz	wxy'z	wxyz	F
0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0
0	0	1	0	0	0	0	0	0
0	0	1	1	0	0	0	0	0
0	1	0	0	0	0	0	0	0
0	1	0	1	1	0	0	0	1
0	1	1	0	0	0	0	0	0
0	1	1	1	0	1	0	0	1
1	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	0
1	0	1	0	0	0	0	0	0
1	0	1	1	0	0	0	0	0
1	1	0	0	0	0	0	0	0
1	1	0	1	0	0	1	0	1
1	1	1	0	0	0	0	0	0
1	1	1	1	0	0	0	1	1
					(c)			

w	х	у	Z	wxy'z	w'yz'	WXZ	xyz'	F
0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0
0	0	1	0	0	1	0	0	1
0	0	1	1	0	0	0	0	0
0	1	0	0	0	0	0	0	0
0	1	0	1	0	0	0	0	0
0	1	1	0	0	1	0	1	1
0	1	1	1	0	0	0	0	0
1	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	0
1	0	1	0	0	0	0	0	0
1	0	1	1	0	0	0	0	0
1	1	0	0	0	0	0	0	0
1	1	0	1	1	0	1	0	1
1	1	1	0	0	0	0	1	1
1	1	1	1	0	0	1	0	1
					(d)			

х	у	Z	xy'	x'y'z	xyz'	F
0	0	0	0	0	0	0
0	0	1	0	1	0	1
0	1	0	0	0	0	0
0	1	1	0	0	0	0
1	0	0	1	0	0	1
1	0	1	1	0	0	1
1	1	0	0	0	1	1
1	1	1	0	0	0	0

w	x	у	Z	w'z'	w'xy	wx'z	wxyz	F
0	0	0	0	1	0	0	0	1
0	0	0	1	0	0	0	0	0
0	0	1	0	1	0	0	0	1
0	0	1	1	0	0	0	0	0
0	1	0	0	1	0	0	0	1
0	1	0	1	0	0	0	0	0
0	1	1	0	1	1	0	0	1
0	1	1	1	0	1	0	0	1
1	0	0	0	0	0	0	0	0
1	0	0	1	0	0	1	0	1
1	0	1	0	0	0	0	0	0
1	0	1	1	0	0	1	0	1
1	1	0	0	0	0	0	0	0
1	1	0	1	0	0	0	0	0
1	1	1	0	0	0	0	0	0
1	1	1	1	0	0	0	1	1
					(f)			

х	у	Z	x'	<i>y</i> ′	<i>x</i> + <i>y</i> ′	yz	(yz)'	[(x+y')(yz)']	xy'	x'y	(xy' + x'y)	F
0	0	0	1	1	1	0	1	1	0	0	0	0
0	0	1	1	1	1	0	1	1	0	0	0	0
0	1	0	1	0	0	0	1	0	0	1	1	0
0	1	1	1	0	0	1	0	0	0	1	1	0
1	0	0	0	1	1	0	1	1	1	0	1	1
1	0	1	0	1	1	0	1	1	1	0	1	1
1	1	0	0	0	1	0	1	1	0	0	0	0
1	1	1	0	0	1	1	0	0	0	0	0	0
	•			•		•	•	(g)				•

N_3	N_2	N_1	N_0	$N_3'N_2'N_1N_0'$	$N_3'N_2'N_1N_0$	$N_3N_2'N_1N_0'$	$N_3N_2'N_1N_0$	$N_3N_2N_1'N_0'$	$N_3N_2N_1N_0$	F
0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	1
0	0	1	1	0	1	0	0	0	0	1
0	1	0	0	0	0	0	0	0	0	0
0	1	0	1	0	0	0	0	0	0	0
0	1	1	0	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0	0
1	0	1	0	0	0	1	0	0	0	1
1	0	1	1	0	0	0	1	0	0	1
1	1	0	0	0	0	0	0	1	0	1
1	1	0	1	0	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	1	1
	•	•		_	_	(h)	_			

2.12.

- (a) F = a'bc' + a'bc + abc'
- (b) F = w'x'yz' + w'xy'z' + w'xy'z + w'xyz + wx'yz' + wx'yz' + wxy'z' + wxy'z' + wxyz
- (c) $F_1 = w'x'y'z' + w'x'yz + w'xyz' + wx'yz' + wx'y'z + wxy'z' + wxy'z' + wxyz$ $F_2 = w'x'y'z' + w'x'y'z + w'x'yz' + w'xy'z + wxy'z + wxy'z' + wxy'z' + wxy'z' + wxyz' + wxyz' + wxyz'$
- (d) $F = N_3'N_2'N_1N_0' + N_3'N_2'N_1N_0 + N_3'N_2N_1N_0' + N_3N_2'N_1N_0' + N_3N_2'N_1N_0 + N_3N_2N_1'N_0' + N_3N_2N_1N_0$

2.14.

(a)

w	х	у	z	w'z'	w'xy	wx'z	wxyz	Left Side
0	0	0	0	1	0	0	0	1
0	0	0	1	0	0	0	0	0
0	0	1	0	1	0	0	0	1
0	0	1	1	0	0	0	0	0
0	1	0	0	1	0	0	0	1
0	1	0	1	0	0	0	0	0
0	1	1	0	1	1	0	0	1
0	1	1	1	0	1	0	0	1
1	0	0	0	0	0	0	0	0
1	0	0	1	0	0	1	0	1
1	0	1	0	0	0	0	0	0
1	0	1	1	0	0	1	0	1
1	1	0	0	0	0	0	0	0
1	1	0	1	0	0	0	0	0
1	1	1	0	0	0	0	0	0
1	1	1	1	0	0	0	1	1

w'z'	xyz	wx'y'z	wyz	Right Side
1	0	0	0	1
0	0	0	0	0
1	0	0	0	1
0	0	0	0	0
1	0	0	0	1
0	0	0	0	0
1	0	0	0	1
0	1	0	0	1
0	0	0	0	0
0	0	1	0	1
0	0	0	0	0
0	0	0	1	1
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	1	0	1	1

(b)

у	z	z	<i>y</i> ′	yz'	Left Side	
0	0	0	1	0	1	
0	1	1	1	0	1	
1	0	0	0	1	1	
1	1	1	Λ	Λ	1	

ft Right | Side | 1 | 1 | 1 | 1 |

(c)

х	У	Z	xy'z'	<i>x'</i>	xyz'	Left Side
0	0	0	0	1	0	1
0	0	1	0	1	0	1
0	1	0	0	1	0	1
0	1	1	0	1	0	1
1	0	0	1	0	0	1
1	0	1	0	0	0	0
1	1	0	0	0	1	1
1	1	1	0	0	0	0

x'	z'	Right Side
1	1	1
1	0	1
1	1	1
1	0	1
0	1	1
0	0	0
0	1	1
0	0	0

(d)

х	У	Z	xy	<i>x'z</i>	yz	Left Side
0	0	0	0	0	0	0
0	0	1	0	1	0	1
0	1	0	0	0	0	0
0	1	1	0	1	1	1
1	0	0	0	0	0	0
1	0	1	0	0	0	0
1	1	0	1	0	0	1
1	1	1	1	0	1	1

xy	x'z	Right Side
0	0	0
0	1	1
0	0	0
0	1	1
0	0	0
0	0	0
1	0	1
1	0	1

(e)

w	x	у	Z	w'x'yz'	w'x'yz	wx'yz'	wx'yz	wxyz	Left Side
0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	1
0	0	1	1	0	1	0	0	0	1
0	1	0	0	0	0	0	0	0	0
0	1	0	1	0	0	0	0	0	0
0	1	1	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0
1	0	1	0	0	0	1	0	0	1
1	0	1	1	0	0	0	1	0	1
1	1	0	0	0	0	0	0	0	0
1	1	0	1	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	1	1

x'	wz	(x'+wz)	Right Side
1	0	1	0
1	0	1	0
1	0	1	1
1	0	1	1
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
1	0	1	0
1	1	1	0
1	0	1	1
1	1	1	1
0	0	0	0
0	1	1	0
0	0	0	0
0	1	1	1

(f)

w	х	у	Z	w'xy'z	w'xyz	wxy'z	wxyz	Left Side	Right Side
0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0
0	1	0	1	1	0	0	0	1	1
0	1	1	0	0	0	0	0	0	0
0	1	1	1	0	1	0	0	1	1
1	0	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0	0
1	0	1	1	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0	0
1	1	0	1	0	0	1	0	1	1
1	1	1	0	0	0	0	0	0	0
1	1	1	1	0	0	0	1	1	1

(g)

x_i	y_i	c_i	x_iy_i	$x_i + y_i$	$c_i(x_i+y_i)$	Left Side
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	1	0	0
0	1	1	0	1	1	1
1	0	0	0	1	0	0
1	0	1	0	1	1	1
1	1	0	1	1	0	1
1	1	1	1	1	1	1

$x_iy_ic_i$	$x_i y_i c_i'$	$x_iy_i'c_i$	$x_i'y_ic_i$	Right Side
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	1	1
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
1	0	0	0	1

(h)

x_i	y_i	c_i	x_iy_i	$x_i + y_i$	$c_i(x_i+y_i)$	Left Side
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	1	0	0
0	1	1	0	1	1	1
1	0	0	0	1	0	0
1	0	1	0	1	1	1
1	1	0	1	1	0	1
1	1	1	1	1	1	1

x_iy_i	$x_i \oplus y_i$	$c_i(x_i \oplus y_i)$	Right Side
0	0	0	0
0	0	0	0
0	1	0	0
0	1	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	0	1

2.19.

(a)
$$w'z' + w'xy + wx'z + wxyz$$

 $= w'x'y'z' + w'x'yz' + w'xyz' + w'xyz' + w'xyz + wx'y'z + wx'yz + wxyz$
 $= w'x'y'z' + w'x'yz' + w'xy'z' + w'xyz' + w'xyz + wx'y'z + wxyz$
 $= w'z' + w'xyz + wx'y'z + wx'yz + wxyz$
 $= w'z' + (w'+w)xyz + wx'y'z + w(x'+x)yz$
 $= w'z' + xyz + wx'y'z + wyz$

(b)
$$z + y' + yz'$$

= $z(y'+y) + (z'+z)y' + yz'$

$$= zy' + zy + z'y' + zy' + yz'$$

= $z(y'+y) + z'(y'+y)$
= $z + z'$
= 1

(c)
$$xy'z' + x' + xyz'$$

 $= xz'(y' + y) + x'$
 $= xz' + x'$
 $= xz' + 1x'$
 $= (x + 1)(x + x')(z' + 1)(z' + x')$
 $= 1 \cdot 1 \cdot 1(z' + x')$
 $= x' + z'$

(d)
$$xy + x'z + yz$$

 $= xy(z'+z) + x'(y'+y)z + (x'+x)yz$
 $= xyz' + xyz + x'y'z + x'yz + x'yz + xyz$
 $= xy(z'+z) + x'(y'+y)z$
 $= xy(1) + x'(1)z$
 $= xy + x'z$

(e)
$$w'x'yz' + w'x'yz + wx'yz' + wx'yz + wxyz$$

$$= [w'x'yz' + w'x'yz + wx'yz' + wx'yz] + [wx'yz + wxyz]$$

$$= x'y(w'z' + w'z + wz' + wz) + w(x' + x)yz$$

$$= x'y + wyz$$

$$= y(x' + wz)$$

(f)
$$w'xy'z + w'xyz + wxy'z + wxyz$$

= $xy'z(w' + w) + xyz(w' + w)$
= $xy'z + xyz$
= $xz(y + y')$
= xz

(g)
$$x_i y_i + c_i (x_i + y_i)$$

 $= x_i y_i + x_i c_i + y_i c_i$
 $= x_i y_i (c_i + c_i') + x_i (y_i + y_i') c_i + (x_i + x_i') y_i c_i$
 $= x_i y_i c_i + x_i y_i c_i' + x_i y_i e_i + x_i y_i' c_i + x_i y_i e_i + x_i' y_i c_i$
 $= x_i y_i c_i + x_i y_i c_i' + x_i y_i' c_i + x_i' y_i c_i$

(h)
$$x_i y_i + c_i (x_i + y_i)$$

 $= x_i y_i + x_i c_i + y_i c_i$
 $= x_i y_i (c_i + c_i') + x_i (y_i + y_i') c_i + (x_i + x_i') y_i c_i$
 $= x_i y_i c_i + x_i y_i c_i' + x_i y_i e_i + x_i y_i' c_i + x_i y_i e_i + x_i' y_i c_i$
 $= x_i y_i c_i + x_i y_i c_i' + x_i y_i' c_i + x_i' y_i c_i$
 $= x_i y_i (c_i + c_i') + c_i (x_i y_i' + x_i' y_i)$
 $= x_i y_i + c_i (x_i \oplus y_i)$

2.20.

(a)
$$x'y'z' + x'yz + xy'z' + xyz$$

= $(x + x')y'z' + (x + x')yz$
= $y'z' + yz$
= $y \odot z$

(b)
$$xy'z + x'yz' + xyz + xyz'$$

= $(x + x')yz' + x(y + y')z$
= $yz' + xz$

(c)
$$w'xy'z + w'xyz + wxy'z + wxyz$$

= $xz(w'y' + w'y + wy' + wy)$
= xz

(d)
$$wxy'z + w'yz' + wxz + xyz'$$

= $wxz + yz'(x+w')$

(f)
$$w'z' + w'xy + wx'z + wxyz$$

 $= w'z' + w'xyz + w'xyz' + wx'z + wxyz$
 $= w'z' + xyz(w' + w) + w'xyz' + wx'z$
 $= w'z' + xyz + wx'z$
 $= w'z' + z(xy + wx')$

(g)
$$[(x+y') (yz)'] (xy' + x'y)$$

$$= [(x+y') (y'+z')] (xy' + x'y)$$

$$= [xy' + xz' + y' + y'z'] (xy' + x'y)$$

$$= [xz' + y'] (xy' + x'y)$$

$$= xy'z' + xx'yz' + y'xy' + y'x'y$$

$$= xy'z' + xy'$$

$$= xy'$$

(h)
$$N_3'N_2'N_1N_0' + N_3'N_2'N_1N_0 + N_3N_2'N_1N_0' + N_3N_2'N_1N_0 + N_3N_2N_1'N_0' + N_3N_2N_1N_0$$

=

2.21.

$$F = (x' + y' + x'y' + xy) (x' + yz)$$

$$= (x' \bullet 1 + y' \bullet 1 + x'y' + xy) (x' + yz)$$
by Theorem 6a
$$= (x' (y + y') + y' (x + x') + x'y' + xy) (x' + yz)$$
by Theorem 9b
$$= (x'y + x'y' + y'x + y'x' + x'y' + xy) (x' + yz)$$
by Theorem 12a
$$= (x'y + x'y' + y'x + y'x' + x'y' + xy) (x' + yz)$$
by Theorem 7b
$$= (x' (y + y') + x (y + y')) (x' + yz)$$
by Theorem 12a
$$= (x' \bullet 1 + x \bullet 1) (x' + yz)$$
by Theorem 9b
$$= (x' + x) (x' + yz)$$
by Theorem 6a
$$= 1 (x' + yz)$$
by Theorem 9b
by Theorem 9b
by Theorem 9b

2.22.

For three variables (x, y, z), there is a total of eight (2^3) minterms. The function has five minterms, therefore, the inverted function will have three (8-5=3) minterms. Hence, implementing the inverted function and then adding a NOT gate at the final output will result in a smaller circuit. The circuit requires 3 AND gates, 1 OR gate, and 1 NOT gate.

2.23.

w	x	у	Z	4	4	4	4	4
				AND	NAND	NOR	XOR	XNOR
0	0	0	0	0	1	1	0	1
0	0	0	1	0	1	0	1	0

ν	w	x	У	Z	5	5
					XOR	XNOR
0	0	0	0	0	0	0
0	0	0	0	1	1	1

0	0	1	0	0	1	0	1	0
0	0	1	1	0	1	0	0	1
0	1	0	0	0	1	0	1	0
0	1	0	1	0	1	0	0	1
0	1	1	0	0	1	0	0	1
0	1	1	1	0	1	0	1	0
1	0	0	0	0	1	0	1	0
1	0	0	1	0	1	0	0	1
1	0	1	0	0	1	0	0	1
1	0	1	1	0	1	0	1	0
1	1	0	0	0	1	0	0	1
1	1	0	1	0	1	0	1	0
1	1	1	0	0	1	0	1	0
1	1	1	1	1	0	0	0	1
				(a)	(b)	(c)	(d)	(e)

0	0	0	1	0	1	1
0	0	0	1	1	0	0
0	0	1	0	0	1	1
0	0	1	0	1	0	0
0	0	1	1	0	0	0
0	0	1	1	1	1	1
0	1	0	0	0	1	1
0	1	0	0	1	0	0
0	1	0	1	0	0	0
0	1	0	1	1	1	1
0	1	1	0	0	0	0
0	1	1	0	1	1	1
0	1	1	1	0	1	1
0	1	1	1	1	0	0
1	0	0	0	0	1	1
1	0	0	0	1	0	0
1	0	0	1	0	0	0
1	0	0	1	1	1	1
1	0	1	0	0	0	0
1	0	1	0	1	1	1
1	0	1	1	0	1	1
1	0	1	1	1	0	0
1	1	0	0	0	0	0
1	1	0	0	1	1	1
1	1	0	1	0	1	1
1	1	0	1	1	0	0
1	1	1	0	0	1	1
1	1	1	0	1	0	0
1	1	1	1	0	0	0
1	1	1	1	1	1	1
					(f)	(g)

2.24.

w	х	у	Z	(x ⊙	(xyz)'	$(x \odot y)' +$	(w' + x +	F
				<i>y</i>)'		(xyz)'	<i>z</i>)	
0	0	0	0	0	1	1	1	1
0	0	0	1	0	1	1	1	1
0	0	1	0	1	1	1	1	1
0	0	1	1	1	1	1	1	1
0	1	0	0	1	1	1	1	1
0	1	0	1	1	1	1	1	1
0	1	1	0	0	1	1	1	1
0	1	1	1	0	0	0	1	0
1	0	0	0	0	1	1	0	0
1	0	0	1	0	1	1	1	1
1	0	1	0	1	1	1	0	0
1	0	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1	1
1	1	0	1	1	1	1	1	1
1	1	1	0	0	1	1	1	1
1	1	1	1	0	0	0	1	0
					(a)			

x	y	Z	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

(b)

w	х	у	Z	w'xy'z	$(x \oplus y)$	$w'z (y \oplus x)$	$[w'xy'z + w'z (y \oplus x)]$	F
0	0	0	0	0	0	0	0	1
0	0	0	1	0	0	0	0	1
0	0	1	0	0	1	0	0	1
0	0	1	1	0	1	1	1	0
0	1	0	0	0	1	0	0	1
0	1	0	1	1	1	1	1	0
0	1	1	0	0	0	0	0	1
0	1	1	1	0	0	0	0	1
1	0	0	0	0	0	0	0	1
1	0	0	1	0	0	0	0	1
1	0	1	0	0	1	0	0	1
1	0	1	1	0	1	0	0	1
1	1	0	0	0	1	0	0	1
1	1	0	1	0	1	0	0	1
1	1	1	0	0	0	0	0	1
1	1	1	1	0	0	0	0	1

(c)

2.25.

a) $(x \odot y)' +$ (x **©** (xyz)'(w' + x +Fw \boldsymbol{z} \boldsymbol{x} y (xyz)'*y*)' 1 0 0 1 0 (a)

х	y	Z	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

(b)

w	х	у	Z	w'xy'z	$(x \oplus y)$	$w'z (y \oplus x)$	$[w'xy'z + w'z (y \oplus x)]$	F
0	0	0	0	0	0	0	0	1
0	0	0	1	0	0	0	0	1
0	0	1	0	0	1	0	0	1
0	0	1	1	0	1	1	1	0
0	1	0	0	0	1	0	0	1
0	1	0	1	1	1	1	1	0
0	1	1	0	0	0	0	0	1
0	1	1	1	0	0	0	0	1
1	0	0	0	0	0	0	0	1
1	0	0	1	0	0	0	0	1
1	0	1	0	0	1	0	0	1
1	0	1	1	0	1	0	0	1
1	1	0	0	0	1	0	0	1
1	1	0	1	0	1	0	0	1
1	1	1	0	0	0	0	0	1
1	1	1	1	0	0	0	0	1

(c)

b)
$$F = [(x \odot y)' + (xyz)'] (w' + x + z)$$

$$= [xy' + x'y + x' + y' + z') [w' + x + z)$$

$$= (x' + y' + z') (w' + x + z)$$

$$= (ww' + x' + y' + z') (w' + x + yy' + z)$$

$$= (w + x' + y' + z') (w' + x' + y' + z') (w' + x + y + z) (w' + x + y' + z)$$

$$= \Pi(M_7 + M_8 + M_{10} + M_{15})$$
(a)
$$F = [w'xy'z + w'z (y \oplus x)]'$$

$$= (xy' + x'y)z' + (xy' + x'y)'z$$

$$= (xy' + x'y)z' + (xy' + x'y)'z$$

$$= (xy' + x'y)z' + (xy' + x'y)'z$$

$$= (xy'z' + x'yz' + xy'z + xy'z + xy'z'$$

$$= (xy'z' + x'yz' + xy'z + xy'z + xy'z'$$

$$= (xy'z' + x'yz' + xy'z + xy'z' + xy'z' + xy'z'$$

$$= (xy'z' + x'yz' + xy'z + xy'z' + xy'$$

2.26.

$$F = [w'xy'z + w'z \ (y \oplus x)]'$$

$$= [w'xy'z]' [w'z \ (y \oplus x)]'$$

$$= [w+x'+y+z'] [w+z'+ \ (y \oplus x)']$$

$$= [w+x'+y+z'] [w+z'+xy+x'y']$$

$$= w+wz'+wxy+wx'y'+wx'+x'z'+x'y'+wy+yz'+xy+wz'+z'+x'y'z'$$

$$= w+z'+x'y'+xy$$

$$= w+z'+(x \odot y)$$
(c)

2.27.

x	у	Left Side $x \oplus y$	$x \odot y$	Right Side $(x \odot y)'$						
0	0	0	1	0						
0	1	1	0	1						
1	0	1	0	1						
1	1	0	1	0						
	(a)									

x	у	<i>y</i> ′	Left Side $x \oplus y'$	Right Side $x \odot y$				
0	0	1	1	1				
0	1	0	0	0				
1	0	1	0	0				
1	1	0	1	1				
(b)								

w	x	у	z	w⊕x	y⊕z	Left Side	w © x	$y \odot z$	Right Side	Right Side
						$(w \oplus x) \odot (y \oplus z)$			$(w \odot x) \odot (y \odot z)$	$(((w \odot x) \odot y) \odot z)$
0	0	0	0	0	0	1	1	1	1	1
0	0	0	1	0	1	0	1	0	0	0
0	0	1	0	0	1	0	1	0	0	0
0	0	1	1	0	0	1	1	1	1	1
0	1	0	0	1	0	0	0	1	0	0
0	1	0	1	1	1	1	0	0	1	1
0	1	1	0	1	1	1	0	0	1	1
0	1	1	1	1	0	0	0	1	0	0
1	0	0	0	1	0	0	0	1	0	0
1	0	0	1	1	1	1	0	0	1	1
1	0	1	0	1	1	1	0	0	1	1
1	0	1	1	1	0	0	0	1	0	0
1	1	0	0	0	0	1	1	1	1	1
1	1	0	1	0	1	0	1	0	0	0
1	1	1	0	0	1	0	1	0	0	0
1	1	1	1	0	0	1	1	1	1	1
							(c)			

0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1 1	$\begin{array}{c c} de & Right Side \\ (y)'y)']' & x \oplus y \end{array}$
	0
0 1 0 1 1 1 0 1 1 1 0 0 1 1	0
0 1 1 1 0 0 1 1	1
	1
	1
1 0 1 1 0 1 1	1
1 1 0 0 1 1 1 0 0 0	0
1 1 1 0 1 1 0 0	0

(d)

2.28.

$$(x \oplus y) = xy' + x'y
= xx' + xy' + x'y + yy'
= (x + y) (x' + y')
= (x'y')' (xy)'
= [(x'y') + (xy)]'
= (x \odots y)'$$
(a)
$$[((xy)'x)' ((xy)'y)']'
= ((xy)'x) + ((xy)'y)
= (x' + y')x + (x' + y')y
= xx' + xy' + x'y + \frac{y'y}{y'y'}
= xy' + x'y
= x \odots y$$
(d)

2.29.

$$x \oplus y \oplus z$$
= $(x \oplus y) \oplus z$
= $(x'y + xy') \oplus z$
= $(x'y + xy')z' + (x'y + xy')'z$
= $x'yz' + xy'z' + (x'y)'(xy')'z$
= $x'yz' + xy'z' + (x+y')(x'+y)z$
= $x'yz' + xy'z' + xx'z + xyz + x'y'z + y'yz$
= $x'y'z + x'yz' + xy'z' + xyz$

2.30.

$$x \oplus y \oplus z = (x \oplus y) \oplus z$$

$$= (x'y + xy') \oplus z$$

$$= (x'y + xy')'z + (x'y + xy')z'$$

$$= (x'y)' \cdot (xy')'z + x'yz' + xy'z'$$

$$= (x + y') \cdot (x' + y)z + x'yz' + xy'z'$$

$$= \frac{xx'z}{z} + xyz + x'y'z + \frac{y'yz}{z} + x'yz' + xy'z'$$

$$= (xy + x'y')z + (x'y + xy')z'$$

$$= (xy + x'y')z + (xy + x'y')'z'$$

$$= (x \oplus y)z + (x \oplus y)'z'$$

$$= x \oplus y \oplus z$$

2.31.

- (a) $F(x,y,z) = \Sigma(m_0, m_3, m_4, m_7)$
- (b) $F(x,y,z) = \Sigma(m_2, m_5, m_6, m_7)$
- (c) $F(w,x,y,z) = \Sigma(m_5, m_7, m_{13}, m_{15})$
- (d) $F(w,x,y,z) = \Sigma(m_2, m_6, m_{13}, m_{14}, m_{15})$
- (e) $F(x,y,z) = \Sigma(m_1, m_4, m_5, m_6)$
- (f) $F(w,x,y,z) = \Sigma(m_0, m_2, m_4, m_6, m_7, m_9, m_{11}, m_{15})$
- (g) $F(x,y,z) = \Sigma(m_4, m_5)$
- (h) $F(N_3,N_2,N_1,N_0) = \Sigma(m_2, m_3, m_{10}, m_{11}, m_{12}, m_{15})$ (a)

 $x \oplus y' = xy + x'y'$

 $= x \odot y$

- (a) $F(x,y,z) = \Pi(M_1, M_2, M_5, M_6)$
- (b) $F(x,y,z) = \Pi(M_0, M_1, M_3, M_4)$
- (c) $F(w,x,y,z) = \Pi(M_0, M_1, M_2, M_3, M_4, M_6, M_8, M_9, M_{10}, M_{11}, M_{12}, M_{14})$
- (d) $F(w,x,y,z) = \Pi(M_0, M_1, M_3, M_4, M_5, M_7, M_8, M_9, M_{10}, M_{11}, M_{12})$
- (e) $F(x,y,z) = \Pi(M_0, M_2, M_3, M_7)$
- (f) $F(w,x,y,z) = \Pi(M_1, M_3, M_5, M_8, M_{10}, M_{12}, M_{13}, M_{14})$
- (g) $F(x,y,z) = \Pi(M_0, M_1, M_2, M_3, M_6, M_7)$
- (h) $F(N_3,N_2,N_1,N_0) = \Pi(M_0, M_1, M_4, M_5, M_6, M_7, M_8, M_9, M_{13}, M_{14})$

(b)

2.32.

(a)
$$F(x,y,z) = x'y'z + x'yz + xyz$$

(b) $F(w,x,y,z) = w'x'y'z + w'x'yz + w'xyz$
(c) $F(x,y,z) = (x+y+z')(x'+y'+z')$
(d) $F(w,x,y,z) = (w+x+y+z')(w+x'+y'+z')$
 $(w+x+y+z')$

(e)
$$F'(x,y,z) = x'y'z' + x'yz' + xy'z' + xy'z + xyz'$$

(f)
$$F(x,y,z) = (x+y+z)(x+y+z)(x'+y+z)(x'+y+z')(x'+y'+z)$$

2.33.

F' is expressed as a sum of its 0-minterms. Therefore, F is the sum of its 1-minterms = $\Sigma(0, 2, 4, 5, 6)$. Using three variables, the truth table is as follows:

х	У	Z	Minterms	F
0	0	0	$m_0=x'y'z'$	1
0	0	1	$m_1=x'y'z$	0
0	1	0	$m_2=x'yz'$	1
0	1	1	$m_3=x'yz$	0
1	0	0	$m_4=x y' z'$	1
1	0	1	$m_5=x y' z$	1
1	1	0	$m_6=x y z'$	1
1	1	1	$m_7 = x y z$	0

2.34.

$$F = \Sigma(3, 4, 5) = m_3 + m_4 + m_5$$

$$= x'yz + xy'z' + xy'z$$

$$= \frac{(x' + x + x)(x' + x + y')(x' + x + z)}{(x' + y' + x)(x' + y' + y')(x' + y' + z)}$$

$$\frac{(x' + y' + x)(x' + y' + y')(x' + y' + z)}{(x' + z' + x)(x' + z' + y')(x' + z' + z)}$$

$$\frac{(y + x + x)(y + x + y')(y + x + z)}{(y + y' + x)(y + y' + y')(y + y' + z)}$$

$$\frac{(y + y' + x)(y + z' + y')(y + z' + z)}{(y + z' + x)(y + z' + y')(y + z' + z)}$$

$$\frac{(z + x + x)(z + x + y')(z + x + z)}{(z + y' + x)(z + y' + y')(z + z' + z)}$$

$$= (x' + y' + z)(x' + y' + z')(x + y + z)(x + y + z')(x + y' + z)$$

2.35.

b)

a) Product-of-sums (AND-of-OR) format is obtained by using the *duality principle* or De Morgan's Theorem: $F' = (x'+y+z) \bullet (x'+y+z') \bullet (x'+y'+z) \bullet (x'+y'+z')$

Sum-of-products (OR-of-AND) format is obtained by first constructing the truth table for F and then inverting the 0's and 1's to get F'. Then we simply use the AND terms where F' = 1.

х	у	Z	F	F'
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	0	1
1	0	0	1	0
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

```
F' = x'y'z' + x'y'z + x'yz' + x'yz
```

2.36.

```
a)
F = w \odot x \odot y \odot z
= (wx + w'x') \odot y \odot z
= [(wx + w'x')y + (wx + w'x')'y']z + [(wx + w'x')y + (wx + w'x')'y']'z'
= wxyz + w'x'yz + (wx)'(w'x')'y'z + [(wx + w'x')y + (wx + w'x')'y']'z'
= m_{15} + m_3 + (w'+x')(w+x)y'z + [(wx + w'x')y + (wx + w'x')'y']'z'
= m_{15} + m_3 + w'xy'z + wx'y'z + [(wx + w'x')y + (wx + w'x')'y']'z'
= m_{15} + m_3 + m_5 + m_9 + [(wx + w'x')y]'[(wx + w'x')'y']'z'
= m_{15} + m_3 + m_5 + m_9 + [(wx + w'x')' + y'][(wx + w'x') + y]z'
= m_{15} + m_3 + m_5 + m_9 + [(wx)'(w'x')' + y'][wxz' + w'x'z' + yz']
= m_{15} + m_3 + m_5 + m_9 + [(w'+x')(w+x) + y'][wxz' + w'x'z' + yz']
= m_{15} + m_3 + m_5 + m_9 + [w'x + wx' + y'][wxz' + w'x'z' + yz']
= m_{15} + m_3 + m_5 + m_9 + [w'x + wx' + y'][wxz' + w'x'z' + yz']
= m_{15} + m_3 + m_5 + m_9 + [w'x + wx' + y'][wxz' + w'x'z' + yz']
= m_{15} + m_3 + m_5 + m_9 + [w'x + wx' + y'][wxz' + w'x'y'z' + wx'y'z' + wx'y'
```

2.37.

a)

```
module P2_24a (
   input w,x,y,z,
   output F
);
   assign F = (~(x^y) | ~(x&y&z)) & (~w|x|z);
endmodule
```

b)

```
module P2_24b (
  input x,y,z,
  output F
);
  assign F = x^y^z;
endmodule
```

c)

```
module P2_24c (
   input w,x,y,z,
   output F
);
   assign F = ~((~w&x&~y&z) | (~w&z&(y^x)));
endmodule
```

2.38.

a)

```
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.all;

ENTITY P2_24a IS PORT (
    w,x,y,z: IN STD_LOGIC;
    F: OUT STD_LOGIC);

END P2_24a;

ARCHITECTURE Dataflow OF P2_24a IS
BEGIN
    F <= (NOT (x XOR y) OR NOT (x AND y AND z)) AND (NOT w OR x OR z);
END Dataflow;
```

b)

```
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.all;

ENTITY P2_24b IS PORT (
    x,y,z: IN STD_LOGIC;
    F: OUT STD_LOGIC);
END P2_24b;

ARCHITECTURE Dataflow OF P2_24b IS
BEGIN
    F <= x XOR y XOR z;
END Dataflow;
```

c)

```
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.all;

ENTITY P2_24c IS PORT (
    w,x,y,z: IN STD_LOGIC;
    F: OUT STD_LOGIC);

END P2_24c;

ARCHITECTURE Dataflow OF P2_24c IS
BEGIN
    F <= NOT((NOT w AND x AND NOT y AND z) OR (NOT w AND z AND (y XOR x)));
END Dataflow;
```

2.39.

```
// this is a Verilog behavioral model of the car security system
module Siren (
   input M, D, V,
   output S
);

wire term1, term2, term3;

always @ (M or D or V) begin
   term1 = (M & ~D & V);
   term2 = (M & D & ~V);
   term3 = (M & D & V);
   S = term1 | term2 | term3;
   end
endmodule
```

2.40.

```
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY Siren IS PORT (
    M, D, V: IN STD_LOGIC;
    S: OUT STD_LOGIC);

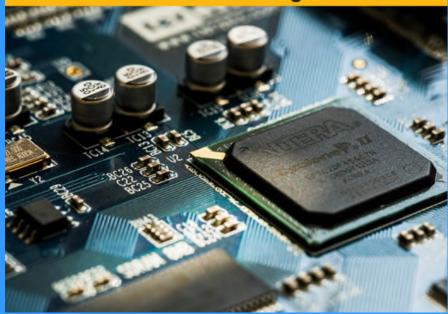
END Siren;

ARCHITECTURE Behavioral OF Siren IS
BEGIN
    PROCESS(M, D, V)
    BEGIN
    S <= (M AND NOT D AND V) OR (M AND D AND NOT V) OR (M AND D AND V);
    END PROCESS;

END Behavioral;
```

Digital Logic & Microprocessor Design with Interfacing 2nd Edition

Enoch O. Hwang



Chapter 2 Fundamentals of Digital Circuits

© 2018 Cengage Learning[®]. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Binary Number

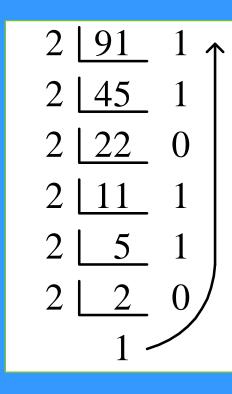
Decimal	Binary	Octal	Hexadecimal
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F

Value of a Binary Number

- For decimal number:
- $658_{10} = (6 \times 10^{2}) + (5 \times 10^{1}) + (8 \times 10^{0})$ $= 600 + 50 + 8 = 658_{10}$

- For binary number:
- $1011011_2 = (1 \times 2^6) + (0 \times 2^5) + (1 \times 2^4) + (1 \times 2^3) + (0 \times 2^2) + (1 \times 2^1) + (1 \times 2^0)$ $= 64 + 0 + 16 + 8 + 0 + 2 + 1 = 91_{10}$

Convert Decimal to Digital



Least significant bit

= 1011011

Most significant bit

Octal and Hex

Octal

$$5724_8 = (5 \times 8^3) + (7 \times 8^2) + (2 \times 8^1) + (4 \times 8^0)$$

$$= 2560 + 448 + 16 + 4$$

$$=3028_{10}$$

Hex

8²)
$$5CA_{16} = (5 \times 16^{2}) + (C \times 16^{1}) + (F \times 16^{0})$$

$$= (5 \times 16^2) + (12 \times 16^1) + (15 \times 16^0)$$

$$= 1280 + 192 + 15$$

$$= 1487_{10}$$

Binary Number Arithmetic

Negative Number

- Signed or unsigned number representation
- Use two's complement representation for signed numbers
- For signed numbers, the MSB tells whether the number is positive or negative
 - 0 = positive
 - 1 = negative
- If signed number is positive then you can find the value just like for unsigned numbers

Negative Number

- If signed number is negative then you need to do two steps to find its value:
 - (1) Flip all the 1 bits to 0's and all the 0 bits to 1's.
 - (2) Add a 1 to the result obtained from step (1).
- The negated value obtained from step (2) is the value of the original signed number

```
(original number – MSB is a 1)
(1) 0110 (flip all the bits)
(2) 0111 (add a 1 to the previous number)
0111 = 7, therefore 1001 = -7
```

Negative Number

4-bit Binary	Two's
	Complement
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	-8
1001	-7
1010	-6
1011	- 5
1100	-4
1101	-3
1110	-2
1111	– 1

For 4-bit unsigned number: range is 0 to 2⁴ – 1 = 0 to 15

For 4-bit signed number: range is -2^3 to $2^3 - 1$ = -8 to 7

For n-bit unsigned number: range is 0 to $2^n - 1$

For *n*-bit signed number: range is -2^{n-1} to $2^{n-1} - 1$

^{© 2018} Cengage Learning[®]. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Example

- Find the two's complement number for –58
 - Start with +58

Binary for +58 is 0111010. Need to add a leading 0, otherwise it is a negative number!

0111010 = 58

1000101 Flip all the bits

1000110 add a 1 to the previous number

Therefore, 1000110 = -58

Sign Extension

- For unsigned numbers, extend with 0
- For signed numbers, extend with the MSB

	Original Number	Sign Extended	Original Number	Sign Extended
	10010	11110010	0101	00000101
Flip bits	01101	00001101		
Add 1	01110	00001110		
Value	– 14	- 14	5	5

Signed Number Arithmetic

$$0 \ 1 \ 0 \ 1 = 5$$
 $+ \ 1 \ 0 \ 1 \ 1 = +11$
 $1 \ 0 \ 0 \ 0 \ 0 =$

$$0 \ 1 \ 0 \ 1 = 5$$
 $+ 1 \ 0 \ 1 \ 1 = +11$
 $1 \ 0 \ 0 \ 0 \ 0 = 16$
Yes, there is an overflow error

$$0 \ 1 \ 0 \ 1 =$$
 $+ \ 0 \ 1 \ 1 \ 0 =$

2. Perform the following 4-bit unsigned number addition. Is there an overflow error?

No, there is no overflow error

$$0 \ 1 \ 0 \ 1 =$$
 $+ \ 1 \ 0 \ 1 \ 1 =$
 $=$

3. Perform the following 4-bit signed number addition. Is there an overflow error?

$$0 1 0 1 = 5$$

$$+ 1 0 1 1 = +(-5)$$

$$1 0 0 0 0 = 0$$

No, there is no overflow error

4. Perform the following 4-bit signed number addition. Is there an overflow error?

$$0 \ 1 \ 0 \ 1 =$$
 $+ \ 0 \ 1 \ 1 \ 0 =$

4. Perform the following 4-bit signed number addition. Is there an overflow error?

$$0 \ 1 \ 0 \ 1 = 5$$
 $+ \ 0 \ 1 \ 1 \ 0 = + 6$
 $1 \ 0 \ 1 \ 1 = -5$

Yes, there is an overflow error

5. Perform the following 4-bit unsigned number subtraction. Is there an overflow error?

$$0 \ 1 \ 0 \ 1 =$$
 $- \ 0 \ 1 \ 1 \ 0 =$

5. Perform the following 4-bit unsigned number subtraction. Is there an overflow error?

5. Perform the following 4-bit unsigned number subtraction. Is there an overflow error?

$$0 \ 1 \ 0 \ 1 = 5$$
 $- \ 0 \ 1 \ 1 \ 0 = -6$
 $1 \ 1 \ 1 \ 1 = 15$
Yes, there is an overflow error

6. Perform the following 4-bit signed number subtraction. Is there an overflow error?

$$0 \ 1 \ 0 \ 1 =$$
 $- \ 0 \ 1 \ 1 \ 0 =$

6. Perform the following 4-bit signed number subtraction. Is there an overflow error?

6. Perform the following 4-bit signed number subtraction. Is there an overflow error?

No, there is no overflow error

7. Perform the following 4-bit signed number subtraction. Is there an overflow error?

$$0 \ 1 \ 0 \ 1 =$$
 $- \ 1 \ 0 \ 0 \ 0 =$

7. Perform the following 4-bit signed number subtraction. Is there an overflow error?

7. Perform the following 4-bit signed number subtraction. Is there an overflow error?

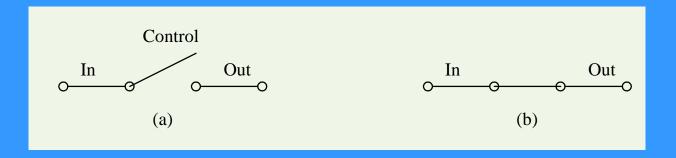
$$0 \ 1 \ 0 \ 1 = 5$$

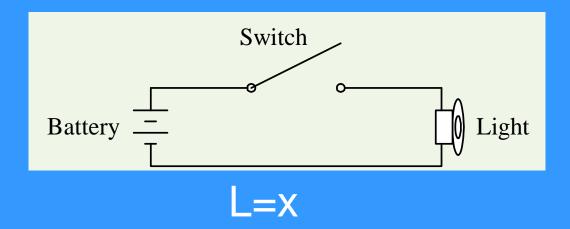
$$-1 \ 0 \ 0 \ 0 = -(-8)$$

$$1 \ 1 \ 0 \ 1 = -3$$

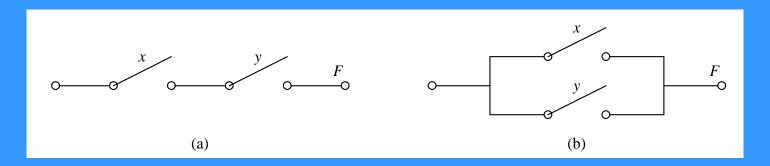
Yes, there is an overflow error

Binary Switch





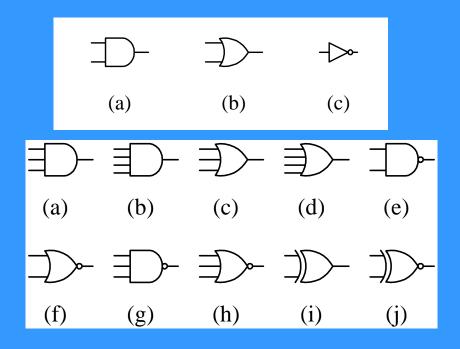
Basic Logic



- AND F = x and y $F = x \cdot y$ F = xy
- OR F = x or y F = x + y
- NOT F = x' F = x
- Precedence from high to low: NOT/AND/OR
- F = xy + z' F = x(y + z)'

Logic Gate

- Logic gates are the actual physical devices that implement the logical operators
- Using Logic Symbol to denote logic gates



- NAND
- NOR
- XOR
- XNOR

Logic Gate

- NAND F = (xy)'
- NOR F = (x + y)'
- XOR $F = x \oplus y = x'y + xy'$
- XNOR $F = x \odot y = x'y' + xy$

For even number of inputs xor = xnor'

$$(x \oplus y) = (x \odot y)'$$

For odd number of inputs xor = xnor

$$(x \oplus y \oplus z) = (x \odot y \odot z)$$

Truth Table

X	У	F
0	0	0
0	1	0
1	0	0
1	1	1

Х	У	F
0	0	0
0	1	1
1	0	1
1	1	1

X	F
0	1
1	0

		2-NAND	2-NOR	2-XOR	2-XNOR
X	У	(x•y)'	(x+y)'	$x \oplus y$	х⊙у
0	0	1	1	0	1
0	1	1	0	1	0
1	0	1	0	1	0
1	1	0	0	0	1

Truth Table

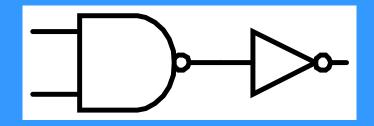
			3-AND	3-OR	3-NAND	3-NOR	3-XOR	3-XNOR
X	У	Z	x • y • z	x + y + z	(x • y • z)'	(x + y + z)'	$x \oplus y \oplus z$	x
0	0	0	0	0	1	1	0	0
0	0	1	0	1	1	0	1	1
0	1	0	0	1	1	0	1	1
0	1	1	0	1	1	0	0	0
1	0	0	0	1	1	0	1	1
1	0	1	0	1	1	0	0	0
1	1	0	0	1	1	0	0	0
1	1	1	1	1	0	0	1	1

How can you use a NAND gate to work like an AND gate?

Х	У	F
0	0	1
0	1	1
1	0	1
1	1	0

How can you use a NAND gate to work like an AND gate?

X	У	F
0	0	1
0	1	1
1	0	1
1	1	0

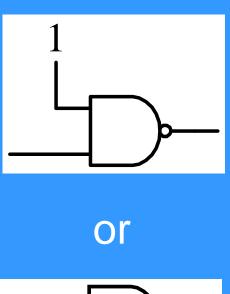


How can you use a NAND gate to work like a NOT gate?

Х	У	F
0	0	1
0	1	1
1	0	1
1	1	0

How can you use a NAND gate to work like a NOT gate?

Х	У	F
0	0	1
0	1	1
1	0	1
1	1	0



How can you use a NAND gate to work like an OR gate?

X	У	F
0	0	1
0	1	1
1	0	1
1	1	0

How can you use a NAND gate to work like an OR gate?

Use DeMorgan's Theorem

Х	У	F
0	0	1
0	1	1
1	0	1
1	1	0

How can you use a NAND gate to work like an OR gate?

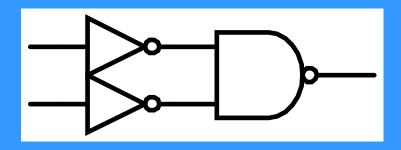
Use DeMorgan's Theorem

How can you use a NAND gate to work like an OR gate?

x y F 0 0 1 0 1 1 0 1 1 1 0

Use DeMorgan's Theorem

$$x + y = (x + y)''$$
$$= (x'y')'$$

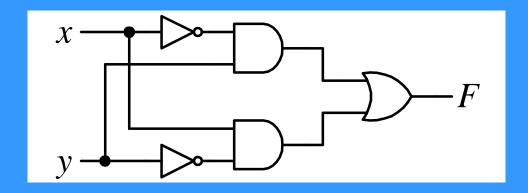


Use AND, OR, and NOT gates to implement the XOR gate

Х	У	F
0	0	0
0	1	1
1	0	1
1	1	0

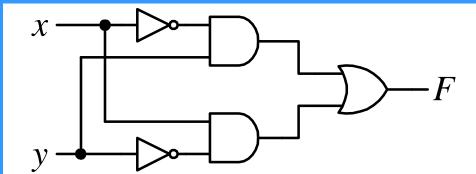
Use AND, OR, and NOT gates to implement the XOR gate

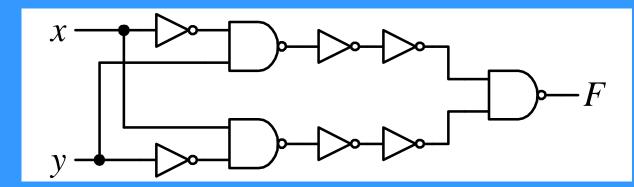
X	У	F
0	0	0
0	1	1
1	0	1
1	1	0



Use only NAND gates to implement the XOR gate

Х	У	F
0	0	0
0	1	1
1	0	1
1	1	0

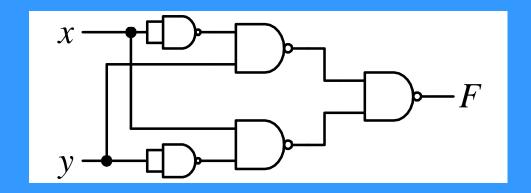




© 2018 Cengage Learning[®]. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Use only NAND gates to implement the XOR gate

X	У	F
0	0	0
0	1	1
1	0	1
1	1	0



- Circuits built with binary switches can be described using Boolean algebra.
- Let B = {0,1} be the Boolean algebra. We have axioms, single variable theorems, and two or three variable theorems.
- Can be used to reduce circuit size.

1a.	$0 \bullet 0 = 0$	1b.	1 + 1 = 1				
2a.	1 • 1 = 1	2b.	0 + 0 = 0				
3a.	$0 \bullet 1 = 1 \bullet 0 = 0$	3b.	1 + 0 = 0 + 1 = 1				
4a.	0' = 1	4b.	1' = 0				
(a)							
5a.	$x \bullet 0 = 0$	5b.	x + 1 = 1	Null Ele	ment		
6a.	$x \bullet 1 = 1 \bullet x = x$	6b.	x + 0 = 0 + x = x	Identity			
7a.	$X \bullet X = X$	7b.	X + X = X	Idempotent			
8a.	(x')' = x			Double Complement			
9a.	$x \bullet x' = 0$	9b.	x + x' = 1	Inverse			
(b)							
10a.	$x \bullet y = y \bullet x$	10b.	x + y = y + x		Commutative		
11a.	$(x \bullet y) \bullet z = x \bullet (y \bullet z)$	11b.	(x + y) + z = x + (y + y)	+ Z)	Associative		
12a.	$(x \bullet y) + (x \bullet z) = x \bullet (y + z)$	12b.	$(x + y) \bullet (x + z) = x$	+ (y • z)	Distributive		
13a.	$(x \bullet y)' = x' + y'$	13b.	$(x + y)' = x' \bullet y'$		DeMorgan's		
(c)							

© 2018 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Reduce Logic Expression using Boolean Algebra

Use Boolean algebra to reduce the expression $x + (x \bullet y)$ as much as possible

$$x + (x \bullet y) = (x \bullet 1) + (x \bullet y)$$
$$= x \bullet (1 + y)$$
$$= x \bullet (1)$$
$$= x$$

 Use Boolean algebra to reduce the equation as much as possible

$$F = (x'yz) + (xy'z) + (xyz') + (xyz)$$

Use Boolean algebra to reduce the equation as much as possible

$$F = (x'yz) + (xy'z) + (xyz') + (xyz)$$

= $(x'yz) + (xy'z) + (xyz') + (xyz) + (xyz) + (xyz)$

Use Boolean algebra to reduce the equation as much as possible

$$F = (x'yz) + (xy'z) + (xyz') + (xyz)$$

$$= (x'yz) + (xy'z) + (xyz') + (xyz) + (xyz) + (xyz)$$

$$= (x'yz) + (xyz) + (xy'z) + (xyz) + (xyz') + (xyz)$$

$$= [(x'yz) + (xyz)] + [(xy'z) + (xyz)] + [(xyz') + (xyz)]$$

Boolean Algebra

Use Boolean algebra to reduce the equation as much as possible

$$F = (x'yz) + (xy'z) + (xyz') + (xyz)$$

$$= (x'yz) + (xy'z) + (xyz') + (xyz) + (xyz) + (xyz)$$

$$= (x'yz) + (xyz) + (xy'z) + (xyz) + (xyz') + (xyz)$$

$$= [(x'yz) + (xyz)] + [(xy'z) + (xyz)] + [(xyz') + (xyz)]$$

$$= yz(x' + x) + xz(y' + y) + xy(z' + z)$$

$$= yz(1) + xz(1) + xy(1)$$

$$= yz + xz + xy$$

$$= z(y + x) + xy$$

© 2018 Cengage Learning[®]. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Duality Principle

Dual: changing AND with OR and vice versa,
 Changing 0 with 1 and vice versa

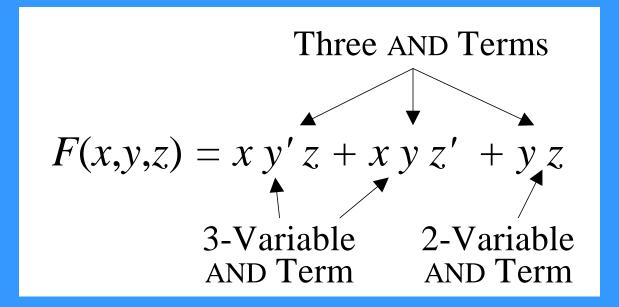
$$(x \bullet y' \bullet z) + (x \bullet y \bullet z') + (y \bullet z) + 0$$
$$(x + y' + z) \bullet (x + y + z') \bullet (y + z) \bullet 1$$

 Duality Principle: if a Boolean expression is true, then its dual is also true

$$x + 1 = 1$$
 is true. $x \bullet 0 = 0$ is true

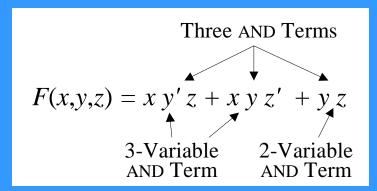
The inverse of a Boolean expression can be obtained by taking the dual of that expression and then complementing each variable.

 Boolean function: logic expression to describe digital circuit.



Sum-of-product

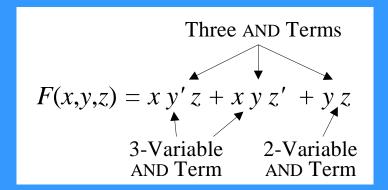
We are mainly interested in when a function evaluates to a 1



- F = 1 when any one of the three AND terms evaluate to a 1
- The first AND term, xy'z, equals 1 if

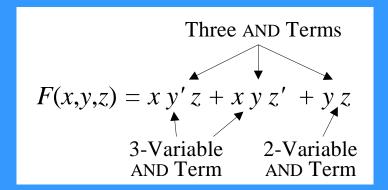
$$x = 1$$
, $y = 0$, and $z = 1$

© 2018 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



The last AND term, yz, equals 1 if y = 1 and z = 1

the missing variable, x, means it doesn't matter what its value is, so it can be either 0 or 1



Putting everything together, F = 1 when

$$x = 1$$
, $y = 0$, and $z = 1$

or
$$x = 1, y = 1, \text{ and } z = 0$$

or
$$x = 0, y = 1, \text{ and } z = 1$$

or
$$x = 1, y = 1, \text{ and } z = 1$$

It is more convenient to summarize this verbal description of a function with a truth

table

Χ	У	Z	F	F'
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

The inverse of a function, F', can be obtained easily from the truth table

X	У	Z	F	F'
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

- Look at the rows where F' = 1
- F' = (x'y'z') + (x'y'z) + (x'yz') + (xy'z')(xy'z')

 To get F' using Boolean Algebra requires using DeMorgan's Theorem twice

$$F = xy'z + xyz' + yz$$

$$F' = (xy'z + xyz' + yz)'$$

$$= (xy'z)' \bullet (xyz')' \bullet (yz)'$$

$$= (x'+y+z') \bullet (x'+y'+z) \bullet (y'+z')$$

We have two different equations for F'

$$F' = (x'y'z') + (x'y'z) + (x'yz') + (xy'z')$$
sum-of-products

$$F'=(x'+y+z') \bullet (x'+y'+z) \bullet (y'+z')$$

product-of-sums

Minterms and Maxterms

Minterm

- Is a product term that contains all the variables in a function
- The variable is negated (primed) if the value is a 0

Maxterm

- Is a sum term that contains all the variables in a function
- The variable is negated (primed) if the value is a 1

Minterms and Maxterms

- *m_i* for minterms
- M_i for maxterms where $0 \le i < 2^n$ for n variables

X	У	Z	Minterm	Notation	Maxterm	Notation
0	0	0	x' y' z'	m_0	x + y + z	M_0
0	0	1	x' y' z	m_1	x + y + z'	M_1
0	1	0	x' y z'	m_2	x + y' + z	M_2
0	1	1	x' y z	m_3^-	x + y' + z'	M_3^-
1	0	0	x y' z'	m_4	x' + y + z	M_4
1	0	1	x y' z	m_5	x' + y + z'	M_5
1	1	0	x y z'	m_6	x' + y' + z	M_6
1	1	1	хух	m_7	x' + y' + z'	M_7

F = xy'z + xyz' + yz= x'yz + xy'z + xyz' + xyz

Х	у	Z	F	F'	Minterm	Notation
0	0	0	0	1	x' y' z'	m_0
0	0	1	0	1	x' y' z	m_1
0	1	0	0	1	x' y z'	m_2
0	1	1	1	0	x' y z	m_3
1	0	0	0	1	x y' z'	m_4
1	0	1	1	0	x y' z	m_5
1	1	0	1	0	x y z'	m_6
1	1	1	1	0	хух	m_7

$$F(x, y, z) = m_3 + m_5 + m_6 + m_7$$
$$F(x, y, z) = \Sigma(3, 5, 6, 7)$$
$$F'(x, y, z) = \Sigma(0, 1, 2, 4)$$

• F = xy'z + xyz' + yz= $(x + y + z) \cdot (x + y + z') \cdot (x + y' + z) \cdot (x' + y + z)$

Х	У	Z	F	F'	Maxterm	Notation
0	0	0	0	1	x + y + z	M_0
0	0	1	0	1	x + y + z'	M_1
0	1	0	0	1	x + y' + z	M_2
0	1	1	1	0	x + y' + z'	M_3
1	0	0	0	1	x' + y + z	M_4
1	0	1	1	0	x' + y + z'	M_5
1	1	0	1	0	x' + y' + z	M_6
1	1	1	1	0	x' + y' + z'	M_7°

$$F(x, y, z) = M_0 \bullet M_1 \bullet M_2 \bullet M_4$$
$$F(x, y, z) = \Pi(0, 1, 2, 4)$$
$$F'(x, y, z) = \Pi(3, 5, 6, 7)$$

- Given $F(x, y, z) = \Sigma(1, 2, 3, 5, 6, 7)$
- Write out the full function

- Given $F(x, y, z) = \Sigma(1, 2, 3, 5, 6, 7)$
- Write out the full function

$$F(x, y, z) = x'y'z + x'yz' + x'yz + x'yz' + xyz' + xyz' + xyz$$

- Given $F(x, y, z) = \Sigma(1, 2, 3, 5, 6, 7)$
- What is F using Π ?

- Given $F(x, y, z) = \Sigma(1, 2, 3, 5, 6, 7)$
- What is F using Π ?
- $F(x, y, z) = \Pi(0, 4)$

- Given $F(x, y, z) = \Sigma(1, 2, 3, 5, 6, 7)$
- What is F using Π ?
- $F(x, y, z) = \Pi(0, 4)$
- Write out the full function for $\Pi(0, 4)$

- Given $F(x, y, z) = \Sigma(1, 2, 3, 5, 6, 7)$
- What is F using Π ?
- $F(x, y, z) = \Pi(0, 4)$
- Write out the full function for $\Pi(0, 4)$
- $F(x, y, z) = (x + y + z) \bullet (x' + y + z)$

- Given $F(x, y, z) = \Sigma(1, 2, 3, 5, 6, 7)$
- What is F' using Σ ?
- $F' = \Sigma(0, 4)$

- Given $F(x, y, z) = \Sigma(1, 2, 3, 5, 6, 7)$
- What is F' using Π ?
- $F' = \Pi(1, 2, 3, 5, 6, 7)$

- Given $F(w, x, y, z) = \Sigma(1, 2, 3, 5, 6, 7)$
- Write out the full function

- Given $F(w, x, y, z) = \Sigma(1, 2, 3, 5, 6, 7)$
- What is F using Π ?

- Given $F(w, x, y, z) = \Sigma(1, 2, 3, 5, 6, 7)$
- What is F using Π ?

• Write out the full function for Π of 0-Maxterms

- Given $F(w, x, y, z) = \Sigma(1, 2, 3, 5, 6, 7)$
- What is F' using Σ ?

- Given $F(w, x, y, z) = \Sigma(1, 2, 3, 5, 6, 7)$
- What is F' using Π ?

Minterms/Maxterms Relationship

$$F(x, y, z) = x' y z + x y' z + x y z' + x y z$$

$$= m_3 + m_5 + m_6 + m_7$$

$$= \Sigma(3, 5, 6, 7)$$

$$= (x+y+z) \bullet (x+y+z') \bullet (x+y'+z) \bullet (x'+y+z)$$

$$= M_0 \bullet M_1 \bullet M_2 \bullet M_4$$

$$= \Pi(0, 1, 2, 4)$$

$$F'(x, y, z) = x' y' z' + x' y' z + x' y z' + x y' z'$$

$$= m_0 + m_1 + m_2 + m_4$$

$$= \Sigma(0, 1, 2, 4)$$

$$= (x+y'+z') \bullet (x'+y+z') \bullet (x'+y'+z) \bullet (x'+y'+z')$$

$$= M_3 \bullet M_5 \bullet M_6 \bullet M_7$$

$$= \Pi(3, 5, 6, 7)$$

$$\Pi \text{ 1-maxterms}$$

- Given F(x, y, z) = y + x'z
- Write it in the Σ of minterms format and Π of maxterms format
- Use Truth Table

- Given F(x, y, z) = y + x'z
- Use Truth Table

Х	У	Z	F	Minterm	Notation
0	0	0		x' y' z'	m_0
0	0	1		x' y' z	m_1
0	1	0		x' y z'	m_2
0	1	1		x' y z	m_3
1	0	0		x y' z'	m_4
1	0	1		x y' z	m_5
1	1	0		x y z'	m_6
1	1	1		хуг	m_7

- Given F(x, y, z) = y + x'z
- Use Truth Table

Χ	У	Z	F	Minterm	Notation
0	0	0	0	x' y' z'	m_0
0	0	1	1	x' y' z	m_1
0	1	0	1	x' y z'	m_2
0	1	1	1	x' y z	m_3
1	0	0	0	x y' z'	m_4
1	0	1	0	x y' z	m_5
1	1	0	1	x y z'	m_6
1	1	1	1	хуz	m_7

 $F = \Sigma(1, 2, 3, 6, 7)$ and $F = \Pi(0, 4, 5)$

© 2018 Cengage Learning[®]. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

- Given F(x, y, z) = y + x'z
- Write it in the Σ of minterms format
- Use Boolean algebra

$$F = y + x'z$$

- Given F(x, y, z) = y + x'z
- Write it in the Σ of minterms format
- Use Boolean algebra

$$F = y + x'z$$

$$= y(x+x')(z+z') + x'z(y+y')$$

$$= xyz + xyz' + x'yz + x'yz' + x'yz + x'y'z$$

$$= m_7 + m_6 + m_3 + m_2 + m_1$$

$$= \Sigma(1, 2, 3, 6, 7)$$

© 2018 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

- Given F(x, y, z) = y + x'z
- Write it in the Π of maxterms format
- Use Boolean algebra

$$F = y + x'z$$

- Given F(x, y, z) = y + x'z
- Write it in the Π of maxterms format
- Use Boolean algebra

$$F = y + x'z$$

$$= (y+x')(y+z)$$

$$= (y+x'+zz')(y+z+xx')$$

$$= (x'+y+z)(x'+y+z')(x+y+z)(x'+y+z)$$

$$= M_4 \cdot M_5 \cdot M_0 = \Pi(0, 4, 5)$$

- Given F(x, y, z) = y + x'z
- Write F' in the Σ of minterms format
- Use Boolean algebra

$$F' = (y + x'z)'$$

• Given F(x, y, z) = y + x'z

$$F' = (y + x'z)'$$

$$= y' \cdot (x'z)'$$

$$= y' \cdot (x+z')$$

$$= y'x + y'z'$$

$$= y'x(z+z') + y'z'(x+x')$$

$$= xy'z + xy'z' + xy'z' + x'y'z'$$

$$= m_5 + m_4 + m_0$$

$$= \Sigma (0, 4, 5)$$

© 2018 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Converting to Minterms/Maxterms

- Given F(x, y, z) = y + x'z
- Write F' in the Π of maxterms format
- Use Boolean algebra

$$F' = (y + x'z)'$$

Converting to Minterms/Maxterms

• Given F(x, y, z) = y + x'z

$$F' = (y + x'z)'$$

$$= y' \cdot (x'z)'$$

$$= (y' + xx' + zz') \cdot (x+z' + yy')$$

$$= (x+y'+z) (x+y'+z') (x'+y'+z) (x'+y'+z')$$

$$= (x+y+z') \frac{(x+y'+z')}{(x+y'+z')}$$

$$= M_2 \cdot M_3 \cdot M_6 \cdot M_7 \cdot M_1$$

$$= \Pi(1, 2, 3, 6, 7)$$

Converting to Minterms/Maxterms

• Given F(x, y, z) = y + x'z

$$F = \Sigma(1, 2, 3, 6, 7) = \Pi(0, 4, 5)$$

 $F' = \Sigma(0, 4, 5) = \Pi(1, 2, 3, 6, 7)$

Canonical, Standard, and Non-standard Forms

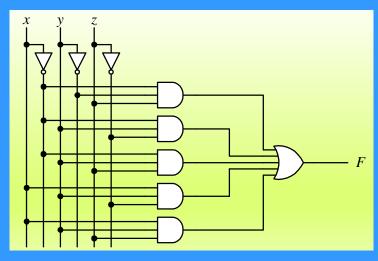
- Canonical: Boolean function expressed in sum-of-minterms or product-of-maxterms
- F = x' y z + x y' z + x y z' + x y z $F' = (x+y'+z') \bullet (x'+y+z') \bullet (x'+y'+z) \bullet (x'+y'+z')$ $F_1(x, y, z) = \Sigma(0, 1, 2, 3, 4, 5) \qquad F_2(x, y, z) = \Pi(6, 7)$ $F_1(x, y, z) = \Sigma(3, 5, 6) \qquad F_2(x, y, z) = \Pi(3, 5, 6)$
- Standard: sum-ofproducts or products-ofsum has at least one minterm/maxterm
- Non-standard: not in sum-of-product or product-of-sum format

$$F = xy'z + xyz' + yz$$

$$F = x(y'z + yz') + yz$$

Digital Circuit

- Digital circuit is a connection of two or more logic gates
- Digital network can be described using schematic diagrams, Boolean expressions, or truth tables



X	У	Z	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

F(x, y, z) = x'y'z + x'yz' + x'yz + xyz' + xyz

Design a Car Security System

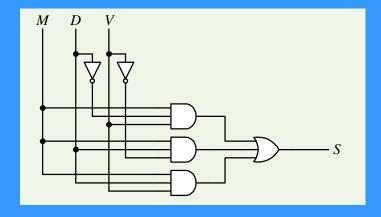
Input: D = Door switch

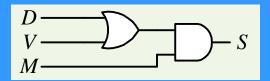
V = Vibration sensor

M = Motion sensor

Output: S = Siren

M	D	V	S
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1





```
// this is a Verilog dataflow model of the car security system
module Siren (
        input M,
        input D,
        input V,
        output S
);
        wire term1, term2, term3;
        assign term1 = (M & !D & V);
        assign term2 = (M & D & !V);
        assign term3 = (M & D & V);
        assign S = term1 | term2 | term3;
endmodule
```

```
// this is a Verilog dataflow model of the car security system
module Siren (
        input M,
        input D,
        input V,
        output S
        assign S = (M & !D & V) | (M & D & !V) | (M & D & V);
endmodule
```

```
// this is a Verilog structural model of the car security system
module Siren (
        input M,
        input D,
        input V,
        output S
        wire w1;
        or (w1, D, V);
        and (S, M, w1);
endmodule
```

VHDL Code for Car System

```
// this is a VHDL dataflow model of the car security system
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY Siren IS PORT (
       M:
               IN STD LOGIC:
               IN STD_LOGIC;
       D:
               IN STD_LOGIC;
               OUT STD_LOGIC);
END Siren:
ARCHITECTURE Dataflow OF Siren IS
       SIGNAL term_1, term_2, term_3: STD_LOGIC;
BEGIN
       term_1 <= M AND (NOT D) AND V;
       term_2 <= M AND D AND (NOT V);
       term 3 <= M AND D AND V;
       S <= term_1 OR term_2 OR term_3;
END Dataflow:
```

Full Download: http://downloadlink.org/product/solutions-manual-for-digital-logic-and-microprocessor-design-with-interfacing-2nd-edition-by-hwang-ibsn-97813058594

Digital Logic and Microprocessor Design with Interfacing, 2E

Hwang

VHDL Code for Car System

```
// this is a VHDL dataflow model of the car security system
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY Siren IS PORT (
               IN STD_LOGIC;
        M:
               IN STD_LOGIC;
               IN STD_LOGIC;
                OUT STD_LOGIC);
END Siren;
ARCHITECTURE Dataflow OF Siren IS
BEGIN
        S \leftarrow M AND (D OR V);
END Dataflow;
```