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n xn yn
1 0.1 −1.87392
2 0.2 −1.36127
3 0.3 −1.06476
4 0.4 −0.86734
5 0.5 −0.72143
6 0.6 −0.60353
7 0.7 −0.50028
8 0.8 −0.40303
9 0.9 −0.30541
10 1.0 −0.20195

Consequently the Runge-Kutta approximation to y(1) is y10 = −0.20195. Comparing this to the correspond-
ing Euler approximation from Problem 58 we have

|yRK − yE| = |0.20195− 0.12355| = 0.07840.

63. Applying the Runge-Kutta method with y′ =
3x

y
+ 2, x0 = 1, y0 = 2, and h = 0.05 generates the

sequence of approximants given in the table below.

n xn yn
1 1.05 2.17369
2 1.10 2.34506
3 1.15 2.51452
4 1.20 2.68235
5 1.25 2.84880
6 1.30 3.01404
7 1.35 3.17823
8 1.40 3.34151
9 1.45 3.50396
10 1.50 3.66568

Consequently the Runge-Kutta approximation to y(1.5) is y10 = 3.66568. Comparing this to the correspond-
ing Euler approximation from Problem 59 we have

|yRK − yE| = |3.66568− 3.67185| = 0.00617.

Chapter 2 Solutions

Solutions to Section 2.1

True-False Review:

(a): TRUE. A diagonal matrix has no entries below the main diagonal, so it is upper triangular. Likewise,
it has no entries above the main diagonal, so it is also lower triangular.

(b): FALSE. An m× n matrix has m row vectors and n column vectors.
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(c): TRUE. This is a square matrix, and all entries off the main diagonal are zero, so it is a diagonal matrix
(the entries on the diagonal also happen to be zero, but this is not required).

(d): FALSE. The main diagonal entries of a skew-symmetric matrix must be zero. In this case, a11 = 4 �= 0,
so this matrix is not skew-symmetric.

(e): FALSE. The form presented uses the same number along the entire main diagonal, but a symmetric
matrix need not have identical entries on the main diagonal.

(f): TRUE. Since A is symmetric, A = AT . Thus, (AT )T = A = AT , so AT is symmetric.

(g): FALSE. The trace of a matrix is the sum of the entries along the main diagonal.

(h): TRUE. If A is skew-symmetric, then AT = −A. But A and AT contain the same entries along the
main diagonal, so for AT = −A, both A and −A must have the same main diagonal. This is only possible
if all entries along the main diagonal are 0.

(i): TRUE. If A is both symmetric and skew-symmetric, then A = AT = −A, and A = −A is only possible
if all entries of A are zero.

(j): TRUE. Both matrix functions are defined for values of t such that t > 0.

(k): FALSE. The (3, 2)-entry contains a function that is not defined for values of t with t ≤ 3. So for
example, this matrix functions is not defined for t = 2.

(l): TRUE. Each numerical entry of the matrix function is a constant function, which has domain R.

(m): FALSE. For instance, the matrix function A(t) = [t] and B(t) = [t2] satisfy A(0) = B(0), but A and
B are not the same matrix function.

Problems:

1(a). a31 = 0, a24 = −1, a14 = 2, a32 = 2, a21 = 7, a34 = 4.

1(b). (1, 4) and (3, 2).

2(a). b12 = −1, b33 = 4, b41 = 0, b43 = 8, b51 = −1, and b52 = 9.

2(b). (1, 2), (1, 3), (2, 1), (3, 2), and (5, 1).

3.

[
1 5

−1 3

]
; 2× 2 matrix.

4.

[
2 1 −1
0 4 −2

]
; 2× 3 matrix.

5.

⎡⎢⎢⎣
−1
1
1

−5

⎤⎥⎥⎦; 4× 1 matrix.

6.

⎡⎢⎢⎣
1 −3 −2
3 6 0
2 7 4

−4 −1 5

⎤⎥⎥⎦; 4× 3 matrix.

7.

⎡⎣ 0 −1 2
1 0 3

−2 −3 0

⎤⎦; 3× 3 matrix.

(c)2017 Pearson Education. Inc.
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8.

⎡⎢⎢⎣
0 −1 −2 −3
1 0 −1 −2
2 1 0 −1
3 2 1 −0

⎤⎥⎥⎦; 4× 4 matrix.

9.

⎡⎢⎢⎣
2 3 4 5
3 4 5 6
4 5 6 7
5 6 7 8

⎤⎥⎥⎦; 4× 4 matrix.

10. tr(A) = 1 + 3 = 4.

11. tr(A) = 1 + 2 + (−3) = 0.

12. tr(A) = 2 + 2 + (−5) = −1.

13. Column vectors:

[
1
3

]
,

[ −1
5

]
.

Row vectors: [1 − 1], [3 5].

14. Column vectors:

⎡⎣ 1
−1
2

⎤⎦ ,

⎡⎣ 3
−2
6

⎤⎦ ,

⎡⎣ −4
5
7

⎤⎦.
Row vectors: [1 3 − 4], [−1 − 2 5], [2 6 7].

15. Column vectors:

[
2
5

]
,

[
10
−1

]
,

[
6
3

]
. Row vectors: [2 10 6], [5 − 1 3].

16. A =

⎡⎣ 1 2
3 4
5 1

⎤⎦. Column vectors:

⎡⎣ 1
3
5

⎤⎦ ,

⎡⎣ 2
4
1

⎤⎦.
17. A =

[ −2 0 4 −1 −1
9 −4 −4 0 8

]
; column vectors:

[ −2
9

]
,

[
0

−4

]
,

[
4

−4

]
,

[ −1
0

]
,

[ −1
8

]
.

18. B =

⎡⎢⎢⎢⎢⎣
−2 −4
−6 −6
3 0

−1 0
−2 1

⎤⎥⎥⎥⎥⎦; row vectors:
[ −2 −4

]
,
[ −6 −6

]
,
[
3 0

]
,
[ −1 0

]
,
[ −2 1

]
.

19. B =

⎡⎣ 2 5 0 1
−1 7 0 2
4 −6 0 3

⎤⎦. Row vectors: [2 5 0 1], [−1 7 0 2], [4 − 6 0 3].

20. A = [a1,a2, . . . ,ap] has p columns and each column q-vector has q rows, so the resulting matrix has
dimensions q × p.

21. One example:

⎡⎣ 2 0 0
0 3 0
0 0 −1

⎤⎦.

22. One example:

⎡⎢⎢⎣
2 3 1 2
0 5 6 2
0 0 3 5
0 0 0 1

⎤⎥⎥⎦.
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23. One example:

⎡⎢⎢⎣
1 3 −1 2

−3 0 4 −3
1 −4 0 1

−2 3 −1 0

⎤⎥⎥⎦.

24. One example:

⎡⎣ 3 0 0
0 2 0
0 0 5

⎤⎦.
25. The only possibility here is the zero matrix:

⎡⎣ 0 0 0
0 0 0
0 0 0

⎤⎦.
26.

⎡⎣ 0 0 0
0 0 0
0 0 0

⎤⎦.

27. One example:

⎡⎢⎢⎣
t2 − t 0
0 0
0 0
0 0

⎤⎥⎥⎦.
28. One example:

[ 1√
3−t

√
t+ 2 0

0 0 0

]
.

29. One example:

[
1

t2+1

0

]
.

30. One example:
[
t2 + 1 1 1 1 1

]
.

31. One example: Let A and B be 1× 1 matrix functions given by

A(t) = [t] and B(t) = [t2].

32. Let A be a symmetric upper triangular matrix. Then all elements below the main diagonal are zeros.
Consequently, since A is symmetric, all elements above the main diagonal must also be zero. Hence, the
only nonzero entries can occur along the main diagonal. That is, A is a diagonal matrix.

33. Since A is skew-symmetric, we know that aij = −aji for all (i, j). But since A is symmetric, we know
that aij = aji for all (i, j). Thus, for all (i, j), we must have −aji = aji. That is, aji = 0 for all (i, j). That
is, every element of A is zero.

Solutions to Section 2.2

True-False Review:

(a): FALSE. The correct statement is (AB)C = A(BC), the associative law. A counterexample to the
particular statement given in this review item can be found in Problem 5.

(b): TRUE. Multiplying from left to right, we note that AB is an m× p matrix, and right multiplying AB
by the p× q matrix C, we see that ABC is an m× q matrix.

(c): TRUE. We have (A+B)T = AT +BT = A+B, so A+B is symmetric.
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(d): FALSE. For example, let A =

⎡⎣ 0 1 0
−1 0 0
0 0 0

⎤⎦ , B =

⎡⎣ 0 0 3
0 0 0

−3 0 0

⎤⎦. Then A and B are skew-

symmetric, but AB =

⎡⎣ 0 0 0
0 0 −3
0 0 0

⎤⎦ is not symmetric.

(e): FALSE. The correct equation is (A+B)2 = A2+AB+BA+B2. The statement is false since AB+BA

does not necessarily equal 2AB. For instance, if A =

[
1 0
0 0

]
and B =

[
0 1
0 0

]
, then (A+B)2 =

[
1 1
0 0

]
and A2 + 2AB +B2 =

[
1 2
0 0

]
�= (A+B)2.

(f): FALSE. For example, let A =

[
0 1
0 0

]
and B =

[
1 0
0 0

]
. Then AB = 0 even though A �= 0 and

B �= 0.

(g): FALSE. For example, let A =

[
0 0
1 0

]
and let B =

[
0 0
0 0

]
. Then A is not upper triangular,

despite the fact that AB is the zero matrix, hence automatically upper triangular.

(h): FALSE. For instance, the matrix A =

[
1 0
0 0

]
is neither the zero matrix nor the identity matrix,

and yet A2 = A.

(i): TRUE. The derivative of each entry of the matrix is zero, since in each entry, we take the derivative
of a constant, thus obtaining zero for each entry of the derivative of the matrix.

(j): FALSE. The correct statement is given in Problem 45. The problem with the statement as given is
that the second term should be dA

dt B, not B dA
dt .

(k): FALSE. For instance, the matrix function A =

[
2et 0
0 3et

]
satisfies A = dA

dt , but A does not have

the form

[
cet 0
0 cet

]
.

(l): TRUE. This follows by exactly the same proof as given in the text for matrices of numbers (see part
3 of Theorem 2.2.23).

Problems:

1(a). 5A =

[ −10 30 5
−5 0 −15

]
.

1(b). −3B =

[ −6 −3 3
0 −12 12

]
.

1(c). iC =

⎡⎣ −1 + i −1 + 2i
−1 + 3i −1 + 4i
−1 + 5i −1 + 6i

⎤⎦.
1(d). 2A−B =

[ −6 11 3
−2 −4 −2

]
.

1(e). A+ 3CT =

[
1 + 3i 15 + 3i 16 + 3i
5 + 3i 12 + 3i 15 + 3i

]
.
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1(f). 3D − 2E =

⎡⎣ 8 10 7
1 4 9
1 7 12

⎤⎦.
1(g). D + E + F =

⎡⎣ 12 −3− 3i −1 + i
3 + i 3− 2i 8
6 4 + 2i 2

⎤⎦.
1(h). Solving for G and simplifying, we have that

G = −3

2
A−B =

[
1 −10 −1/2
3/2 −4 17/2

]
.

1(i). Solving for H and simplifying, we have that H = 4E −D − 2F =⎡⎣ 8 −20 −8
4 4 12
16 −8 −12

⎤⎦−
⎡⎣ 4 0 1

1 2 5
3 1 2

⎤⎦−
⎡⎣ 12 4− 6i 2i

2 + 2i −4i 0
−2 10 + 4i 6

⎤⎦ =

⎡⎣ −8 −24 + 6i −9− 2i
1− 2i 2 + 4i 7
15 −19− 4i −20

⎤⎦ .

1(j). We have KT = 2B − 3A, so that K = (2B − 3A)T = 2BT − 3AT . Thus,

K = 2

⎡⎣ 2 0
1 4

−1 −4

⎤⎦− 3

⎡⎣ −2 −1
6 0
1 −3

⎤⎦ =

⎡⎣ 10 3
−16 8
−5 1

⎤⎦ .

2(a). −D =

⎡⎣ −4 0 −1
−1 −2 −5
−3 −1 −2

⎤⎦.
2(b). 4BT = 4

⎡⎣ 2 0
1 4

−1 −4

⎤⎦ =

⎡⎣ 8 0
4 16

−4 −16

⎤⎦.
2(c). −2AT + C = −2

⎡⎣ −2 −1
6 0
1 −3

⎤⎦+

⎡⎣ 1 + i 2 + i
3 + i 4 + i
5 + i 6 + i

⎤⎦ =

⎡⎣ 5 + i 4 + i
−9 + i 4 + i
3 + i 12 + i

⎤⎦.
2(d). 5E +D =

⎡⎣ 10 −25 −10
5 5 15
20 −10 −15

⎤⎦+

⎡⎣ 4 0 1
1 2 5
3 1 2

⎤⎦ =

⎡⎣ 14 −25 −9
6 7 20
23 −9 −13

⎤⎦.
2(e). We have

4AT − 2BT + iC = 4

⎡⎣ −2 −1
6 0
1 −3

⎤⎦− 2

⎡⎣ 2 0
1 4

−1 −4

⎤⎦+ i

⎡⎣ 1 + i 2 + i
3 + i 4 + i
5 + i 6 + i

⎤⎦ =

⎡⎣ −13 + i −5 + 2i
21 + 3i −9 + 4i
5 + 5i −5 + 6i

⎤⎦ .

2(f). We have

4E − 3DT =

⎡⎣ 8 −20 −8
4 4 12
16 −8 −12

⎤⎦−
⎡⎣ 12 3 9

0 6 3
3 15 6

⎤⎦ =

⎡⎣ −4 −23 −17
4 −2 9
13 −23 −18

⎤⎦ .
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2(g). We have (1− 6i)F + iD =⎡⎣ 6− 36i −16− 15i 6 + i
7− 5i −12− 2i 0
−1 + 6i 17− 28i 3− 18i

⎤⎦+

⎡⎣ 4i 0 i
i 2i 5i
3i i 2i

⎤⎦ =

⎡⎣ 6− 32i −16− 15i 6 + 2i
7− 4i −12 5i
−1 + 9i 17− 27i 3− 16i

⎤⎦ .

2(h). Solving for G, we have

G = A+ (1− i)CT =

[ −2 6 1
−1 0 −3

]
+ (1− i)

[
1 + i 3 + i 5 + i
2 + i 4 + i 6 + i

]
=

[ −2 6 1
−1 0 −3

]
+

[
2 4− 2i 6− 4i

3− i 5− 3i 7− 5i

]
=

[
0 10− 2i 7− 4i

2− i 5− 3i 4− 5i

]
.

2(i). Solve for H, we have

H =
3

2
D − 3

2
E + 3I3

=

⎡⎣ 6 0 3/2
3/2 3 15/2
9/2 3/2 3

⎤⎦−
⎡⎣ 3 −15/2 −3

3/2 3/2 9/2
6 −3 −9/2

⎤⎦+

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦
=

⎡⎣ 6 15/2 9/2
0 9/2 3

−3/2 9/2 21/2

⎤⎦ .

2(j). We have KT = DT + ET − FT = (D + E − F )T , so that

K = D + E − F =

⎡⎣ 0 −7 + 3i −1− i
1− i 3 + 2i 8
8 −6− 2i −4

⎤⎦ .

3(a).

AB =

[
5 10 −3

27 22 3

]
3(b).

BC =

⎡⎣ 9
8

−6

⎤⎦
3(c). CA cannot be computed.

3(d).

ATE =

⎡⎣ 1 3
−1 1
2 4

⎤⎦[ 2− i 1 + i
−i 2 + 4i

]
=

⎡⎣ 2− 4i 7 + 13i
−2 1 + 3i

4− 6i 10 + 18i

⎤⎦
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3(e).

CD =

⎡⎣ 2 −2 3
−2 2 −3
4 −4 6

⎤⎦ .

3(f).

CTAT =
[
1 −1 2

] ⎡⎣ 1 3
−1 1
2 4

⎤⎦ =
[
6 10

]
3(g).

F 2 =

[
i 1− 3i
0 4 + i

] [
i 1− 3i
0 4 + i

]
=

[ −1 10− 10i
0 15 + 8i

]
3(h).

BDT =

⎡⎣ 2 −1 3
5 1 2
4 6 −2

⎤⎦⎡⎣ 2
−2
3

⎤⎦ =

⎡⎣ 15
14

−10

⎤⎦
3(i).

ATA =

⎡⎣ 1 3
−1 1
2 4

⎤⎦[ 1 −1 2
3 1 4

]
=

⎡⎣ 10 2 14
2 2 2
14 2 20

⎤⎦
3(j).

FE =

[
i 1− 3i
0 4 + i

] [
2− i 1 + i
−i 2 + 4i

]
=

[ −2 + i 13− i
1− 4i 4 + 18i

]
4(a).

AC =

[
1 −1 2
3 1 4

]⎡⎣ 1
−1
2

⎤⎦ =

[
6
10

]

4(b).

DC = [10]

4(c).

DB = [6 14 − 4]

4(d). AD cannot be computed.

4(e). EF =

[
2− i 1 + i
−i 2 + 4i

] [
i 1− 3i
0 4 + i

]
=

[
1 + 2i 2− 2i

1 1 + 17i

]
.

4(f). Since AT is a 3× 2 matrix and B is a 3× 3 matrix, the product ATB cannot be constructed.

4(g). Since C is a 3× 1 matrix, it is impossible to form the product C · C = C2.

4(h). E2 =

[
2− i 1 + i
−i 2 + 4i

] [
2− i 1 + i
−i 2 + 4i

]
=

[
4− 5i 1 + 7i
3− 4i −11 + 15i

]
.

(c)2017 Pearson Education. Inc.



131

4(i). ADT =

[
1 −1 2
3 1 4

]⎡⎣ 2
−2
3

⎤⎦ =

[
10
16

]
.

4(j). ETA =

[
2− i −i
1 + i 2 + 4i

] [
1 −1 2
3 1 4

]
=

[
2− 4i −2 4− 6i
7 + 13i 1 + 3i 10 + 18i

]
.

5. We have

ABC = (AB)C =

⎛⎜⎜⎝[ −3 2 7 −1
6 0 −3 −5

]⎡⎢⎢⎣
−2 8
8 −3

−1 −9
0 2

⎤⎥⎥⎦
⎞⎟⎟⎠[ −6 1

1 5

]

=

[
15 −95
−9 65

] [ −6 1
1 5

]
=

[ −185 −460
119 316

]
and

CAB = C(AB) =

[ −6 1
1 5

]⎛⎜⎜⎝[ −3 2 7 −1
6 0 −3 −5

]⎡⎢⎢⎣
−2 8
8 −3

−1 −9
0 2

⎤⎥⎥⎦
⎞⎟⎟⎠

=

[ −6 1
1 5

] [
15 −95
−9 65

]
=

[ −99 635
−30 230

]
.

6.

Ac =

[
1 3

−5 4

] [
6

−2

]
= 6

[
1

−5

]
+ (−2)

[
3
4

]
=

[
0

−38

]
.

7.

Ac =

⎡⎣ 3 −1 4
2 1 5
7 −6 3

⎤⎦⎡⎣ 2
3

−4

⎤⎦ = 2

⎡⎣ 3
2
7

⎤⎦+ 3

⎡⎣ −1
1

−6

⎤⎦+ (−4)

⎡⎣ 4
5
3

⎤⎦ =

⎡⎣ −13
−13
−16

⎤⎦ .

8.

Ac =

⎡⎣ −1 2
4 7
5 −4

⎤⎦[ 5
−1

]
= 5

⎡⎣ −1
4
5

⎤⎦+ (−1)

⎡⎣ 2
7

−4

⎤⎦ =

⎡⎣ −7
13
29

⎤⎦ .

9. We have

Ac = x

[
a
e

]
+ y

[
b
f

]
+ z

[
c
g

]
+ w

[
d
h

]
=

[
xa+ yb+ zc+ wd
xe+ yf + zg + wh

]
.

10(a). The dimensions of B should be n× r in order that ABC is defined.

10(b). The elements of the ith row of A are ai1, ai2, . . . , ain and the elements of the jth column of BC are

r∑
m=1

b1mcmj ,
r∑

m=1

b2mcmj , . . . ,
r∑

m=1

bnmcmj ,
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so the element in the ith row and jth column of ABC = A(BC) is

ai1

r∑
m=1

b1mcmj + ai2

r∑
m=1

b2mcmj + · · ·+ ain

r∑
m=1

bnmcmj

=
n∑

k=1

aik

(
r∑

m=1

bkmcmj

)
=

n∑
k=1

(
r∑

m=1

aikbkm

)
cmj .

11(a).

A2 = AA =

[
1 −1
2 3

] [
1 −1
2 3

]
=

[ −1 −4
8 7

]
.

A3 = A2A =

[ −1 −4
8 7

] [
1 −1
2 3

]
=

[ −9 −11
22 13

]
.

A4 = A3A =

[ −9 −11
22 13

] [
1 −1
2 3

]
=

[ −31 −24
48 17

]
.

11(b).

A2 = AA =

⎡⎣ 0 1 0
−2 0 1
4 −1 0

⎤⎦⎡⎣ 0 1 0
−2 0 1
4 −1 0

⎤⎦ =

⎡⎣ −2 0 1
4 −3 0
2 4 −1

⎤⎦ .

A3 = A2A =

⎡⎣ −2 0 1
4 −3 0
2 4 −1

⎤⎦⎡⎣ 0 1 0
−2 0 1
4 −1 0

⎤⎦ =

⎡⎣ 4 −3 0
6 4 −3

−12 3 4

⎤⎦ .

A4 = A3A =

⎡⎣ 4 −3 0
6 4 −3

−12 3 4

⎤⎦⎡⎣ 0 1 0
−2 0 1
4 −1 0

⎤⎦ =

⎡⎣ 6 4 −3
−20 9 4
10 −16 3

⎤⎦ .

12(a). We apply the distributive property of matrix multiplication as follows:

(A+2B)2 = (A+2B)(A+2B) = A(A+2B)+(2B)(A+2B) = (A2+A(2B))+((2B)A+(2B)2) = A2+2AB+2BA+4B2,

where scalar factors of 2 are moved in front of the terms since they commute with matrix multiplication.

12(b). We apply the distributive property of matrix multiplication as follows:

(A+B + C)2 = (A+B + C)(A+B + C) = A(A+B + C) +B(A+B + C) + C(A+B + C)

= A2 +AB +AC +BA+B2 +BC + CA+ CB + C2

= A2 +B2 + C2 +AB +BA+AC + CA+BC + CB,

as required.

12(c). We can use the formula for (A+B)3 found in Example 2.2.20 and substitute −B for B throughout
the expression:

(A−B)3 = A3 +A(−B)A+ (−B)A2 + (−B)2A+A2(−B) +A(−B)2 + (−B)A(−B) + (−B)3

= A3 −ABA−BA2 +B2A−A2B +AB2 +BAB −B3,

as needed.
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13. We have

A2 =

[
2 −5
6 −6

] [
2 −5
6 −6

]
=

[ −26 20
−24 6

]
,

so that

A2 + 4A+ 18I2 =

[ −26 20
−24 6

]
+

[
8 −20
24 −24

]
+

[
18 0
0 18

]
=

[
0 0
0 0

]
.

14. We have

A2 =

⎡⎣ −1 0 4
1 1 2

−2 3 0

⎤⎦⎡⎣ −1 0 4
1 1 2

−2 3 0

⎤⎦ =

⎡⎣ −7 12 −4
−4 7 6
5 3 −2

⎤⎦
and

A3 =

⎡⎣ −1 0 4
1 1 2

−2 3 0

⎤⎦⎡⎣ −1 0 4
1 1 2

−2 3 0

⎤⎦⎡⎣ −1 0 4
1 1 2

−2 3 0

⎤⎦ =

⎡⎣ −7 12 −4
−4 7 6
5 3 −2

⎤⎦⎡⎣ −1 0 4
1 1 2

−2 3 0

⎤⎦ =

⎡⎣ 27 0 −4
−1 25 −2
2 −3 26

⎤⎦ .

Therefore, we have

A3 +A− 26I3 =

⎡⎣ 27 0 −4
−1 25 −2
2 −3 26

⎤⎦+

⎡⎣ −1 0 4
1 1 2

−2 3 0

⎤⎦−
⎡⎣ 26 0 0

0 26 0
0 0 26

⎤⎦ =

⎡⎣ 0 0 0
0 0 0
0 0 0

⎤⎦ .

15.

A2 =

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦−
⎡⎣ 0 −1 0

0 0 −1
0 0 0

⎤⎦ =

⎡⎣ 1 1 0
0 1 1
0 0 1

⎤⎦ .

Substituting A =

⎡⎣ 1 x z
0 1 y
0 0 1

⎤⎦ for A, we have

⎡⎣ 1 x z
0 1 y
0 0 1

⎤⎦⎡⎣ 1 x z
0 1 y
0 0 1

⎤⎦ =

⎡⎣ 1 1 0
0 1 1
0 0 1

⎤⎦ ,

that is, ⎡⎣ 1 2x 2z + xy
0 1 2y
0 0 1

⎤⎦ =

⎡⎣ 1 1 0
0 1 1
0 0 1

⎤⎦ .

Since corresponding elements of equal matrices are equal, we obtain the following implications:

2y = 1 =⇒ y = 1/2,

2x = 1 =⇒ x = 1/2,

2z + xy = 0 =⇒ 2z + (1/2)(1/2) = 0 =⇒ z = −1/8.

Thus, A =

⎡⎣ 1 1/2 −1/8
0 1 1/2
0 0 1

⎤⎦.
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16. In order thatA2 = A, we require

[
x 1

−2 y

] [
x 1

−2 y

]
=

[
x 1

−2 y

]
, that is,

[
x2 − 2 x+ y

−2x− 2y −2 + y2

]
=[

x 1
−2 y

]
, or equivalently,

[
x2 − x− 2 x+ y − 1

−2x− 2y + 2 y2 − y − 2

]
= 02. Since corresponding elements of equal ma-

trices are equal, it follows that

x2 − x− 2 = 0 =⇒ x = −1 or x = 2, and

y2 − y − 2 = 0 =⇒ y = −1 or y = 2.

Two cases arise from x+ y − 1 = 0:

(a): If x = −1, then y = 2.

(b): If x = 2, then y = −1. Thus,

A =

[ −1 1
−2 2

]
or A =

[
2 1

−2 −1

]
.

17.

σ1σ2 =

[
0 1
1 0

] [
0 −i
i 0

]
=

[
i 0
0 −i

]
= i

[
1 0
0 −1

]
= iσ3.

σ2σ3 =

[
0 −i
i 0

] [
1 0
0 −1

]
=

[
0 i
i 0

]
= i

[
0 1
1 0

]
= iσ1.

σ3σ1 =

[
1 0
0 −1

] [
0 1
1 0

]
=

[
0 1

−1 0

]
= i

[
0 −i
i 0

]
= iσ2.

18.
[A,B] = AB −BA

=

[
1 −1
2 1

] [
3 1
4 2

]
−
[

3 1
4 2

] [
1 −1
2 1

]
=

[ −1 −1
10 4

]
−
[

5 −2
8 −2

]
=

[ −6 1
2 6

]
�= 02.

19.
[A1, A2] = A1A2 −A2A1

=

[
1 0
0 1

] [
0 1
0 0

]
−
[

0 1
0 0

] [
1 0
0 1

]
=

[
0 1
0 0

]
−
[

0 1
0 0

]
= 02, thus A1 and A2 commute.

[A1, A3] = A1A3 −A3A1

=

[
1 0
0 1

] [
0 0
1 0

]
−
[

0 0
1 0

] [
1 0
0 1

]
=

[
0 0
1 0

]
−
[

0 0
1 0

]
= 02, thus A1 and A3 commute.
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[A2, A3] = A2A3 −A3A2

=

[
0 1
0 0

] [
0 0
1 0

]
−
[

0 0
1 0

] [
0 1
0 0

]
=

[
1 0
0 0

]
−
[

0 0
0 1

]
=

[
1 0
0 −1

]
�= 02.

Then [A3, A2] = −[A2, A3] =

[ −1 0
0 1

]
�= 02. Thus, A2 and A3 do not commute.

20.
[A1, A2] = A1A2 −A2A1

=
1

4

[
0 i
i 0

] [
0 −1
1 0

]
− 1

4

[
0 −1
1 0

] [
0 i
i 0

]
=

1

4

[
i 0
0 −i

]
− 1

4

[ −i 0
0 i

]
=

1

4

[
2i 0
0 −2i

]
=

1

2

[
i 0
0 −i

]
= A3.

[A2, A3] = A2A3 −A3A2

=
1

4

[
0 −1
1 0

] [
i 0
0 −i

]
− 1

4

[
i 0
0 −1

] [
0 −1
1 0

]
=

1

4

[
0 i
i 0

]
− 1

4

[
0 −i

−i 0

]
=

1

4

[
0 2i
2i 0

]
=

1

2

[
0 i
i 0

]
= A1.

[A3, A1] = A3A1 −A1A3

=
1

4

[
i 0
0 −i

] [
0 i
i 0

]
− 1

4

[
0 i
i 0

] [
i 0
0 −i

]
=

1

4

[
0 −1

−1 0

]
− 1

4

[
0 1
1 0

]
=

1

4

[
0 −2
2 0

]
=

1

2

[
0 −1
1 0

]
= A2.

21.

[A, [B,C]] + [B, [C,A]] + [C, [A,B]]

= [A,BC − CB] + [B,CA−AC] + [C,AB −BA]

= A(BC − CB)− (BC − CB)A+B(CA−AC)− (CA−AC)B + C(AB −BA)− (AB −BA)C

= ABC −ACB −BCA+ CBA+BCA−BAC − CAB +ACB + CAB − CBA−ABC +BAC = 0.

22.
Proof that A(BC) = (AB)C: Let A = [aij ] be of size m× n, B = [bjk] be of size n× p, and C = [ckl] be
of size p× q. Consider the (i, j)-element of (AB)C:

[(AB)C]ij =

p∑
k=1

(
n∑

h=1

aihbhk

)
ckj =

n∑
h=1

aih

(
p∑

k=1

bhkckj

)
= [A(BC)]ij .
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Proof that A(B + C) = AB +AC: We have

[A(B + C)]ij =

n∑
k=1

aik(bkj + ckj)

=
n∑

k=1

(aijbkj + aikckj)

=
n∑

k=1

aikbkj +
n∑

k=1

aikckj

= [AB +AC]ij .

23.
Proof that (AT )T = A: Let A = [aij ]. Then AT = [aji], so (AT )T = [aji]

T = aij = A, as needed.
Proof that (A + C)T = AT + CT : Let A = [aij ] and C = [cij ]. Then [(A + C)T ]ij = [A + C]ji =
[A]ji + [C]ji = aji + cji = [AT ]ij + [CT ]ij = [AT + CT ]ij . Hence, (A+ C)T = AT + CT .

24. We have

(IA)ij =
m∑

k=1

δikakj = δiiaij = aij ,

for 1 ≤ i ≤ m and 1 ≤ j ≤ p. Thus, ImAm×p = Am×p.

25. Let A = [aij ] and B = [bij ] be n× n matrices. Then

tr(AB) =
n∑

k=1

(
n∑

i=1

akibik

)
=

n∑
k=1

(
n∑

i=1

bikaki

)
=

n∑
i=1

(
n∑

k=1

bikaki

)
= tr(BA).

26(a). BTAT =

[
0 −7 −1

−4 1 −3

]⎡⎣ −3
−1
6

⎤⎦ =

[
1

−7

]
.

26(b). CTBT =

⎡⎢⎢⎣
−9 1
0 1
3 5

−2 −2

⎤⎥⎥⎦[ 0 −7 −1
−4 1 −3

]
=

⎡⎢⎢⎣
−4 64 6
−4 1 −3

−20 −16 −18
8 12 8

⎤⎥⎥⎦.
26(c). Since DT is a 3×3 matrix and A is a 1×3 matrix, it is not possible to compute the expression DTA.

27(a). ADT =
[ −3 −1 6

] ⎡⎣ −2 0 1
1 0 −2
5 7 −1

⎤⎦ =
[
35 42 −7

]
.

27(b). First note that CTC =

⎡⎢⎢⎣
−9 1
0 1
3 5

−2 −2

⎤⎥⎥⎦[ −9 0 3 −2
1 1 5 −2

]
=

⎡⎢⎢⎣
82 1 −22 16
1 1 5 −2

−22 5 34 −16
16 −2 −16 8

⎤⎥⎥⎦. Therefore,

(CTC)2 =

⎡⎢⎢⎣
82 1 −22 16
1 1 5 −2

−22 5 34 −16
16 −2 −16 8

⎤⎥⎥⎦
⎡⎢⎢⎣

82 1 −22 16
1 1 5 −2

−22 5 34 −16
16 −2 −16 8

⎤⎥⎥⎦ =

⎡⎢⎢⎣
7465 −59 −2803 1790
−59 31 185 −82

−2803 185 1921 −1034
1790 −82 −1034 580

⎤⎥⎥⎦ .

(c)2017 Pearson Education. Inc.



137

27(c). DTB =

⎡⎣ −2 0 1
1 0 −2
5 7 −1

⎤⎦⎡⎣ 0 −4
−7 1
−1 −3

⎤⎦ =

⎡⎣ −1 5
2 2

−48 −10

⎤⎦.
28(a). We have

S = [s1, s2, s3] =

⎡⎣ −x −y z
0 y 2z
x −y z

⎤⎦ ,

so

AS =

⎡⎣ 2 2 1
2 5 2
1 2 2

⎤⎦⎡⎣ −x −y z
0 y 2z
x −y z

⎤⎦ =

⎡⎣ −x −y 7z
0 y 14z
x −y 7z

⎤⎦ = [s1, s2, 7s3].

28(b).

STAS = ST (AS) =

⎡⎣ −x 0 x
−y y −y
z 2z z

⎤⎦⎡⎣ −x −y 7z
0 y 14z
x −y 7z

⎤⎦ =

⎡⎣ 2x2 0 0
0 3y2 0
0 0 42z2

⎤⎦ ,

but STAS = diag(1, 1, 7), so we have the following

2x2 = 1 =⇒ x = ±
√
2

2

3y2 = 1 =⇒ y = ±
√
3

3

6z2 = 1 =⇒ z = ±
√
6

6
.

29(a). We have

AS =

⎡⎣ 1 −4 0
−4 7 0
0 0 5

⎤⎦⎡⎣ 0 2x y
0 x −2y
z 0 0

⎤⎦
=

⎡⎣ 0 −2x 9y
0 −x −18y
5z 0 0

⎤⎦
= [5s1,−s2, 9s3].

29(b). We have

STAS =

⎡⎣ 0 0 z
2x x 0
y −2y 0

⎤⎦⎡⎣ 0 −2x 9y
0 −x −18y
5z 0 0

⎤⎦ =

⎡⎣ 5z2 0 0
0 −5x2 0
0 0 45y2

⎤⎦ ,

so in order for this to be equal to diag(5,−1, 9), we must have

5z2 = 5, −5x2 = −1, 45y2 = 9.

Thus, we must have z2 = 1, x2 = 1
5 , and y2 = 1

5 . Therefore, the values of x, y, and z that we are looking for

are x = ±
√

1
5 , y = ±

√
1
5 , and z = ±1.
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30(a).

⎡⎢⎢⎣
2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

⎤⎥⎥⎦.

30(b).

⎡⎣ 7 0 0
0 7 0
0 0 7

⎤⎦.
31. Suppose A is an n×n scalar matrix with trace k. If A = aIn, then tr(A) = na = k, so we conclude that
a = k/n. So A = k

nIn, a uniquely determined matrix.

32. We have

BT =

[
1

2
(A+AT )

]T
=

1

2
(A+AT )T =

1

2
(AT +A) = B

and

CT =

[
1

2
(A−AT )

]T
=

1

2
(AT −A) = −1

2
(A−AT ) = −C.

Thus, B is symmetric and C is skew-symmetric.
33. We have

B + C =
1

2
(A+AT ) +

1

2
(A−AT ) =

1

2
A+

1

2
AT +

1

2
A− 1

2
AT = A.

34. We have

B =
1

2
(A+AT ) =

1

2

⎛⎝⎡⎣ 4 −1 0
9 −2 3
2 5 5

⎤⎦+

⎡⎣ 4 9 2
−1 −2 5
0 3 5

⎤⎦⎞⎠ =
1

2

⎡⎣ 8 8 2
8 −4 8
2 8 10

⎤⎦ =

⎡⎣ 4 4 1
4 −2 4
1 4 5

⎤⎦
and

C =
1

2
(A−AT ) =

1

2

⎛⎝⎡⎣ 4 −1 0
9 −2 3
2 5 5

⎤⎦−
⎡⎣ 4 9 2

−1 −2 5
0 3 5

⎤⎦⎞⎠ =
1

2

⎡⎣ 0 −10 −2
10 0 −2
2 2 0

⎤⎦ =

⎡⎣ 0 −5 −1
5 0 −1
1 1 0

⎤⎦ .

35.

B =
1

2

⎛⎝⎡⎣ 1 −5 3
3 2 4
7 −2 6

⎤⎦+

⎡⎣ 1 3 7
−5 2 −2
3 4 6

⎤⎦⎞⎠ =
1

2

⎡⎣ 2 −2 10
−2 4 2
10 2 12

⎤⎦ =

⎡⎣ 1 −1 5
−1 2 1
5 1 6

⎤⎦ .

C =
1

2

⎛⎝⎡⎣ 1 −5 3
3 2 4
7 −2 6

⎤⎦−
⎡⎣ 1 3 7

−5 2 −2
3 4 6

⎤⎦⎞⎠ =
1

2

⎡⎣ 0 −8 −4
8 0 6
4 −6 0

⎤⎦ =

⎡⎣ 0 −4 −2
4 0 3
2 −3 0

⎤⎦ .

36(a). If A is symmetric, then AT = A, so that

B =
1

2
(A+AT ) =

1

2
(A+A) =

1

2
(2A) = A

and

C =
1

2
(A−AT ) =

1

2
(A−A) =

1

2
(0n) = 0n.
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36(b). If A is skew-symmetric, then AT = −A, so that

B =
1

2
(A+AT ) =

1

2
(A+ (−A)) =

1

2
(0n) = 0n

and

C =
1

2
(A−AT ) =

1

2
(A− (−A)) =

1

2
(2A) = A.

37. If A = [aij ] and D = diag(d1, d2, . . . , dn), then we must show that the (i, j)-entry of DA is diaij . In
index notation, we have

(DA)ij =
n∑

k=1

diδikakj = diδiiaij = diaij .

Hence, DA is the matrix obtained by multiplying the ith row vector of A by di, where 1 ≤ i ≤ n.

38. If A = [aij ] and D = diag(d1, d2, . . . , dn), then we must show that the (i, j)-entry of AD is djaij . In
index notation, we have

(AD)ij =
n∑

k=1

aikdjδkj = aijdjδjj = aijdj .

Hence, AD is the matrix obtained by multiplying the jth column vector of A by dj , where 1 ≤ j ≤ n.

39. Since A and B are symmetric, we have that AT = A and BT = B. Using properties of the transpose
operation, we therefore have

(AB)T = BTAT = BA = AB,

and this shows that AB is symmetric.

40(a). We have (AAT )T = (AT )TAT = AAT , so that AAT is symmetric.

40(b). We have (ABC)T = [(AB)C]T = CT (AB)T = CT (BTAT ) = CTBTAT , as needed.

41. A′(t) =
[

1 cos t
− sin t 4

]
.

42. A′(t) =
[ −2e−2t

cos t

]
.

43. A′(t) =

⎡⎣ cos t − sin t 0
sin t cos t 1
0 3 0

⎤⎦.
44. A′(t) =

[
et 2e2t 2t
2et 8e2t 10t

]
.

45. We show that the (i, j)-entry of both sides of the equation agree. First, recall that the (i, j)-entry of
AB is

∑n
k=1 aikbkj , and therefore, the (i, j)-entry of d

dt (AB) is (by the product rule)

n∑
k=1

a′ikbkj + aikb
′
kj =

n∑
k=1

a′ikbkj +
n∑

k=1

aikb
′
kj .

The former term is precise the (i, j)-entry of the matrix dA
dt B, while the latter term is precise the (i, j)-entry

of the matrix AdB
dt . Thus, the (i, j)-entry of d

dt (AB) is precisely the sum of the (i, j)-entry of dA
dt B and the

(i, j)-entry of AdB
dt . Thus, the equation we are proving follows immediately.
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46. We have∫ 1

0

[
et e−t

2et 5e−t

]
dt =

[
et −e−t

2et −5e−t

] ∣∣1
0 =

[
e −1/e
2e −5/e

]
−
[

1 −1
2 −5

]
=

[
e− 1 1− 1/e
2e− 2 5− 5/e

]
.

47. We have∫ π/2

0

[
cos t
sin t

]
dt =

[
sin t

− cos t

] ∣∣∣π/20 =

[
sin(π/2)

− cos(π/2)

]
−
[

sin 0
− cos 0

]
=

[
1
0

]
−
[

0
−1

]
=

[
1
1

]
.

48. We have∫ 1

0

[
et e2t t2

2et 4e2t 5t2

]
dt = =

[
et 1

2e
2t t3

3
2et 2e2t 5

3 t
3

] ∣∣1
0

=

[
e e2/2 1/3
2e 2e2 5/3

]
−
[

1 1/2 0
2 2 0

]
=

[
e− 1 e2−1

2 1/3
2e− 2 2e2 − 2 5/3

]
.

49. We have

∫ 1

0

⎡⎣ e2t sin 2t
t2 − 5 tet

sec2 t 3t− sin t

⎤⎦ dt =

⎡⎣ 1
2e

2t − 1
2 cos 2t

t3

3 − 5t tet − et

tan t 3
2 t

2 + cos t

⎤⎦ ∣∣1
0

=

⎡⎣ e2

2 − cos 2
2−14/3 0

tan 1 3
2 + cos 1

⎤⎦−
⎡⎣ 1

2 − 1
2

0 −1
0 1

⎤⎦ =

⎡⎣ e2−1
2

1−cos 2
2−14/3 1

tan 1 1
2 + cos 1

⎤⎦ .

50.
∫
A(t)dt =

[ ∫ −5dt
∫

1
t2+1dt

∫
e3tdt

]
=
[ −5t tan−1(t) 1

3e
3t
]
.

51.

∫ [
2t
3t2

]
dt =

[
t2

t3

]
.

52.

∫ ⎡⎣ sin t cos t 0
− cos t sin t t

0 3t 1

⎤⎦ dt =

⎡⎣ − cos t sin t 0
− sin t − cos t t2/2

0 3t2/2 t

⎤⎦.
53.

∫ [
et e−t

2et 5e−t

]
dt =

[
et −e−t

2et −5e−t

]
.

54.

∫ ⎡⎣ e2t sin 2t
t2 − 5 tet

sec2 t 3t− sin t

⎤⎦ dt =

⎡⎣ 1
2e

2t − 1
2 cos 2t

t3

3 − 5t tet − et

tan t 3
2 t

2 + cos t

⎤⎦.
Solutions to Section 2.3

True-False Review:

(a): FALSE. The last column of the augmented matrix corresponds to the constants on the right-hand
side of the linear system, so if the augmented matrix has n columns, there are only n − 1 unknowns under
consideration in the system.
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(b): FALSE. Three distinct planes can intersect in a line (e.g. Figure 2.3.1, lower right picture). For
instance, the xy-plane, the xz-plane, and the plane y = z intersect in the x-axis.

(c): FALSE. The right-hand side vector must have m components, not n components.

(d): TRUE. If a linear system has two distinct solutions x1 and x2, then any point on the line containing
x1 and x2 is also a solution, giving us infinitely many solutions, not exactly two solutions.

(e): TRUE. The augmented matrix for a linear system has one additional column (containing the constants
on the right-hand side of the equation) beyond the matrix of coefficients.

(f): FALSE. Because the vector (x1, x2, x3, 0, 0) has five entries, this vector belongs to R
5. Vectors in R

3

can only have three slots.

(g): FALSE. The two column vectors given have different numbers of components, so they are not the
same vectors.

Problems:

1.

2 · 1− 3(−1) + 4 · 2 = 13,

1 + (−1)− 2 = −2,

5 · 1 + 4(−1) + 2 = 3.

2.

2 + (−3)− 2 · 1 = −3,

3 · 2− (−3)− 7 · 1 = 2,

2 + (−3) + 1 = 0,

2 · 2 + 2(−3)− 4 · 1 = −6.

3.

(1− t) + (2 + 3t) + (3− 2t) = 6,

(1− t)− (2 + 3t)− 2(3− 2t) = −7,

5(1− t) + (2 + 3t)− (3− 2t) = 4.

4.

s+ (s− 2t)− (2s+ 3t) + 5t = 0,

2(s− 2t)− (2s+ 3t) + 7t = 0,

4s+ 2(s− 2t)− 3(2s+ 3t) + 13t = 0.

5. The two given lines are the same line. Therefore, since this line contains an infinite number of points,
there must be an infinite number of solutions to this linear system.

6. These two lines are parallel and distinct, and therefore, there are no common points on these lines. In
other words, there are no solutions to this linear system.

7. These two lines have different slopes, and therefore, they will intersect in exactly one point. Thus, this
system of equations has exactly one solution.
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8. The first and third equations describe lines that are parallel and distinct, and therefore, there are no
common points on these lines. In other words, there are no solutions to this linear system.

9. A =

⎡⎣ 1 2 −3
2 4 −5
7 2 −1

⎤⎦ ,b =

⎡⎣ 1
2
3

⎤⎦ , A# =

⎡⎣ 1 2 −3 1
2 4 −5 2
7 2 −1 3

⎤⎦.
10. A =

[
1 1 1 −1
2 4 −3 7

]
,b =

[
3
2

]
, A# =

[
1 1 1 −1 3
2 4 −3 7 2

]
.

11. A =

⎡⎣ 1 2 −1
2 3 −2
5 6 −5

⎤⎦ ,b =

⎡⎣ 0
0
0

⎤⎦ , A# =

⎡⎣ 1 2 −1 0
2 3 −2 0
5 6 −5 0

⎤⎦.
12. It is acceptable to use any variable names. We will use x1, x2, x3, x4:

x1 − x2 +2x3 + 3x4 = 1,

x1 + x2 −2x3 + 6x4 = −1,

3x1 + x2 +4x3 + 2x4 = 2.

13. It is acceptable to use any variable names. We will use x1, x2, x3:

2x1 + x2 +3x3 = 3,

4x1 − x2 +2x3 = 1,

7x1 + 6x2 +3x3 = −5.

14. The system of equations here only contains one equation: 4x1 − 2x2 − 2x3 − 3x5 = −9.

15. This system of equations has three equations: −3x2 = −1, 2x1 − 7x2 = 6, 5x1 + 5x2 = 7.

16. Given Ax = 0 and Ay = 0, and an arbitrary constant c,

(a). we have

Az = A(x+ y) = Ax+Ay = 0+ 0 = 0

and

Aw = A(cx) = c(Ax) = c0 = 0.

(b). No, because

A(x+ y) = Ax+Ay = b+ b = 2b �= b,

and

A(cx) = c(Ax) = cb �= b

in general.

17.

[
x′
1

x′
2

]
=

[ −4 3
6 −4

] [
x1

x2

]
+

[
4t
t2

]
.

18.

[
x′
1

x′
2

]
=

[
t2 −t

− sin t 1

] [
x1

x2

]
.

19.

[
x′
1

x′
2

]
=

[
0 e2t

− sin t 0

] [
x1

x2

]
+

[
0
1

]
.
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20.

⎡⎣ x′
1

x′
2

x′
3

⎤⎦ =

⎡⎣ 0 − sin t 1
−et 0 t2

−t t2 0

⎤⎦⎡⎣ x1

x2

x3

⎤⎦+

⎡⎣ t
t3

1

⎤⎦.
21. We have

x′(t) =
[

4e4t

−2(4e4t)

]
=

[
4e4t

−8e4t

]
and

Ax+ b =

[
2 −1

−2 3

] [
e4t

−2e4t

]
+

[
0
0

]
=

[
2e4t + (−1)(−2e4t) + 0
−2e4t + 3(−2e4t) + 0

]
=

[
4e4t

−8e4t

]
.

22. We have

x′(t) =
[

4(−2e−2t) + 2 cos t
3(−2e−2t) + sin t

]
=

[ −8e−2t + 2 cos t
−6e−2t + sin t

]
and

Ax+ b =

[
1 −4

−3 2

] [
4e−2t + 2 sin t
3e−2t − cos t

]
+

[ −2(cos t+ sin t)
7 sin t+ 2 cos t

]
=

[
4e−2t + 2 sin t− 4(3e−2t − cos t)− 2(cos t+ sin t)

−3(4e−2t + 2 sin t) + 2(3e−2t − cos t) + 7 sin t+ 2 cos t

]
=

[ −8e−2t + 2 cos t
−6e−2t + sin t

]
.

23. We compute

x′ =
[

3et + 2tet

et + 2tet

]
and

Ax+ b =

[
2 −1

−1 2

] [
2tet + et

2tet − et

]
+

[
0
4et

]
=

[
2(2tet + et)− (2tet − et) + 0

−(2tet + et) + 2(2tet − et) + 4et

]
=

[
2tet + 3et

2tet + et

]
.

Therefore, we see from these calculations that x′ = Ax+ b.

24. We compute

x′ =

⎡⎣ −tet − et

−9e−t

tet + et − 6e−t

⎤⎦
and

Ax+b =

⎡⎣ 1 0 0
2 −3 2
1 −2 2

⎤⎦⎡⎣ −tet

9e−t

tet + 6e−t

⎤⎦+
⎡⎣ −et

6e−t

et

⎤⎦ =

⎡⎣ −tet

2(−tet)− 3(9e−t) + 2(tet + 6e−t)
−tet − 2(9e−t) + 2(tet + 6e−t)

⎤⎦+
⎡⎣ −et

6e−t

et

⎤⎦ =

⎡⎣ −tet − et

−9e−t

tet + et − 6e−

Therefore, we see from these calculations that x′ = Ax+ b.

Solutions to Section 2.4

True-False Review:

(a): TRUE. The precise row-echelon form obtained for a matrix depends on the particular elementary row
operations (and their order). However, Theorem 2.4.15 states that there is a unique reduced row-echelon
form for a matrix.
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(b): FALSE. Upper triangular matrices could have pivot entries that are not 1. For instance, the following

matrix is upper triangular, but not in row echelon form:

[
2 0
0 0

]
.

(c): TRUE. The pivots in a row-echelon form of an n × n matrix must move down and to the right as
we look from one row to the next beneath it. Thus, the pivots must occur on or to the right of the main
diagonal of the matrix, and thus all entries below the main diagonal of the matrix are zero.

(d): FALSE. This would not be true, for example, if A was a zero matrix with 5 rows and B was a nonzero
matrix with 4 rows.

(e): FALSE. If A is a nonzero matrix and B = −A, then A + B = 0, so rank(A + B) = 0, but rank(A),
rank(B) ≥ 1 so rank(A)+ rank(B) ≥ 2.

(f): FALSE. For example, if A = B =

[
0 1
0 0

]
, then AB = 0, so rank(AB) = 0, but rank(A)+

rank(B) = 1 + 1 = 2.

(g): TRUE. A matrix of rank zero cannot have any pivots, hence no nonzero rows. It must be the zero
matrix.

(h): TRUE. The matrices A and 2A have the same reduced row-echelon form, since we can move between
the two matrices by multiplying the rows of one of them by 2 or 1/2, a matter of carrying out elementary
row operations. If the two matrices have the same reduced row-echelon form, then they have the same rank.

(i): TRUE. The matrices A and 2A have the same reduced row-echelon form, since we can move between
the two matrices by multiplying the rows of one of them by 2 or 1/2, a matter of carrying out elementary
row operations.

Problems:

1. Neither.

2. Reduced row-echelon form.

3. Neither.

4. Row-echelon form.

5. Row-echelon form.

6. Reduced row-echelon form.

7. Reduced row-echelon form.

8. Reduced row-echelon form.

9. [
2 −4

−4 8

]
1
∼

[
1 −2

−4 8

]
2
∼

[
1 −2
0 0

]
,Rank (A) = 1.

1. M1(
1
2 ) 2. A12(4)

10. [
2 1
1 −3

]
1
∼

[
1 −3
2 1

]
2
∼

[
1 −3
0 7

]
3
∼

[
1 −3
0 1

]
,Rank (A) = 2.

1. P12 2. A12(−2) 3. M2(
1
7 )
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11. ⎡⎣ 0 1 3
0 1 4
0 3 5

⎤⎦ 1
∼

⎡⎣ 0 1 3
0 0 1
0 0 4

⎤⎦ 2
∼

⎡⎣ 0 1 3
0 0 1
0 0 0

⎤⎦ ,Rank (A) = 2.

1. A12(−1), A13(−3) 2. A23(−4)

12. ⎡⎣ 2 1 4
2 −3 4
3 −2 6

⎤⎦ 1
∼

⎡⎣ 3 −2 6
2 −3 4
2 1 4

⎤⎦ 2
∼

⎡⎣ 1 1 2
2 −3 4
2 1 4

⎤⎦ 3
∼

⎡⎣ 1 1 2
0 −5 0
0 −1 0

⎤⎦ 4
∼

⎡⎣ 1 1 2
0 −1 0
0 −5 0

⎤⎦
5
∼

⎡⎣ 1 1 2
0 1 0
0 −5 0

⎤⎦ 6
∼

⎡⎣ 1 1 2
0 1 0
0 0 0

⎤⎦ ,Rank (A) = 2.

1. P13 2. A21(−1) 3. A12(−2), A13(−3) 4. P23 5. M2(−1) 6. A32(5)

13. ⎡⎣ 2 −1 3
3 1 −2
2 −2 1

⎤⎦ 1
∼

⎡⎣ 3 1 −2
2 −1 3
2 −2 1

⎤⎦ 2
∼

⎡⎣ 1 2 −5
2 −1 3
0 −1 −2

⎤⎦ 3
∼

⎡⎣ 1 2 −5
0 −5 13
0 −1 −2

⎤⎦ 4
∼

⎡⎣ 1 2 −5
0 −1 −2
0 −5 13

⎤⎦
5
∼

⎡⎣ 1 2 −5
0 1 2
0 −5 13

⎤⎦ 6
∼

⎡⎣ 1 2 −5
0 1 2
0 0 23

⎤⎦ 7
∼

⎡⎣ 1 2 −5
0 1 2
0 0 1

⎤⎦ ,Rank (A) = 3.

1. P12 2. A21(−1), A23(−1) 3. A12(−2) 4. P23 5. M2(−1) 6. A23(5) 7. M3(1/23).

14. ⎡⎣ 2 −1
3 2
2 5

⎤⎦ 1
∼

⎡⎣ 3 2
2 −1
2 5

⎤⎦ 2
∼

⎡⎣ 1 3
2 −1
2 5

⎤⎦ 3
∼

⎡⎣ 1 3
0 −7
0 −1

⎤⎦ 4
∼

⎡⎣ 1 3
0 −1
0 −7

⎤⎦ 5
∼

⎡⎣ 1 3
0 1
0 0

⎤⎦ ,Rank (A) = 2.

1. P12 2. A21(−1) 3. A12(−2), A13(−2) 4. P23 5. M2(−1), A23(7).

15. ⎡⎢⎢⎣
2 −2 −1 3
3 −2 3 1
1 −1 1 0
2 −1 2 2

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
1 −1 1 0
3 −2 3 1
2 −2 −1 3
2 −1 2 2

⎤⎥⎥⎦ 2
∼

⎡⎢⎢⎣
1 −1 1 0
0 1 0 1
0 0 −3 3
0 1 0 2

⎤⎥⎥⎦ 3
∼

⎡⎢⎢⎣
1 −1 1 0
0 1 0 1
0 0 −3 3
0 0 0 1

⎤⎥⎥⎦
4
∼

⎡⎢⎢⎣
1 −1 1 0
0 1 0 1
0 0 1 −1
0 0 0 1

⎤⎥⎥⎦ ,Rank (A) = 4.
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1. P13 2. A12(−3), A13(−2), A14(−2) 3. A24(−1) 4. M3(1/3)

16.⎡⎣ 2 −1 3 4
1 −2 1 3
1 −5 0 5

⎤⎦ 1
∼

⎡⎣ 1 −2 1 3
2 −1 3 4
1 −5 0 5

⎤⎦ 2
∼

⎡⎣ 1 −2 1 3
0 3 1 −2
0 0 0 0

⎤⎦ 3
∼

⎡⎣ 1 −2 1 3
0 1 1

3 − 2
3

0 0 0 0

⎤⎦ ,Rank (A) = 2.

1. P12 2. A12(−2), A13(−1) 3. M2(1/3)

17. ⎡⎣ 2 1 3 4 2
1 0 2 1 3
2 3 1 5 7

⎤⎦ 1
∼

⎡⎣ 1 0 2 1 3
2 1 3 4 2
2 3 1 5 7

⎤⎦ 2
∼

⎡⎣ 1 0 2 1 3
0 1 −1 2 −4
0 3 −3 3 1

⎤⎦ 3
∼

⎡⎣ 1 0 2 1 3
0 1 −1 2 −4
0 0 0 −3 1

⎤⎦
4
∼

⎡⎣ 1 0 2 1 3
0 1 −1 2 −4
0 0 0 1 − 1

3

⎤⎦ ,Rank (A) = 3.

1. P12 2. A12(−2), A13(−2), 3. A23(−3) 4. M3(− 1
3 )

18. ⎡⎢⎢⎣
4 7 4 7
3 5 3 5
2 −2 2 −2
5 −2 5 −2

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
1 2 1 2
3 5 3 5
2 −2 2 −2
5 −2 5 −2

⎤⎥⎥⎦ 2
∼

⎡⎢⎢⎣
1 2 1 2
0 −1 0 −1
0 −6 0 −6
0 −12 0 −12

⎤⎥⎥⎦ 3
∼

⎡⎢⎢⎣
1 2 1 2
0 1 0 1
0 −6 0 −6
0 −12 0 −12

⎤⎥⎥⎦

4
∼

⎡⎢⎢⎣
1 2 1 2
0 1 0 1
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ ,Rank (A) = 2.

1. A21(−1) 2. A12(−3), A13(−2), A14(−5) 3. M2(−1) 4. A23(6), A24(12)

19. [ −4 2
−6 3

]
1
∼

[
1 −1/2

−6 3

]
2
∼

[
1 −1/2
0 0

]
, Rank(A) = 1.

1. M1(− 1
4 ) 2. A12(6)

20. [
3 2
1 −1

]
1
∼

[
1 −1
3 2

]
2
∼

[
1 −1
0 5

]
3
∼

[
1 −1
0 1

]
4
∼

[
1 0
0 1

]
= I2,Rank (A) = 2.

1. P12 2. A12(−3) 3. M2(
1
5 ) 4. A21(1)
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21. ⎡⎣ 3 7 10
2 3 −1
1 2 1

⎤⎦ 1
∼

⎡⎣ 1 2 1
2 3 −1
3 7 10

⎤⎦ 2
∼

⎡⎣ 1 2 1
0 −1 −3
0 1 7

⎤⎦ 3
∼

⎡⎣ 1 2 1
0 1 3
0 1 7

⎤⎦ 4
∼

⎡⎣ 1 0 −5
0 1 3
0 0 4

⎤⎦
5
∼

⎡⎣ 1 0 −5
0 1 3
0 0 1

⎤⎦ 6
∼

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ = I3,Rank (A) = 3.

1. P13 2. A12(−2), A13(−3) 3. M2(−1) 4. A21(−2), A23(−1) 5. M3(
1
4 ) 6. A31(5), A32(−3)

22. ⎡⎣ 3 −3 6
2 −2 4
6 −6 12

⎤⎦ 1
∼

⎡⎣ 1 −1 2
0 0 0
0 0 0

⎤⎦ ,Rank (A) = 1.

1. M1(
1
3 ), A12(−2), A13(−6)

23. ⎡⎣ 3 5 −12
2 3 −7

−2 −1 1

⎤⎦ 1
∼

⎡⎣ 1 2 −5
0 −1 3
0 3 −9

⎤⎦ 2
∼

⎡⎣ 1 2 −5
0 1 −3
0 3 −9

⎤⎦ 3
∼

⎡⎣ 1 0 1
0 1 −3
0 0 0

⎤⎦ ,Rank (A) = 2.

1. A21(−1), A12(−2), A13(2) 2. M2(−1) 3. A21(−2), A23(−3)

24. ⎡⎢⎢⎣
1 −1 −1 2
3 −2 0 7
2 −1 2 4
4 −2 3 8

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
1 −1 −1 2
0 1 3 1
0 1 4 0
0 2 7 0

⎤⎥⎥⎦ 2
∼

⎡⎢⎢⎣
1 0 2 3
0 1 3 1
0 0 1 −1
0 0 1 −2

⎤⎥⎥⎦ 3
∼

⎡⎢⎢⎣
1 0 0 5
0 1 0 4
0 0 1 −1
0 0 0 −1

⎤⎥⎥⎦
4
∼

⎡⎢⎢⎣
1 0 0 5
0 1 0 4
0 0 1 −1
0 0 0 1

⎤⎥⎥⎦ 5
∼

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ = I4,Rank (A) = 4.

1. A12(−3), A13(−2), A14(−4) 2. A21(1), A23(−1), A24(−2) 3. A31(−2), A32(−3), A34(−1)

4. M4(−1) 5. A41(−5), A42(−4), A43(1)

25.⎡⎣ 1 −2 1 3
3 −6 2 7
4 −8 3 10

⎤⎦ 1
∼

⎡⎣ 1 −2 1 3
0 0 −1 −2
0 0 −1 −2

⎤⎦ 2
∼

⎡⎣ 1 −2 1 3
0 0 1 2
0 0 −1 −2

⎤⎦ 3
∼

⎡⎣ 1 −2 0 1
0 0 1 2
0 0 0 0

⎤⎦ ,Rank (A) = 2.

1. A12(−3), A13(−4) 2. M2(−1) 3. A21(−1), A23(1)
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26. ⎡⎣ 0 1 2 1
0 3 1 2
0 2 0 1

⎤⎦ 1
∼

⎡⎣ 0 1 2 1
0 0 −6 −2
0 0 −4 −1

⎤⎦ 2
∼

⎡⎣ 0 1 2 1
0 0 1 1/3
0 0 −4 −1

⎤⎦ 3
∼

⎡⎣ 0 1 0 1/3
0 0 1 1/3
0 0 0 1/3

⎤⎦
4
∼

⎡⎣ 0 1 0 1/3
0 0 1 1/3
0 0 0 1

⎤⎦ 5
∼

⎡⎣ 0 1 0 0
0 0 1 0
0 0 0 1

⎤⎦ ,Rank (A) = 3.

1. A12(−3), A13(−2) 2. M2(− 1
6 ) 3. A21(−2), A23(4) 4. M3(3) 5. A32(− 1

3 ), A31(− 1
3 )

Solutions to Section 2.5

True-False Review:

(a): FALSE. This process is known as Gaussian elimination. Gauss-Jordan elimination is the process by
which a matrix is brought to reduced row echelon form via elementary row operations.

(b): TRUE. A homogeneous linear system always has the trivial solution x = 0, hence it is consistent.

(c): TRUE. The columns of the row-echelon form that contain leading 1s correspond to leading variables,
while columns of the row-echelon form that do not contain leading 1s correspond to free variables.

(d): TRUE. If the last column of the row-reduced augmented matrix for the system does not contain a
pivot, then the system can be solved by back-substitution. On the other hand, if this column does contain
a pivot, then that row of the row-reduced matrix containing the pivot in the last column corresponds to the
impossible equation 0 = 1.

(e): FALSE. The linear system x = 0, y = 0, z = 0 has a solution in (0, 0, 0) even though none of the
variables here is free.

(f): FALSE. The columns containing the leading 1s correspond to the leading variables, not the free
variables.

Problems:

For the problems of this section, A will denote the coefficient matrix of the given system, and
A# will denote the augmented matrix of the given system.

1. Converting the given system of equations to an augmented matrix and using Gaussian elimination we
obtain the following equivalent matrices:[

1 −5 3
3 −9 15

]
1
∼

[
1 −5 3
0 6 6

]
2
∼

[
1 −5 3
0 1 1

]
.

1. A12(−3) 2. M2(
1
6 )

By back substitution, we find that x2 = 1, and then x1 = 8. Therefore, the solution is (8, 1).

2. Converting the given system of equations to an augmented matrix and using Gaussian elimination we
obtain the following equivalent matrices:[

4 −1 8
2 1 1

]
1
∼

[
1 − 1

4 2
2 1 1

]
2
∼

[
1 − 1

4 2
0 3

2 −3

]
3
∼

[
1 − 1

4 2
0 1 −2

]
.
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1. M1(
1
4 ) 2. A12(−2) 3. M2(

2
3 )

By back substitution, we find that x2 = −2, and then x1 =
3

2
. Therefore, the solution is ( 32 ,−2).

3. Converting the given system of equations to an augmented matrix and using Gaussian elimination we
obtain the following equivalent matrices:[

7 −3 5
14 −6 10

]
1
∼

[
7 −3 5
0 0 0

]
2
∼

[
1 − 3

7
5
7

0 0 0

]
.

1. A12(−2) 2. M2(
1
7 )

Observe that x2 is a free variable, so we set x2 = t. Then by back substitution, we have x1 = 3
7 t +

5
7 .

Therefore, the solution set to this system is{(
3

7
t+

5

7
, t

)
: t ∈ R

}
.

4. Converting the given system of equations to an augmented matrix and using Gaussian elimination we
obtain the following equivalent matrices:⎡⎣ 1 2 1 1

3 5 1 3
2 6 7 1

⎤⎦ 1
∼

⎡⎣ 1 2 1 1
0 −1 −2 0
0 2 5 −1

⎤⎦ 2
∼

⎡⎣ 1 2 1 1
0 1 2 0
0 2 5 −1

⎤⎦ 3
∼

⎡⎣ 1 2 1 1
0 1 2 0
0 0 1 −1

⎤⎦ .

1. A12(−3), A13(−2) 2. M2(−1) 3. A23(−2)

The last augmented matrix results in the system:

x1 + 2x2 + x3 = 1,

x2 + 2x3 = 0,

x3 = −1.

By back substitution we obtain the solution (−2, 2,−1).

5. Converting the given system of equations to an augmented matrix and using Gaussian elimination, we
obtain the following equivalent matrices:⎡⎣ 3 −1 0 1

2 1 5 4
7 −5 −8 −3

⎤⎦ 1
∼

⎡⎣ 1 −2 −5 −3
2 1 5 4
7 −5 −8 −3

⎤⎦ 2
∼

⎡⎣ 1 −2 −5 −3
0 5 15 10
0 9 27 18

⎤⎦
3
∼

⎡⎣ 1 −2 −5 −3
0 1 3 2
0 9 27 18

⎤⎦ 4
∼

⎡⎣ 1 0 1 1
0 1 3 2
0 0 0 0

⎤⎦ .

1. A21(−1) 2. A12(−2), A13(−7) 3. M2(
1
5 ) 4. A21(2), A23(−9)
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The last augmented matrix results in the system:

x1 + x3 = 1,

x2 + 3x3 = 2.

Let the free variable x3 = t, a real number. By back substitution we find that the system has the solution
set {(1− t, 2− 3t, t) : for all real numbers t}.
6. Converting the given system of equations to an augmented matrix and using Gaussian elimination we
obtain the following equivalent matrices:⎡⎣ 3 5 −1 14

1 2 1 3
2 5 6 2

⎤⎦ 1
∼

⎡⎣ 1 2 1 3
3 5 −1 4
2 5 6 2

⎤⎦ 2
∼

⎡⎣ 1 2 1 3
0 −1 −4 −5
0 1 4 −4

⎤⎦ 3
∼

⎡⎣ 1 2 1 3
0 1 4 5
0 1 4 −4

⎤⎦
4
∼

⎡⎣ 1 2 1 3
0 1 4 5
0 0 0 −9

⎤⎦ 5
∼

⎡⎣ 1 2 1 3
0 1 4 5
0 0 0 1

⎤⎦ .

1. P12 2. A12(−3), A13(−2) 3. M2(−1) 4. A23(−1) 5. M4(− 1
9 )

This system of equations is inconsistent since 2 = rank(A) < rank(A#) = 3.

7. Converting the given system of equations to an augmented matrix and using Gaussian elimination we
obtain the following equivalent matrices:⎡⎣ 6 −3 3 12

2 −1 1 4
−4 2 −2 −8

⎤⎦ 1
∼

⎡⎣ 1 − 1
2 − 1

2 2
2 −1 1 4

−4 2 −2 −8

⎤⎦ 1
∼

⎡⎣ 1 − 1
2

1
2 2

0 0 0 0
0 0 0 0

⎤⎦ .

1. M1(
1
6 ) 2. A12(−2), A13(4)

Since x2 and x3 are free variables, let x2 = s and x3 = t. The single equation obtained from the augmented
matrix is given by x1 − 1

2x2 +
1
2x3 = 2. Thus, the solution set of our system is given by

{(2 + s

2
− t

2
, s, t) : s, t any real numbers }.

8. Converting the given system of equations to an augmented matrix and using Gaussian elimination we
obtain the following equivalent matrices:

⎡⎢⎢⎣
2 −1 3 14
3 1 −2 −1
7 2 −3 3
5 −1 −2 5

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
3 1 −2 −1
2 −1 3 14
7 2 −3 3
5 −1 −2 5

⎤⎥⎥⎦ 2
∼

⎡⎢⎢⎣
1 2 −5 −15
2 −1 3 −14
7 2 −3 3
5 −1 −2 5

⎤⎥⎥⎦ 3
∼

⎡⎢⎢⎣
1 2 −5 −15
0 −5 13 44
0 −12 32 108
0 −11 23 80

⎤⎥⎥⎦

4
∼

⎡⎢⎢⎣
1 2 −5 −15
0 −12 32 108
0 −5 13 44
0 −11 23 80

⎤⎥⎥⎦ 5
∼

⎡⎢⎢⎣
1 2 −5 −15
0 −1 9 28
0 −5 13 44
0 −11 23 80

⎤⎥⎥⎦ 6
∼

⎡⎢⎢⎣
1 2 −5 −15
0 1 −9 −28
0 −5 13 44
0 −11 23 80

⎤⎥⎥⎦
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7
∼

⎡⎢⎢⎣
1 2 −5 −15
0 1 −9 −28
0 0 −32 −96
0 0 −76 −228

⎤⎥⎥⎦ 8
∼

⎡⎢⎢⎣
1 2 −5 −15
0 1 −9 −28
0 0 32 96
0 0 −76 −228

⎤⎥⎥⎦ 9
∼

⎡⎢⎢⎣
1 2 −5 −15
0 1 −9 −28
0 0 1 3
0 0 0 0

⎤⎥⎥⎦ .

1. P12 2. A21(−1) 3. A12(−2), A13(−7), A14(−5) 4. P23

5. A42(−1) 6. M2(−1) 7. A23(5), A24(11) 8. M3(−1) 9. M3(
1
32 ), A34(76).

The last augmented matrix results in the system of equations:

x1 − 2x2 − 5x3 = −15,

x2 − 9x3 = −28,

x3 = 3.

Thus, using back substitution, the solution set for our system is given by {(2,−1, 3)}.
9. Converting the given system of equations to an augmented matrix and using Gaussian elimination we
obtain the following equivalent matrices:⎡⎢⎢⎣

2 −1 −4 5
3 2 −5 8
5 6 −6 20
1 1 −3 −3

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
1 1 −3 −3
3 2 −5 8
5 6 −6 20
2 −1 −4 −5

⎤⎥⎥⎦ 2
∼

⎡⎢⎢⎣
1 1 −3 −3
0 −1 4 17
0 1 9 35
0 −3 2 11

⎤⎥⎥⎦ 3
∼

⎡⎢⎢⎣
1 1 −3 −3
0 1 −4 −17
0 1 9 35
0 −3 2 11

⎤⎥⎥⎦

4
∼

⎡⎢⎢⎣
1 1 −3 −3
0 1 −4 −17
0 0 13 52
0 0 −10 −40

⎤⎥⎥⎦ 5
∼

⎡⎢⎢⎣
1 1 −3 −3
0 1 −4 −17
0 0 1 4
0 0 −10 −40

⎤⎥⎥⎦ 6
∼

⎡⎢⎢⎣
1 1 −3 −3
0 1 −4 −17
0 0 1 4
0 0 0 0

⎤⎥⎥⎦ .

1. P14 2. A12(−3), A13(−5), A14(−2) 3. M2(−1) 4. A23(−1), A24(3) 5. M3(
1
13 ) 6. A34(10)

The last augmented matrix results in the system of equations:

x1 + x2 − 3x3 = − 3,

x2 − 4x3 = −17,

x3 = 4.

By back substitution, we obtain the solution set {(10,−1, 4)}.
10. Converting the given system of equations to an augmented matrix and using Gaussian elimination we
obtain the following equivalent matrices:⎡⎣ 1 2 −1 1 1

2 4 −2 2 2
5 10 −5 5 5

⎤⎦ 1
∼

⎡⎣ 1 2 −1 1 1
0 0 0 0 0
0 0 0 0 0

⎤⎦ .

1. A12(−2), A13(−5)

The last augmented matrix results in the equation x1 + 2x3 − x3 + x4 = 1. Now x2, x3, and x4 are free
variables, so we let x2 = r, x3 = s, and x4 = t. It follows that x1 = 1−2r+s− t. Consequently, the solution
set of the system is given by {(1− 2r + s− t, r, s, t) : r, s, t and real numbers }.
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11. Converting the given system of equations to an augmented matrix and using Gaussian elimination we
obtain the following equivalent matrices:⎡⎢⎢⎣

1 2 −1 1 1
2 −3 1 −1 2
1 −5 2 −2 1
4 1 −1 1 3

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
1 2 −1 1 1
0 −7 3 −3 0
0 −7 3 −3 0
0 −7 3 −3 −1

⎤⎥⎥⎦ 2
∼

⎡⎢⎢⎣
1 2 −1 1 1
0 1 − 3

7
3
7 0

0 −7 3 −3 0
0 −7 3 −3 −1

⎤⎥⎥⎦

3
∼

⎡⎢⎢⎣
1 2 −1 1 1
0 1 − 3

7
3
7 0

0 0 0 0 0
0 0 0 0 −1

⎤⎥⎥⎦ 4
∼

⎡⎢⎢⎣
1 2 −1 1 1
0 1 − 3

7
3
7 0

0 0 0 0 −1
0 0 0 0 0

⎤⎥⎥⎦ 5
∼

⎡⎢⎢⎣
1 2 −1 1 1
0 1 − 3

7
3
7 0

0 0 0 0 1
0 0 0 0 0

⎤⎥⎥⎦ .

1. A12(−2), A13(−1), A14(−4) 2. M2(− 1
7 ) 3. A23(7), A24(7) 4. P34 5. M3(−1)

The given system of equations is inconsistent since 2 = rank(A) < rank(A#) = 3.

12. Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination
we obtain the following equivalent matrices:

⎡⎣ 1 2 1 1 −2 3
0 0 1 4 −3 2
2 4 −1 −10 5 0

⎤⎦ 1
∼

⎡⎣ 1 2 1 1 −2 3
0 0 1 4 −3 2
0 0 −3 −12 9 −6

⎤⎦ 2
∼

⎡⎣ 1 2 1 1 −2 3
0 0 1 4 −3 2
0 0 0 0 0 0

⎤⎦ .

1. A13(−2) 2. A23(3)

The last augmented matrix indicates that the first two equations of the initial system completely determine
its solution. We see that x4 and x5 are free variables, so let x4 = s and x5 = t. Then x3 = 2− 4x4 + 3x5 =
2−4s+3t. Moreover, x2 is a free variable, say x2 = r, so then x1 = 3−2r−(2−4s+3t)−s+2t = 1−2r+3s−t.
Hence, the solution set for the system is

{(1− 2r + 3s− t, r, 2− 4s+ 3t, s, t) : r, s, t any real numbers }.

13. Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination
we obtain the following equivalent matrices:

⎡⎣ 2 −1 −2 2
4 3 −2 −1
1 4 1 4

⎤⎦ 1
∼

⎡⎣ 1 4 1 4
4 3 −2 −1
2 −1 −1 2

⎤⎦ 2
∼

⎡⎣ 1 4 1 4
0 −13 −6 −17
0 −9 −3 −6

⎤⎦ 3
∼

⎡⎣ 1 4 1 4
0 −9 −3 −6
0 −13 −6 −17

⎤⎦
4
∼

⎡⎣ 1 4 1 4
0 12 4 8
0 −13 −6 −17

⎤⎦ 5
∼

⎡⎣ 1 4 1 4
0 12 4 8
0 −1 −2 −9

⎤⎦ 6
∼

⎡⎣ 1 4 1 4
0 −1 −2 −9
0 12 4 8

⎤⎦ 7
∼

⎡⎣ 1 4 1 4
0 1 2 9
0 12 4 8

⎤⎦
8
∼

⎡⎣ 1 0 −7 −32
0 1 2 9
0 0 −20 −100

⎤⎦ 9
∼

⎡⎣ 1 0 −7 −32
0 1 2 9
0 0 1 5

⎤⎦ 10
∼

⎡⎣ 1 0 0 3
0 1 0 −1
0 0 1 5

⎤⎦ .
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1. P13 2. A12(−4), A13(−2) 3. P23 4. M2(− 4
3 ) 5. A23(1)

6. P23 7. M2(−1) 8. A21(−4), A23(−12) 9. M3(− 1
20 ) 10. A31(7), A32(−2)

The last augmented matrix results in the solution (3,−1, 5).

14. Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination
we obtain the following equivalent matrices:⎡⎣ 3 1 5 2

1 1 −1 1
2 1 2 3

⎤⎦ 1
∼

⎡⎣ 1 1 −1 1
3 1 5 2
2 1 2 3

⎤⎦ 2
∼

⎡⎣ 1 1 −1 1
0 −2 8 −1
0 −1 4 1

⎤⎦
3
∼

⎡⎣ 1 1 −1 1
0 1 −4 1

2
0 −1 4 1

⎤⎦ 4
∼

⎡⎣ 1 1 −1 1
0 1 −4 1/2
0 0 0 3/2

⎤⎦ .

We can stop here, since we see from this last augmented matrix that the system is inconsistent. In particular,
2 = rank(A) < rank(A#) = 3.

1. P12 2. A12(−3), A13(−2) 3. M2(− 1
2 ) 4. A23(1)

15. Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination
we obtain the following equivalent matrices:⎡⎣ 1 0 −2 −3

3 −2 4 −9
1 −4 2 −3

⎤⎦ 1
∼

⎡⎣ 1 0 −2 −3
0 −2 2 0
0 −4 4 0

⎤⎦ 2
∼

⎡⎣ 1 0 −2 −3
0 1 −1 0
0 −4 4 0

⎤⎦ 3
∼

⎡⎣ 1 0 −2 −3
0 1 −1 0
0 0 0 0

⎤⎦
.

1. A12(−3), A13(−1) 2. M2(− 1
2 ) 3. A23(4)

The last augmented matrix results in the following system of equations:

x1 − 2x3 = −3 and x2 − x3 = 0.

Since x3 is free, let x3 = t. Thus, from the system we obtain the solutions {(2t−3, t, t) : t any real number }.
16. Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination
we obtain the following equivalent matrices:⎡⎣ 2 −1 3 −1 3

3 2 1 −5 −6
1 −2 3 1 6

⎤⎦ 1
∼

⎡⎣ 1 −2 3 1 6
3 2 1 −5 −6
2 −1 3 −1 3

⎤⎦ 2
∼

⎡⎣ 1 −2 3 1 6
0 8 −8 −8 −24
0 3 −3 −3 −9

⎤⎦
3
∼

⎡⎣ 1 −2 3 1 6
0 1 −1 −1 −3
0 3 −3 −3 −9

⎤⎦ 4
∼

⎡⎣ 1 0 1 −1 0
0 1 −1 −1 −3
0 0 0 0 0

⎤⎦ .

1. P13 2. A12(−3), A13(−2) 3. M2(
1
8 ) 4. A21(2), A23(−3)
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The last augmented matrix results in the following system of equations:

x1 + x3 − x4 = 0 and x2 − x3 − x4 = −3.

Since x3 and x4 are free variables, we can let x3 = s and x4 = t, where s and t are real numbers. It follows
that the solution set of the system is given by {(t− s, s+ t− 3, s, t) : s, t any real numbers }.
17. Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination
we obtain the following equivalent matrices:⎡⎢⎢⎣

1 1 1 −1 4
1 −1 −1 −1 2
1 1 −1 1 −2
1 −1 1 1 −8

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
1 1 1 −1 4
0 −2 −2 0 −2
0 0 −2 2 −6
0 −2 0 2 −12

⎤⎥⎥⎦ 2
∼

⎡⎢⎢⎣
1 1 1 −1 4
0 1 1 0 1
0 0 1 −1 3
0 1 0 −1 6

⎤⎥⎥⎦

3
∼

⎡⎢⎢⎣
1 0 0 −1 3
0 1 1 0 1
0 0 1 −1 3
0 0 −1 −1 5

⎤⎥⎥⎦ 4
∼

⎡⎢⎢⎣
1 0 0 −1 3
0 1 0 1 −2
0 0 1 −1 3
0 0 0 −2 8

⎤⎥⎥⎦ 5
∼

⎡⎢⎢⎣
1 0 0 −1 3
0 1 0 1 −2
0 0 1 −1 3
0 0 0 1 −4

⎤⎥⎥⎦ 6
∼

⎡⎢⎢⎣
1 0 0 0 −1
0 1 0 0 2
0 0 1 0 −1
0 0 0 1 −4

⎤⎥⎥⎦ .

1. A12(−1), A13(−1), A14(−1) 2. M2(− 1
2 ), M3(− 1

2 ), M4(− 1
2 ) 3. A24(−1)

4. A32(−1), A34(1) 5. M4(− 1
2 ) 6. A41(1), A42(−1), A43(1)

It follows from the last augmented matrix that the solution to the system is given by (−1, 2,−1,−4).

18. Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination
we obtain the following equivalent matrices:⎡⎢⎢⎢⎢⎣

2 −1 3 1 −1 11
1 −3 −2 −1 −2 2
3 1 −2 −1 1 −2
1 2 1 2 3 −3
5 −3 −3 1 2 2

⎤⎥⎥⎥⎥⎦ 1
∼

⎡⎢⎢⎢⎢⎣
1 −3 −2 −1 −2 2
2 −1 3 1 −1 11
3 1 −2 −1 1 −2
1 2 1 2 3 −3
5 −3 −3 1 2 2

⎤⎥⎥⎥⎥⎦ 2
∼

⎡⎢⎢⎢⎢⎣
1 −3 −2 −1 −2 2
0 5 7 3 3 7
0 10 4 2 7 −8
0 5 3 3 5 −5
0 12 7 6 12 −8

⎤⎥⎥⎥⎥⎦

3
∼

⎡⎢⎢⎢⎢⎣
1 −3 −2 −1 −2 2
0 1 7

5
3
5

3
5

7
5

0 10 4 2 7 −8
0 5 3 3 5 −5
0 12 7 6 12 −8

⎤⎥⎥⎥⎥⎦ 4
∼

⎡⎢⎢⎢⎢⎣
1 0 11

5
4
5 − 1

5
31
5

0 1 7
5

3
5

3
5

7
5

0 0 −10 −4 1 −22
0 0 −4 0 2 −12
0 0 − 49

5 − 6
5

24
5 − 124

5

⎤⎥⎥⎥⎥⎦ 5
∼

⎡⎢⎢⎢⎢⎣
1 0 11

5
4
5 − 1

5
31
5

0 1 7
5

3
5

3
5

7
5

0 0 1 2
5 − 1

10
11
5

0 0 −4 0 2 −12
0 0 − 49

5 − 6
5

24
5 − 124

5

⎤⎥⎥⎥⎥⎦

6
∼

⎡⎢⎢⎢⎢⎣
1 0 0 − 2

25
1
50

34
25

0 1 0 1
25

37
50 − 42

25
0 0 1 2

5 − 1
10

11
5

0 0 0 8
5

8
5 − 16

5
0 0 0 68

25
191
50 − 81

25

⎤⎥⎥⎥⎥⎦ 7
∼

⎡⎢⎢⎢⎢⎣
1 0 0 − 2

25
1
50

34
25

0 1 0 1
25

37
50 − 42

25
0 0 1 2

5 − 1
10

11
5

0 0 0 1 1 −2
0 0 0 68

25
191
50 − 81

25

⎤⎥⎥⎥⎥⎦ 8
∼

⎡⎢⎢⎢⎢⎣
1 0 0 0 1

10
6
5

0 1 0 0 7
10 − 8

5
0 0 1 0 − 1

2 3
0 0 0 1 1 −2
0 0 0 0 11

10
11
5

⎤⎥⎥⎥⎥⎦

9
∼

⎡⎢⎢⎢⎢⎣
1 0 0 0 1

10
6
5

0 1 0 0 7
10 − 8

5
0 0 1 0 − 1

2 3
0 0 0 1 1 −2
0 0 0 0 1 2

⎤⎥⎥⎥⎥⎦ 10
∼

⎡⎢⎢⎢⎢⎣
1 0 0 0 0 1
0 1 0 0 0 −3
0 0 1 0 0 4
0 0 0 1 0 −4
0 0 0 0 1 2

⎤⎥⎥⎥⎥⎦
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1. P12 2. A12(−2), A13(−3), A14(−1), A15(−5) 3. M2(
1
5 ) 4. A21(3), A23(−10), A24(−5), A25(−12)

5. M3(− 1
10 ) 6. A31(− 11

5 ), A32(− 7
5 ), A34(4), A35(

49
5 ) 7. M4(

5
8 )

8. A41(
2
25 ), A42(− 1

25 ), A43(− 2
5 ), A45(− 68

25 ) 9. M5(
10
11 ) 10. A51(− 1

10 ), A52(− 7
10 ), A53(

1
2 ), A54(−1)

It follows from the last augmented matrix that the solution to the system is given by (1,−3, 4,−4, 2).

19. The equation Ax = b reads ⎡⎣ 1 −3 1
5 −4 1
2 4 −3

⎤⎦⎡⎣ x1

x2

x3

⎤⎦ =

⎡⎣ 8
15
−4

⎤⎦ .

Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination we
obtain the following equivalent matrices:⎡⎣ 1 −3 1 8

5 −4 1 15
2 4 −3 −4

⎤⎦ 1
∼

⎡⎣ 1 −3 1 8
0 11 −4 −25
0 10 −5 −20

⎤⎦ 2
∼

⎡⎣ 1 −3 1 8
0 1 1 −5
0 10 −5 −20

⎤⎦
3
∼

⎡⎣ 1 0 4 −7
0 1 1 −5
0 0 −15 30

⎤⎦ 4
∼

⎡⎣ 1 0 4 −7
0 1 1 −5
0 0 1 −2

⎤⎦ 5
∼

⎡⎣ 1 0 0 1
0 1 0 −3
0 0 1 −2

⎤⎦ .

1. A12(−5), A13(−2) 2. A32(−1) 3. A21(3), A23(−10) 4. M3(− 1
15 ) 5. A31(−4), A32(−1)

Thus, from the last augmented matrix, we see that x1 = 1, x2 = −3, and x3 = −2.

20. The equation Ax = b reads ⎡⎣ 1 0 5
3 −2 11
2 −2 6

⎤⎦⎡⎣ x1

x2

x3

⎤⎦ =

⎡⎣ 0
2
2

⎤⎦ .

Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination we
obtain the following equivalent matrices:⎡⎣ 1 0 5 0

3 −2 11 2
2 −2 6 2

⎤⎦ 1
∼

⎡⎣ 1 0 5 0
0 −2 −4 2
0 −2 −4 2

⎤⎦ 2
∼

⎡⎣ 1 0 5 0
0 1 2 −1
0 −2 −4 2

⎤⎦
3
∼

⎡⎣ 1 0 5 0
0 1 2 −1
0 0 0 0

⎤⎦ .

1. A12(−3), A13(−2) 2. M2(−1/2) 3. A23(2)

Hence, we have x1 + 5x3 = 0 and x2 + 2x3 = −1. Since x3 is a free variable, we can let x3 = t, where t is
any real number. It follows that the solution set for the given system is given by {(−5t,−2t− 1, t) : t ∈ R}.
21. The equation Ax = b reads ⎡⎣ 0 1 −1

0 5 1
0 2 1

⎤⎦⎡⎣ x1

x2

x3

⎤⎦ =

⎡⎣ −2
8
5

⎤⎦ .
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Converting the given system of equations to an augmented matrix using Gauss-Jordan elimination we obtain
the following equivalent matrices:⎡⎣ 0 1 −1 −2

0 5 1 8
0 2 1 5

⎤⎦ 1
∼

⎡⎣ 0 1 −1 −2
0 0 6 18
0 0 3 9

⎤⎦ 2
∼

⎡⎣ 0 1 −1 −2
0 0 1 3
0 0 3 9

⎤⎦ 3
∼

⎡⎣ 0 1 0 1
0 0 1 3
0 0 0 0

⎤⎦ .

1. A12(−5), A13(−2) 2. M2(1/6) 3. A21(1), A23(−3)

Consequently, from the last augmented matrix it follows that the solution set for the matrix equation is
given by {(t, 1, 3) : t ∈ R}.
22. The equation Ax = b reads ⎡⎣ 1 −1 0 −1

2 1 3 7
3 −2 1 0

⎤⎦⎡⎣ x1

x2

x3

⎤⎦ =

⎡⎣ 2
2
4

⎤⎦ .

Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination we
obtain the following equivalent matrices:⎡⎣ 1 −1 0 −1 2

2 1 3 7 2
3 −2 1 0 4

⎤⎦ 1
∼

⎡⎣ 1 −1 0 −1 2
0 3 3 9 −2
0 1 1 3 −2

⎤⎦ 2
∼

⎡⎣ 1 −1 0 −1 2
0 1 1 3 −2
0 3 3 9 −2

⎤⎦ 3
∼

⎡⎣ 1 0 1 2 0
0 1 1 3 −2
0 0 0 0 4

⎤⎦ .

1. A12(−2), A13(−3) 2. P23 3. A21(1), A23(−3)

From the last row of the last augmented matrix, it is clear that the given system is inconsistent.

23. The equation Ax = b reads⎡⎢⎢⎣
1 1 0 −1
3 1 −2 3
2 3 1 1

−2 3 5 −2

⎤⎥⎥⎦
⎡⎢⎢⎣

x1

x2

x3

x4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
2
8
3

−9

⎤⎥⎥⎦ .

Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination we
obtain the following equivalent matrices:⎡⎢⎢⎣

1 1 0 1 2
3 1 −2 3 8
2 3 1 2 3

−2 3 5 −2 −9

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
1 1 0 1 2
0 −2 −2 0 2
0 1 1 0 −1
0 5 5 0 −5

⎤⎥⎥⎦ 2
∼

⎡⎢⎢⎣
1 1 0 1 2
0 1 1 0 −1
0 −2 −2 0 2
0 5 5 0 −5

⎤⎥⎥⎦ 3
∼

⎡⎢⎢⎣
1 0 −1 1 3
0 1 1 0 −1
0 0 0 0
0 0 0 0 0

⎤⎥⎥⎦ .

1. A12(−3), A13(−2), A14(2) 2. P23 3. A21(−1), A23(2), A24(−5)

From the last augmented matrix, we obtain the system of equations: x1 − x3 + x4 = 3, x2 + x3 = −1. Since
both x3 and x4 are free variables, we may let x3 = r and x4 = t, where r and t are real numbers. The
solution set for the system is given by {(3 + r − t,−r − 1, r, t) : r, t ∈ R}.
24. Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination
we obtain the following equivalent matrices:⎡⎣ 1 2 −1 3

2 5 1 7
1 1 −k2 −k

⎤⎦ 1
∼

⎡⎣ 1 2 −1 3
0 1 3 1
0 −1 1− k2 −3− k

⎤⎦ 2
∼

⎡⎣ 1 2 −1 3
0 1 3 1
0 0 4− k2 −2− k

⎤⎦ .
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1. A12(−2), A13(−1) 2. A23(1)

(a). If k = 2, then the last row of the last augmented matrix reveals an inconsistency; hence the system has
no solutions in this case.

(b). If k = −2, then the last row of the last augmented matrix consists entirely of zeros, and hence we have
only two pivots (first two columns) and a free variable x3; hence the system has infinitely many solutions.

(c). If k �= ±2, then the last augmented matrix above contains a pivot for each variable x1, x2, and x3, and
can be solved for a unique solution by back-substitution.

25. Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination
we obtain the following equivalent matrices:⎡⎢⎢⎣

2 1 −1 1 0
1 1 1 −1 0
4 2 −1 1 0
3 −1 1 k 0

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
1 1 1 −1 0
2 1 −1 1 0
4 2 −1 1 0
3 −1 1 k 0

⎤⎥⎥⎦ 2
∼

⎡⎢⎢⎣
1 1 1 −1 0
0 −1 −3 3 0
0 −2 −5 5 0
0 −4 −2 k + 3 0

⎤⎥⎥⎦

3
∼

⎡⎢⎢⎣
1 1 1 −1 0
0 1 3 −3 0
0 −2 −5 5 0
0 −4 −2 k + 3 0

⎤⎥⎥⎦ 4
∼

⎡⎢⎢⎣
1 1 1 −1 0
0 1 3 −3 0
0 0 1 −1 0
0 0 10 k − 9 0

⎤⎥⎥⎦ 5
∼

⎡⎢⎢⎣
1 1 1 −1 0
0 1 3 −3 0
0 0 1 −1 0
0 0 0 k + 1 0

⎤⎥⎥⎦ .

1. P12 2. A12(−2), A13(−4), A14(−3) 3. M2(−1) 4. A23(2), A24(4) 5. A34(−10)

(a). Note that the trivial solution (0, 0, 0, 0) exists under all circumstances, so there are no values of k for
which there is no solution.

(b). From the last row of the last augmented matrix, we see that if k = −1, then the variable x4 corresponds
to an unpivoted column, and hence it is a free variable. In this case, therefore, we have infinitely solutions.

(c). Provided that k �= −1, then each variable in the system corresponds to a pivoted column of the last
augmented matrix above. Therefore, we can solve the system by back-substitution. The conclusion from
this is that there is a unique solution, (0, 0, 0, 0).

26. Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination
we obtain the following equivalent matrices:⎡⎣ 1 1 −2 4

3 5 −4 16
2 3 −a b

⎤⎦ 1
∼

⎡⎣ 1 1 −2 4
0 2 2 4
0 1 4− a b− 8

⎤⎦ 2
∼

⎡⎣ 1 1 −2 4
0 1 1 2
0 1 4− a b− 8

⎤⎦ 3
∼

⎡⎣ 1 0 −3 2
0 1 1 2
0 0 3− a b− 10

⎤⎦ .

1. A12(−3), A13(−2) 2. M2(
1
2 ) 3. A21(−1), A23(−1)

(a). From the last row of the last augmented matrix above, we see that there is no solution if a = 3 and
b �= 10.

(b). From the last row of the augmented matrix above, we see that there are infinitely many solutions
if a = 3 and b = 10, because in that case, there is no pivot in the column of the last augmented matrix
corresponding to the third variable x3.

(c)2017 Pearson Education. Inc.



158

(c). From the last row of the augmented matrix above, we see that if a �= 3, then regardless of the value
of b, there is a pivot corresponding to each variable x1, x2, and x3. Therefore, we can uniquely solve the
corresponding system by back-substitution.

27. Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination
we obtain the following equivalent matrices:⎡⎣ 1 −a 3

2 1 6
−3 a+ b 1

⎤⎦ 1
∼

⎡⎣ 1 −a 3
0 1 + 2a 0
0 b− 2a 10

⎤⎦ .

From the middle row, we see that if a �= − 1
2 , then we must have x2 = 0, but this leads to an inconsistency in

solving for x1 (the first equation would require x1 = 3 while the last equation would require x1 = − 1
3 . Now

suppose that a = − 1
2 . Then the augmented matrix on the right reduces to

[
1 −1/2 3
0 b+ 1 10

]
. If b = −1,

then once more we have an inconsistency in the last row. However, if b �= −1, then the row-echelon form
obtained has full rank, and there is a unique solution. Therefore, we draw the following conclusions:

(a). There is no solution to the system if a �= − 1
2 or if a = − 1

2 and b = −1.

(b). Under no circumstances are there an infinite number of solutions to the linear system.

(c). There is a unique solution if a = − 1
2 and b �= −1.

28. The corresponding augmented matrix for this linear system can be reduced to row-echelon form via⎡⎣ 1 1 1 y1
2 3 1 y2
3 5 1 y3

⎤⎦ 1
∼

⎡⎣ 1 1 1 y1
0 1 −1 y2 − 2y1
0 2 −2 y3 − 3y1

⎤⎦ 2
∼

⎡⎣ 1 1 1 y1
0 1 −1 y2 − 2y1
0 0 0 y1 − 2y2 + y3

⎤⎦ .

1. A12(−2), A13(−3) 2. A23(−2)

For consistency, we must have rank(A) = rank(A#), which requires (y1, y2, y3) to satisfy y1 − 2y2 + y3 = 0.
If this holds, then the system has an infinite number of solutions, because the column of the augmented
matrix corresponding to y3 will be unpivoted, indicating that y3 is a free variable in the solution set.

29. Converting the given system of equations to an augmented matrix and using Gaussian elimination we
obtain the following row-equivalent matrices. Since a11 �= 0:[

a11 a12 b1
a21 a22 b2

]
1
∼

[
1 a12

a11

b1
a11

0 a22a11−a21a12

a11

a11b2−a21b1
a11

]
2
∼

[
1 a12

a11

b1
a11

0 Δ
a11

Δ2

a11

]
.

1. M1(1/a11), A12(−a21) 2. Definition of Δ and Δ2

(a). If Δ �= 0, then rank(A) = rank(A#) = 2, so the system has a unique solution (of course, we are assuming

a11 �= 0 here). Using the last augmented matrix above,
(

Δ
a11

)
x2 = Δ2

a11
, so that x2 = Δ2

Δ . Using this, we can

solve x1 +
a12

a11
x2 = b1

a11
for x1 to obtain x1 = Δ1

Δ , where we have used the fact that Δ1 = a22b1 − a12b2.

(b). If Δ = 0 and a11 �= 0, then the augmented matrix of the system is

[
1 a12

a11

b1
a11

0 0 Δ2

]
, so it follows that

the system has (i) no solution if Δ2 �= 0, since rank(A) < rank(A#) = 2, and (ii) an infinite number of
solutions if Δ2 = 0, since rank(A#) < 2.
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(c). An infinite number of solutions would be represented as one line. No solution would be two parallel
lines. A unique solution would be the intersection of two distinct lines at one point.

30. We first use the partial pivoting algorithm to reduce the augmented matrix of the system:⎡⎣ 1 2 1 1
3 5 1 3
2 6 7 1

⎤⎦ 1
∼

⎡⎣ 3 5 1 3
1 2 1 1
2 6 7 1

⎤⎦ 2
∼

⎡⎣ 3 5 1 3
0 1/3 2/3 0
0 8/3 19/3 −1

⎤⎦
3
∼

⎡⎣ 3 5 1 3
0 8/3 19/3 −1
0 1/3 2/3 0

⎤⎦ 4
∼

⎡⎣ 3 5 1 3
0 8/3 19/3 −1
0 0 −1/8 1/8

⎤⎦ .

1. P12 2. A12(−1/3), A13(−2/3) 3. P23 4. A23(−1/8)

Using back substitution to solve the equivalent system yields the unique solution (−2, 2,−1).

31. We first use the partial pivoting algorithm to reduce the augmented matrix of the system:⎡⎢⎢⎣
2 −1 3 14
3 1 −2 −1
7 2 −3 3
5 −1 −2 5

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
7 2 −3 3
3 1 −2 −1
2 −1 3 14
5 −1 −2 5

⎤⎥⎥⎦ 2
∼

⎡⎢⎢⎣
7 2 −3 3
0 1/7 −5/7 −16/7
0 −11/7 27/7 92/7
0 −17/7 1/7 20/7

⎤⎥⎥⎦
3
∼

⎡⎢⎢⎣
7 2 −3 3
0 −17/7 1/7 20/7
0 −11/7 27/7 92/7
0 1/7 −5/7 −16/7

⎤⎥⎥⎦ 4
∼

⎡⎢⎢⎣
7 2 −3 3
0 −17/7 1/7 20/7
0 0 64/17 192/17
0 0 −12/17 −36/17

⎤⎥⎥⎦
5
∼

⎡⎢⎢⎣
7 2 −3 3
0 −17/7 1/7 20/7
0 0 64/17 192/17
0 0 0 0

⎤⎥⎥⎦ .

1. P13 2. A12(−3/7), A13(−2/7), A14(−5/7) 3. P24

4. A23(−11/17), A24(1/17) 5. A34(3/16)

Using back substitution to solve the equivalent system yields the unique solution (2,−1, 3).

32. We first use the partial pivoting algorithm to reduce the augmented matrix of the system:⎡⎢⎢⎣
2 −1 −4 5
3 2 −5 8
5 6 −6 20
1 1 −3 −3

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
5 6 −6 −20
3 2 −5 8
2 −1 −4 5
1 1 −3 −3

⎤⎥⎥⎦ 2
∼

⎡⎢⎢⎣
5 6 −6 20
0 −8/5 −7/5 −4
0 −17/5 −8/5 −3
0 −1/5 −9/5 −7

⎤⎥⎥⎦
3
∼

⎡⎢⎢⎣
5 6 −6 20
0 −17/5 −8/5 −3
0 −8/5 −7/5 −4
0 −1/5 −9/5 −7

⎤⎥⎥⎦ 4
∼

⎡⎢⎢⎣
5 6 −6 20
0 −17/5 −8/5 −3
0 0 −11/17 −44/17
0 0 −29/17 −116/17

⎤⎥⎥⎦
5
∼

⎡⎢⎢⎣
5 6 −6 20
0 −17/5 −8/5 −3
0 0 −29/17 −116/17
0 0 −11/17 −44/17

⎤⎥⎥⎦ 6
∼

⎡⎢⎢⎣
5 6 −6 20
0 −17/5 −8/5 −3
0 0 −29/17 −116/17
0 0 0 0

⎤⎥⎥⎦ .
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1. P13 2. A12(−3/5), A13(−2/5), A14(−1/5) 3. P23

4. A23(−8/17), A24(−1/17) 5. P34 6. A34(−11/29)

Using back substitution to solve the equivalent system yields the unique solution (10,−1, 4).

33. We first use the partial pivoting algorithm to reduce the augmented matrix of the system:⎡⎣ 2 −1 −1 2
4 3 −2 −1
1 4 1 4

⎤⎦ 1
∼

⎡⎣ 4 3 −2 −1
2 −1 −1 2
1 4 1 4

⎤⎦ 2
∼

⎡⎣ 4 3 −2 −1
0 −5/2 0 5/2
0 13/4 3/2 17/4

⎤⎦
3
∼

⎡⎣ 4 3 −2 −1
0 13/4 3/2 17/4
0 −5/2 0 5/2

⎤⎦ 4
∼

⎡⎣ 4 3 −2 −1
0 13/4 3/2 17/4
0 0 15/13 75/13

⎤⎦ .

1. P12 2. A12(−1/2), A13(−1/4) 3. P23 4. A23(10/13)

Using back substitution to solve the equivalent system yields the unique solution (3,−1, 5).

34.

(a). Let

A# =

⎡⎢⎢⎢⎢⎣
a11 0 0 . . . 0 b1
a21 a22 0 . . . 0 b2
a31 a32 a33 . . . 0 b3
. . . . . . . . . . . . . . . . . .
an1 an2 an3 . . . ann bn

⎤⎥⎥⎥⎥⎦
represent the corresponding augmented matrix of the given system. Since a11x1 = b1, we can solve for x1

easily:

x1 =
b1
a11

, (a11 �= 0).

Now since a21x1 + a22x2 = b2, by using the expression for x1 we just obtained, we can solve for x2:

x2 =
a11b2 − a21b1

a11a22
.

In a similar manner, we can solve for x3, x4, . . . , xn.

(b). We solve instantly for x1 from the first equation: x1 = 2. Substituting this into the middle equation,
we obtain 2 · 2 − 3 · x2 = 1, from which it quickly follows that x2 = 1. Substituting for x1 and x2 in the
bottom equation yields 3 · 2 + 1 − x3 = 8, from which it quickly follows that x3 = −1. Consequently, the
solution of the given system is (2, 1,−1).

35. This system of equations is not linear in x1, x2, and x3; however, the system is linear in x3
1, x

2
2, and x3,

so we can first solve for x3
1, x

2
2, and x3. Converting the given system of equations to an augmented matrix

and using Gauss-Jordan elimination we obtain the following equivalent matrices:⎡⎣ 4 2 3 12
1 −1 1 2
3 1 −1 2

⎤⎦ 1
∼

⎡⎣ 1 −1 1 2
4 2 3 12
3 1 −1 2

⎤⎦ 2
∼

⎡⎣ 1 −1 1 2
0 6 −1 4
0 4 −4 −4

⎤⎦
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3
∼

⎡⎣ 1 −1 1 2
0 4 −4 −4
0 6 −1 4

⎤⎦ 4
∼

⎡⎣ 1 −1 1 2
0 1 −1 −1
0 6 −1 4

⎤⎦ 5
∼

⎡⎣ 1 0 0 1
0 1 −1 −1
0 0 5 10

⎤⎦
6
∼

⎡⎣ 1 0 0 1
0 1 −1 −1
0 0 1 2

⎤⎦ 7
∼

⎡⎣ 1 0 0 1
0 1 0 1
0 0 1 2

⎤⎦ .

1. P12 2. A12(−4), A13(−3) 3. P23 4. M2(1/4)

5. A21(1), A23(−6) 6. M2(1/5) 7. A32(1)

Thus, taking only real solutions, we have x3
1 = 1, x2

2 = 1, and x3 = 2. Therefore, x1 = 1, x2 = ±1, and
x3 = 2, leading to the two solutions (1, 1, 2) and (1,−1, 2) to the original system of equations. There is no
contradiction of Theorem 2.5.9 here since, as mentioned above, this system is not linear in x1, x2, and x3.

36. Reduce the augmented matrix of the system:⎡⎣ 3 2 −1 0
2 1 1 0
5 −4 1 0

⎤⎦ 1
∼

⎡⎣ 1 1 −2 0
0 −1 5 0
0 −9 11 0

⎤⎦ 2
∼

⎡⎣ 1 1 −2 0
0 1 −5 0
0 −9 11 0

⎤⎦ 3
∼

⎡⎣ 1 0 3 0
0 1 −5 0
0 0 −34 0

⎤⎦
4
∼

⎡⎣ 1 0 3 0
0 1 −5 0
0 0 1 0

⎤⎦ 5
∼

⎡⎣ 1 0 0 0
0 1 0 0
0 0 1 0

⎤⎦ .

1. A21(−1), A12(−2), A13(−5) 2. M2(−1) 3. A21(−1), A23(9)

4. M3(−1/34) 5. A31(−3), A32(5)

Therefore, the unique solution to this system is x1 = x2 = x3 = 0: (0, 0, 0).

37. Reduce the augmented matrix of the system:⎡⎢⎢⎣
2 1 −1 0
3 −1 2 0
1 −1 −1 0
5 2 −2 0

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
1 −1 −1 0
3 −1 2 0
2 1 −1 0
5 2 −2 0

⎤⎥⎥⎦ 2
∼

⎡⎢⎢⎣
1 −1 −1 0
0 2 5 0
0 3 1 0
0 7 3 0

⎤⎥⎥⎦ 3
∼

⎡⎢⎢⎣
1 −1 −1 0
0 3 1 0
0 2 5 0
0 7 3 0

⎤⎥⎥⎦

4
∼

⎡⎢⎢⎣
1 −1 −1 0
0 1 −4 0
0 2 5 0
0 7 3 0

⎤⎥⎥⎦ 5
∼

⎡⎢⎢⎣
1 0 −5 0
0 1 −4 0
0 0 13 0
0 0 31 0

⎤⎥⎥⎦ 6
∼

⎡⎢⎢⎣
1 0 −5 0
0 1 −4 0
0 0 1 0
0 0 31 0

⎤⎥⎥⎦ 7
∼

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎤⎥⎥⎦ .

1. P13 2. A12(−3), A13(−2), A14(−5) 3. P23 4. A32(−1)

5. A21(1), A23(−2), A24(−7) 6. M3(1/13) 7. A31(5), A32(4), A34(−31)

Therefore, the unique solution to this system is x1 = x2 = x3 = 0: (0, 0, 0).

38. Reduce the augmented matrix of the system:⎡⎣ 2 −1 −1 0
5 −1 2 0
1 1 4 0

⎤⎦ 1
∼

⎡⎣ 1 1 4 0
5 −1 2 0
2 −1 −1 0

⎤⎦ 2
∼

⎡⎣ 1 1 4 0
0 −6 −18 0
0 −3 −9 0

⎤⎦
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3
∼

⎡⎣ 1 1 4 0
0 1 3 0
0 −3 −9 0

⎤⎦ 4
∼

⎡⎣ 1 0 1 0
0 1 3 0
0 0 0 0

⎤⎦ .

1. P13 2. A12(−5), A13(−2) 3. M2(−1/6) 4. A21(−1), A23(3)

It follows that x1 + x3 = 0 and x2 +3x3 = 0. Setting x3 = t, where t is a free variable, we get x2 = −3t and
x1 = −t. Thus we have that the solution set of the system is {(−t,−3t, t) : t ∈ R}.
39. Reduce the augmented matrix of the system:⎡⎣ 1 + 2i 1− i 1 0

i 1 + i −i 0
2i 1 1 + 3i 0

⎤⎦ 1
∼

⎡⎣ i 1 + i −i 0
1 + 2i 1− i 1 0
2i 1 1 + 3i 0

⎤⎦ 2
∼

⎡⎣ 1 1− i −1 0
1 + 2i 1− i 1 0
2i 1 1 + 3i 0

⎤⎦
3
∼

⎡⎣ 1 1− i −1 0
0 −2− 2i 1 + 2i 0
0 −1− 2i 1 + 5i 0

⎤⎦ 4
∼

⎡⎣ 1 1− i −1 0
0 −2− 2i 1 + 2i 0
0 1 3i 0

⎤⎦ 5
∼

⎡⎣ 1 1− i −1 0
0 0 −5 + 8i 0
0 1 3i 0

⎤⎦
6
∼

⎡⎣ 1 1− i −1 0
0 1 3i 0
0 0 −5 + 8i 0

⎤⎦ 7
∼

⎡⎣ 1 1− i −1 0
0 1 3i 0
0 0 1 0

⎤⎦ 8
∼

⎡⎣ 1 0 0 0
0 1 0 0
0 0 1 0

⎤⎦ .

1. P12 2. M1(−i) 3. A12(−1− 2i), A13(−2i) 4. A23(−1) 5. A32(2 + 2i)

6. P23 7. M3(
1

−5+8i ) 8. A21(−1 + i), A31(1), A32(−3i)

Therefore, the unique solution to this system is x1 = x2 = x3 = 0: (0, 0, 0).

40. Reduce the augmented matrix of the system:⎡⎣ 3 2 1 0
6 −1 2 0

12 6 4 0

⎤⎦ 1
∼

⎡⎣ 1 2
3

1
3 0

6 −1 2 0
12 6 4 0

⎤⎦ 2
∼

⎡⎣ 1 2
3

1
3 0

0 −5 0 0
0 −2 0 0

⎤⎦
3
∼

⎡⎣ 1 2
3

1
3 0

0 1 0 0
0 −2 0 0

⎤⎦ 4
∼

⎡⎣ 1 0 1
3 0

0 1 0 0
0 0 0 0

⎤⎦ .

1. M1(1/3) 2. A12(−6), A13(−12) 3. M2(−1/5) 4. A21(−2/3), A23(2)

From the last augmented matrix, we have x1+
1
3x3 = 0 and x2 = 0. Since x3 is a free variable, we let x3 = t,

where t is a real number. It follows that the solution set for the given system is given by {(t, 0,−3t) : t ∈ R}.
41. Reduce the augmented matrix of the system:⎡⎢⎢⎣

2 1 −8 0
3 −2 −5 0
5 −6 −3 0
3 −5 1 0

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
3 −2 −5 0
2 1 −8 0
5 −6 −3 0
3 −5 1 0

⎤⎥⎥⎦ 2
∼

⎡⎢⎢⎣
1 −3 3 0
2 1 −8 0
5 −6 −3 0
3 −5 1 0

⎤⎥⎥⎦

3
∼

⎡⎢⎢⎣
1 −3 3 0
0 7 −14 0
0 9 −18 0
0 4 −8 0

⎤⎥⎥⎦ 4
∼

⎡⎢⎢⎣
1 −3 3 0
0 1 −2 0
0 9 −18 0
0 4 −8 0

⎤⎥⎥⎦ 5
∼

⎡⎢⎢⎣
1 0 −3 0
0 1 −2 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ .
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1. P12 2. A21(−1) 3. A12(−2), A13(−5), A14(−3) 4. M2(1/7) 5. A21(3), A23(−9), A24(−4)

From the last augmented matrix we have: x1 − 3x3 = 0 and x2 − 2x3 = 0. Since x3 is a free variable, we let
x3 = t, where t is a real number. It follows that x2 = 2t and x1 = 3t. Thus, the solution set for the given
system is given by {(3t, 2t, t) : t ∈ R}.
42. Reduce the augmented matrix of the system:⎡⎣ 1 1 + i 1− i 0

i 1 i 0
1− 2i −1 + i 1− 3i 0

⎤⎦ 1
∼

⎡⎣ 1 1 + i 1− i 0
0 2− i −1 0
0 −4 + 2i 2 0

⎤⎦ 2
∼

⎡⎣ 1 1 + i 1− i 0
0 2− i −1 0
0 0 0 0

⎤⎦
3
∼

⎡⎣ 1 1 + i 1− i 0
0 1 −2−i

5 0
0 0 0 0

⎤⎦ 4
∼

⎡⎣ 1 0 6−2i
5 0

0 1 −2−i
5 0

0 0 0 0

⎤⎦ .

1. A12(−i), A13(−1 + 2i) 2. A23(2) 3. M2(
1

2−i ) 4. A21(−1− i)

From the last augmented matrix we see that x3 is a free variable. We set x3 = 5s, where s ∈ C. Then
x1 = 2(i− 3)s and x2 = (2 + i)s. Thus, the solution set of the system is {(2(i− 3)s, (2 + i)s, 5s) : s ∈ C}.
43. Reduce the augmented matrix of the system:⎡⎢⎢⎣

1 −1 1 0
0 3 2 0
3 0 −1 0
5 1 −1 0

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
1 −1 1 0
0 3 2 0
0 3 −4 0
0 6 −6 0

⎤⎥⎥⎦ 2
∼

⎡⎢⎢⎣
1 −1 1 0
0 1 2/3 0
0 3 −4 0
0 6 −6 0

⎤⎥⎥⎦

3
∼

⎡⎢⎢⎣
1 0 5/3 0
0 1 2/3 0
0 0 −6 0
0 0 −10 0

⎤⎥⎥⎦ 4
∼

⎡⎢⎢⎣
1 0 5/3 0
0 1 2/3 0
0 0 1 0
0 0 −10 0

⎤⎥⎥⎦ 5
∼

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎤⎥⎥⎦ .

1. A13(−3), A14(−5) 2. M2(1/3) 3. A21(1), A23(−3), A24(−6)

4. M3(−1/6) 5. A31(−5/3), A32(−2/3), A34(10)

Therefore, the unique solution to this system is x1 = x2 = x3 = 0: (0, 0, 0).

44. Reduce the augmented matrix of the system:⎡⎢⎢⎣
2 −4 6 0
3 −6 9 0
1 −2 3 0
5 −10 15 0

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
1 −2 3 0
3 −6 9 0
2 −4 6 0
5 −10 15 0

⎤⎥⎥⎦ 2
∼

⎡⎢⎢⎣
1 −2 3 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ .

1. M1(1/2) 2. A12(−3), A13(−2), A14(−5)

From the last matrix we have that x1 − 2x3 + 3x3 = 0. Since x2 and x3 are free variables, let x2 = s and
let x3 = t, where s and t are real numbers. The solution set of the given system is therefore {(2s− 3t, s, t) :
s, t ∈ R}.
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45. Reduce the augmented matrix of the system:⎡⎣ 4 −2 −1 −1 0
3 1 −2 3 0
5 −1 −2 1 0

⎤⎦ 1
∼

⎡⎣ 1 −3 1 −4 0
3 1 −2 3 0
5 −1 −2 1 0

⎤⎦ 2
∼

⎡⎣ 1 −3 1 −4 0
0 10 −5 15 0
0 14 −7 21 0

⎤⎦
3
∼

⎡⎣ 1 −3 1 −4 0
0 2 −1 3 0
0 2 −1 3 0

⎤⎦ 4
∼

⎡⎣ 1 −3 1 −4 0
0 2 −1 3 0
0 0 0 0 0

⎤⎦ 5
∼

⎡⎣ 1 −3 1 −4 0
0 1 −1/2 3/2 0
0 0 0 0 0

⎤⎦ .

1. A21(−1) 2. A12(−3), A13(−5) 3. M2(1/5), M3(1/7)

4. A23(−1) 5. M2(1/2)

From the last augmented matrix above we have that x2− 1
2x3+

3
2x4 = 0 and x1−3x2+x3−4x4 = 0. Since x3

and x4 are free variables, we can set x3 = 2s and x4 = 2t, where s and t are real numbers. Then x2 = s− 3t
and x1 = s− t. It follows that the solution set of the given system is {(s− t, s− 3t, 2s, 2t) : s, t ∈ R}.
46. Reduce the augmented matrix of the system:⎡⎢⎢⎣

2 1 −1 1 0
1 1 1 −1 0
3 −1 1 −2 0
4 2 −1 1 0

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
1 1 1 −1 0
2 1 −1 1 0
3 −1 1 −2 0
4 2 −1 1 0

⎤⎥⎥⎦ 2
∼

⎡⎢⎢⎣
1 1 1 −1 0
0 −1 −3 3 0
0 −4 −2 1 0
0 −2 −5 5 0

⎤⎥⎥⎦

3
∼

⎡⎢⎢⎣
1 1 1 −1 0
0 1 3 −3 0
0 −4 −2 1 0
0 −2 −5 5 0

⎤⎥⎥⎦ 4
∼

⎡⎢⎢⎣
1 0 −2 2 0
0 1 3 −3 0
0 0 10 −11 0
0 0 −3 3 0

⎤⎥⎥⎦ 5
∼

⎡⎢⎢⎣
1 0 −2 2 0
0 1 3 −3 0
0 0 −3 3 0
0 0 10 −11 0

⎤⎥⎥⎦

6
∼

⎡⎢⎢⎣
1 0 −2 2 0
0 1 3 −3 0
0 0 1 −1 0
0 0 10 −11 0

⎤⎥⎥⎦ 7
∼

⎡⎢⎢⎣
1 0 0 0 0
0 1 0 0 0
0 0 1 −1 0
0 0 0 −1 0

⎤⎥⎥⎦ 8
∼

⎡⎢⎢⎣
1 0 0 0 0
0 1 0 0 0
0 0 1 −1 0
0 0 0 1 0

⎤⎥⎥⎦ 9
∼

⎡⎢⎢⎣
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎤⎥⎥⎦ .

1. P12 2. A12(−2), A13(−3), A14(−4) 3. M2(−1) 4. A21(−1), A23(4), A24(2)

5. P34 6. M3(−1/3) 7. A31(2), A32(−3), A34(−10) 8. M4(−1) 9. A43(1)

From the last augmented matrix, it follows that the solution set to the system is given by {(0, 0, 0, 0)}.
47. The equation Ax = 0 is [

2 −1
3 4

] [
x1

x2

]
=

[
0
0

]
.

Reduce the augmented matrix of the system:[
2 −1 0
3 4 0

]
1
∼

[
1 − 1

2 0
3 4 0

]
2
∼

[
1 − 1

2 0
0 11

2 0

]
3
∼

[
1 − 1

2 0
0 1 0

]
4
∼

[
1 0 0
0 1 0

]
.

1. M1(1/2) 2. A12(−3) 3. M2(2/11) 4. A21(1/2)
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From the last augmented matrix, we see that x1 = x2 = 0. Hence, the solution set is {(0, 0)}.
48. The equation Ax = 0 is [

1− i 2i
1 + i −2

] [
x1

x2

]
=

[
0
0

]
.

Reduce the augmented matrix of the system:[
1− i 2i 0
1 + i −2 0

]
1
∼

[
1 −1 + i 0

1 + i −2 0

]
2
∼

[
1 −1 + i 0
0 0 0

]
.

1. M1(
1+i
2 ) 2. A12(−1− i)

It follows that x1 + (−1 + i)x2 = 0. Since x2 is a free variable, we can let x2 = t, where t is a complex
number. The solution set to the system is then given by {(t(1− i), t) : t ∈ C}.
49. The equation Ax = 0 is [

1 + i 1− 2i
−1 + i 2 + i

] [
x1

x2

]
=

[
0
0

]
.

Reduce the augmented matrix of the system:[
1 + i 1− 2i 0
−1 + i 2 + i 0

]
1
∼

[
1 − 1+3i

2 0
−1 + i 2 + i 0

]
2
∼

[
1 − 1+3i

2 0
0 0 0

]
.

1. M1(
1−i
2 ) 2. A12(1− i)

It follows that x1 − 1+3i
2 x2 = 0. Since x2 is a free variable, we can let x2 = r, where r is any complex

number. Thus, the solution set to the given system is {( 1+3i
2 r, r) : r ∈ C}.

50. The equation Ax = 0 is ⎡⎣ 1 2 3
2 −1 0
1 1 1

⎤⎦⎡⎣ x1

x2

x3

⎤⎦ =

⎡⎣ 0
0
0

⎤⎦ .

Reduce the augmented matrix of the system:⎡⎣ 1 2 3 0
2 −1 0 0
1 1 1 0

⎤⎦ 1
∼

⎡⎣ 1 2 3 0
0 −5 −6 0
0 −1 −2 0

⎤⎦ 2
∼

⎡⎣ 1 2 3 0
0 −1 −2 0
0 −5 −6 0

⎤⎦ 3
∼

⎡⎣ 1 2 3 0
0 1 2 0
0 −5 −6 0

⎤⎦
4
∼

⎡⎣ 1 0 −1 0
0 1 2 0
0 0 4 0

⎤⎦ 5
∼

⎡⎣ 1 0 −1 0
0 1 2 0
0 0 1 0

⎤⎦ 6
∼

⎡⎣ 1 0 0 0
0 1 0 0
0 0 1 0

⎤⎦ .

1. A12(−2), A13(−1) 2. P23 3. M2(−1) 4. A21(−2), A23(5) 5. M3(1/4) 6. A31(1), A32(−2)

From the last augmented matrix, we see that the only solution to the given system is x1 = x2 = x3 = 0:
{(0, 0, 0)}.
51. The equation Ax = 0 is ⎡⎣ 1 1 1 −1

−1 0 −1 2
1 3 2 2

⎤⎦
⎡⎢⎢⎣

x1

x2

x3

x4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0
0
0
0

⎤⎥⎥⎦ .
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Reduce the augmented matrix of the system:⎡⎣ 1 1 1 −1 0
−1 0 −1 2 0
1 3 2 2 0

⎤⎦ 1
∼

⎡⎣ 1 1 1 −1 0
0 1 0 1 0
0 2 1 3 0

⎤⎦ 2
∼

⎡⎣ 1 0 1 −2 0
0 1 0 1 0
0 0 1 1 0

⎤⎦ 3
∼

⎡⎣ 1 0 0 −3 0
0 1 0 1 0
0 0 1 1 0

⎤⎦ .

1. A12(1), A13(−1) 2. A21(−1), A23(−2) 3. A31(−1)

From the last augmented matrix, we see that x4 is a free variable. We set x4 = t, where t is a real number.
The last row of the reduced row echelon form above corresponds to the equation x3 + x4 = 0. Therefore,
x3 = −t. The second row corresponds to the equation x2+x4 = 0, so we likewise find that x2 = −t. Finally,
from the first equation we have x1 − 3x4 = 0, so that x1 = 3t. Consequently, the solution set of the original
system is given by {(3t,−t,−t, t) : t ∈ R}.
52. The equation Ax = 0 is ⎡⎣ 2− 3i 1 + i i− 1

3 + 2i −1 + i −1− i
5− i 2i −2

⎤⎦⎡⎣ x1

x2

x3

⎤⎦ =

⎡⎣ 0
0
0

⎤⎦ .

Reduce the augmented matrix of this system:⎡⎣ 2− 3i 1 + i i− 1 0
3 + 2i −1 + i −1− i 0
5− i 2i −2 0

⎤⎦ 1
∼

⎡⎣ 1 −1+5i
13

−5−i
13 0

3 + 2i −1 + i −1− i 0
5− i 2i −2 0

⎤⎦ 2
∼

⎡⎣ 1 −1+5i
13

−5−i
13 0

0 0 0 0
0 0 0 0

⎤⎦ .

1. M1(
2+3i
13 ) 2. A12(−3− 2i), A13(−5 + i)

From the last augmented matrix, we see that x1+
−1+5i

13 x2+
−5−i
13 x3 = 0. Since x2 and x3 are free variables,

we can let x2 = 13r and x3 = 13s, where r and s are complex numbers. It follows that the solution set of
the system is {(r(1− 5i) + s(5 + i), 13r, 13s) : r, s ∈ C}.
53. The equation Ax = 0 is ⎡⎣ 1 3 0

−2 −3 0
1 4 0

⎤⎦⎡⎣ x1

x2

x3

⎤⎦ =

⎡⎣ 0
0
0

⎤⎦ .

Reduce the augmented matrix of the system:⎡⎣ 1 3 0 0
−2 −3 0 0
1 4 0 0

⎤⎦ 1
∼

⎡⎣ 1 3 0 0
0 3 0 0
0 1 0 0

⎤⎦ 2
∼

⎡⎣ 1 3 0 0
0 1 0 0
0 3 0 0

⎤⎦ 3
∼

⎡⎣ 1 0 0 0
0 1 0 0
0 0 0 0

⎤⎦ .

1. A12(2), A13(−1) 2. P23 3. A21(−3), A23(−3)

From the last augmented matrix we see that the solution set of the system is {(0, 0, t) : t ∈ R}.
54. The equation Ax = 0 is ⎡⎢⎢⎢⎢⎣

1 0 3
3 −1 7
2 1 8
1 1 5

−1 1 −1

⎤⎥⎥⎥⎥⎦
⎡⎣ x1

x2

x3

⎤⎦ =

⎡⎣ 0
0
0

⎤⎦ .
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Reduce the augmented matrix of the system:⎡⎢⎢⎢⎢⎣
1 0 3 0
3 −1 7 0
2 1 8 0
1 1 5 0

−1 1 −1 0

⎤⎥⎥⎥⎥⎦ 1
∼

⎡⎢⎢⎢⎢⎣
1 0 3 0
0 −1 −2 0
0 1 2 0
0 1 2 0
0 1 2 0

⎤⎥⎥⎥⎥⎦ 2
∼

⎡⎢⎢⎢⎢⎣
1 0 3 0
0 1 2 0
0 1 2 0
0 1 2 0
0 1 2 0

⎤⎥⎥⎥⎥⎦ 3
∼

⎡⎢⎢⎢⎢⎣
1 0 3 0
0 1 2 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎦ .

1. A12(−3), A13(−2), A14(−1), A15(1) 2. M2(−1) 3. A23(−1), A24(−1), A25(−1)

From the last augmented matrix, we obtain the equations x1 + 3x3 = 0 and x2 + 2x3 = 0. Since x3 is a
free variable, we let x3 = t, where t is a real number. The solution set for the given system is then given by
{(−3t,−2t, t) : t ∈ R}.
55. The equation Ax = 0 is ⎡⎣ 1 −1 0 1

3 −2 0 5
−1 2 0 1

⎤⎦
⎡⎢⎢⎣

x1

x2

x3

x4

⎤⎥⎥⎦ =

⎡⎣ 0
0
0

⎤⎦ .

Reduce the augmented matrix of the system:⎡⎣ 1 −1 0 1 0
3 −2 0 5 0

−1 2 0 1 0

⎤⎦ 1
∼

⎡⎣ 1 −1 0 1 0
0 1 0 2 0
0 1 0 2 0

⎤⎦ 2
∼

⎡⎣ 1 0 0 3 0
0 1 0 2 0
0 0 0 0 0

⎤⎦ .

1. A12(−3), A13(1) 2. A21(1), A23(−1)

From the last augmented matrix we obtain the equations x1 + 3x4 = 0 and x2 + 2x4 = 0. Because x3 and
x4 are free, we let x3 = t and x4 = s, where s and t are real numbers. It follows that the solution set of the
system is {(−3s,−2s, t, s) : s, t ∈ R}.
56. The equation Ax = 0 is ⎡⎣ 1 0 −3 0

3 0 −9 0
−2 0 6 0

⎤⎦
⎡⎢⎢⎣

x1

x2

x3

x4

⎤⎥⎥⎦ =

⎡⎣ 0
0
0

⎤⎦ .

Reduce the augmented matrix of the system:⎡⎣ 1 0 −3 0 0
3 0 −9 0 0

−2 0 6 0 0

⎤⎦ 1
∼

⎡⎣ 1 0 −3 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎦ .

1. A12(−3), A13(2)

From the last augmented matrix we obtain x1 − 3x3 = 0. Therefore, x2, x3, and x4 are free variables, so
we let x2 = r, x3 = s, and x4 = t, where r, s, t are real numbers. The solution set of the given system is
therefore {(3s, r, s, t) : r, s, t ∈ R}.
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57. The equation Ax = 0 is ⎡⎣ 2 + i i 3− 2i
i 1− i 4 + 3i

3− i 1 + i 1 + 5i

⎤⎦⎡⎣ x1

x2

x3

⎤⎦ =

⎡⎣ 0
0
0

⎤⎦ .

Reduce the augmented matrix of the system:⎡⎣ 2 + i i 3− 2i 0
i 1− i 4 + 3i 0

3− i 1 + i 1 + 5i 0

⎤⎦ 1
∼

⎡⎣ i 1− i 4 + 3i 0
2 + i i 3− 2i 0
3− i 1 + i 1 + 5i 0

⎤⎦ 2
∼

⎡⎣ 1 −1− i 3− 3i 0
2 + i i 3− 2i 0
3− i 1 + i 1 + 5i 0

⎤⎦
3
∼

⎡⎣ 1 −1− i 3− 4i 0
0 1 + 4i −7 + 3i 0
0 5 + 3i −4 + 20i 0

⎤⎦ 4
∼

⎡⎣ 1 −1− i 3− 4i 0
0 1 5+31i

17 0
0 5 + 3i −4 + 20i 0

⎤⎦ 5
∼

⎡⎣ 1 0 25−32i
17 0

0 1 5+31i
17 0

0 0 10i 0

⎤⎦
6
∼

⎡⎣ 1 0 25−32i
17 0

0 1 5+31i
17 0

0 0 1 0

⎤⎦ 7
∼

⎡⎣ 1 0 0 0
0 1 0 0
0 0 1 0

⎤⎦ .

1. P12 2. M1(−i) 3. A12(−2− i), A13(−3 + i) 4. M2(
1−4i
17 ) 5. A21(1 + i), A23(−5− 3i)

6. M3(−i/10) 7. A31(
−25+32i

17 ), A32(
−5−31i

17 )

From the last augmented matrix above, we see that the only solution to this system is the trivial solution.

Solutions to Section 2.6

True-False Review:

(a): FALSE. An invertible matrix is also known as a nonsingular matrix.

(b): FALSE. For instance, the matrix

[
1 1
2 2

]
does not contain a row of zeros, but fails to be invertible.

(c): TRUE. If A is invertible, then the unique solution to Ax = b is x = A−1b.

(d): FALSE. For instance, if A =

[
1 0 0
0 0 1

]
and B =

⎡⎣ 1 0
0 0
0 1

⎤⎦, then AB = I2, but A is not even a

square matrix, hence certainly not invertible.

(e): FALSE. For instance, if A = In and B = −In, then A and B are both invertible, but A + B = 0n is
not invertible.

(f): TRUE. We have
(AB)B−1A−1 = In and B−1A−1(AB) = In,

and therefore, AB is invertible, with inverse B−1A−1.

(g): TRUE. From A2 = A, we subtract to obtain A(A−I) = 0. Left multiplying both sides of this equation
by A−1 (since A is invertible, A−1 exists), we have A−I = A−10 = 0. Therefore, A = I, the identity matrix.

(h): TRUE. From AB = AC, we left-multiply both sides by A−1 (since A is invertible, A−1 exists) to
obtain A−1AB = A−1AC. Since A−1A = I, we obtain IB = IC, or B = C.
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(i): TRUE. Any 5× 5 invertible matrix must have rank 5, not rank 4 (Theorem 2.6.6).

(j): TRUE. Any 6× 6 matrix of rank 6 is invertible (Theorem 2.6.6).

Problems:

1. We have

AA−1 =

[
4 9
3 7

] [
7 −9

−3 4

]
=

[
(4)(7) + (9)(−3) (4)(−9) + (9)(4)
(3)(7) + (7)(−3) (3)(−9) + (7)(4)

]
=

[
1 0
0 1

]
= I2.

2. We have

AA−1 =

[
2 −1
3 −1

] [ −1 1
−3 2

]
=

[
(2)(−1) + (−1)(−3) (2)(1) + (−1)(2)
(3)(−1) + (−1)(−3) (3)(1) + (−1)(2)

]
=

[
1 0
0 1

]
= I2.

3. We have [
a b
c d

](
1

ad− bc

[
d −b

−c a

])
=

1

ad− bc

[
a b
c d

] [
d −b

−c a

]
=

1

ad− bc

[
ad− bc 0

0 ad− bc

]
=

[
1 0
0 1

]
= I2,

and (
1

ad− bc

[
d −b

−c a

])[
a b
c d

]
=

1

ad− bc

[
d −b

−c a

] [
a b
c d

]
=

1

ad− bc

[
ad− bc 0

0 ad− bc

]
=

[
1 0
0 1

]
= I2.

4. We have

AA−1 =

⎡⎣ 3 5 1
1 2 1
2 6 7

⎤⎦⎡⎣ 8 −29 3
−5 19 −2
2 −8 1

⎤⎦
=

⎡⎣ (3)(8) + (5)(−5) + (1)(2) (3)(−29) + (5)(19) + (1)(−8) (3)(3) + (5)(−2) + (1)(1)
(1)(8) + (2)(−5) + (1)(2) (1)(−29) + (2)(19) + (1)(−8) (1)(3) + (2)(−2) + (1)(1)
(2)(8) + (6)(−5) + (7)(2) (2)(−29) + (6)(19) + (7)(−8) (2)(3) + (6)(−2) + (7)(1)

⎤⎦
=

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ = I3.

5. We have

[A|I2] =
[

1 2 1 0
1 3 0 1

]
1
∼

[
1 2 1 0
0 1 −1 1

]
2
∼

[
1 0 3 −2
0 1 −1 1

]
= [I2|A−1].
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Therefore,

A−1 =

[
3 −2

−1 1

]
.

1. A12(−1) 2. A21(−2)

6. We have

[A|I2] =
[

1 1 + i 1 0
1− i 1 0 1

]
1
∼

[
1 1 + i 1 0
0 −1 −1 + i 1

]
2
∼

[
1 1 + i 1 0
0 1 1− i −1

]
3
∼

[
1 0 −1 1 + i
0 1 1− i −1

]
= [I2|A−1].

Thus,

A−1 =

[ −1 1 + i
1− i −1

]
.

1. A12(−1 + i) 2. M2(−1) 3. A21(−1− i)

7. We have

[A|I2] =
[

1 −i 1 0
i− 1 2 0 1

]
1
∼

[
1 −i 1 0
0 1− i 1− i 1

]
2
∼

[
1 −i 1 0
0 1 1 1+i

2

]
3
∼

[
1 0 1 + i −1+i

2
0 1 1 1+i

2

]
= [I2|A−1].

Thus,

A−1 =

[
1 + i −1+i

2
1 1+i

2

]
.

1. A12(1− i) 2. M2(1/(1− i)) 3. A21(i)

8. Note that AB = 02 for all 2× 2 matrices B. Therefore, A is not invertible.

9. We have

[A|I3] =
⎡⎣ 1 −1 2 1 0 0

2 1 11 0 1 0
4 −3 10 0 0 1

⎤⎦ 1
∼

⎡⎣ 1 −1 2 1 0 0
0 3 7 −2 1 0
0 1 2 −4 0 1

⎤⎦ 2
∼

⎡⎣ 1 −1 2 1 0 0
0 1 2 −4 0 1
0 3 7 −2 1 0

⎤⎦
3
∼

⎡⎣ 1 0 4 −3 0 1
0 1 2 −4 0 1
0 0 1 10 1 −3

⎤⎦ 4
∼

⎡⎣ 1 0 0 −43 −4 13
0 1 0 −24 −2 7
0 0 1 10 1 −3

⎤⎦ = [I3|A−1].

Thus,

A−1 =

⎡⎣ −43 −4 13
−24 −2 7
10 1 −3

⎤⎦ .
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1. A12(−2), A13(−4) 2. P23 3. A21(1), A23(−3) 4. A31(−4), A32(−2)

10. We have

[A|I3] =
⎡⎣ 3 5 1 1 0 0

1 2 1 0 1 0
2 6 7 0 0 1

⎤⎦ 1
∼

⎡⎣ 1 2 1 0 1 0
3 5 1 1 0 0
2 6 7 0 0 1

⎤⎦ 2
∼

⎡⎣ 1 2 1 0 1 0
0 −1 −2 1 −3 0
0 2 5 0 −2 1

⎤⎦
3
∼

⎡⎣ 1 2 1 0 1 0
0 1 2 −1 3 0
0 2 5 0 −2 1

⎤⎦ 4
∼

⎡⎣ 1 0 −3 2 −5 0
0 1 2 −1 3 0
0 0 1 2 −8 1

⎤⎦ 5
∼

⎡⎣ 1 0 0 8 −29 3
0 1 0 −5 19 −2
0 0 1 2 −8 1

⎤⎦ = [I3|A−1].

Thus,

A−1 =

⎡⎣ 8 −29 3
−5 19 −2
2 −8 1

⎤⎦ .

1. P12 2. A12(−3), A13(−2) 3. M2(−1) 4. A21(−2), A23(−2) 5. A31(3), A32(−2)

11. This matrix is not invertible, because the column of zeros guarantees that the rank of the matrix is less
than three.

12. We have

[A|I3] =
⎡⎣ 4 2 −13 1 0 0

2 1 −7 0 1 0
3 2 4 0 0 1

⎤⎦ 1
∼

⎡⎣ 3 2 4 0 0 1
2 1 −7 0 1 0
4 2 −13 1 0 0

⎤⎦ 2
∼

⎡⎣ 1 1 11 0 −1 1
2 1 −7 0 1 0
4 2 −13 1 0 0

⎤⎦
3
∼

⎡⎣ 1 1 11 0 −1 1
0 −1 −29 0 3 −2
0 −2 −57 1 4 −4

⎤⎦ 4
∼

⎡⎣ 1 1 11 0 −1 1
0 1 29 0 −3 2
0 −2 −57 1 4 −4

⎤⎦ 5
∼

⎡⎣ 1 0 −18 0 2 −1
0 1 29 0 −3 2
0 0 1 1 −2 0

⎤⎦
6
∼

⎡⎣ 1 0 18 −34 −1
0 1 0 −29 55 2
0 0 1 1 −2 0

⎤⎦ = [I3|A−1].

Thus,

A−1 =

⎡⎣ 18 −34 −1
−29 55 2

1 −2 0

⎤⎦ .

1. P13 2. A21(−1) 3. A12(−2), A13(−4) 4. M2(−1)

5. A21(−1), A23(2) 6. A31(18), A32(−29)

13. We have

[A|I3] =
⎡⎣ 1 2 −3 1 0 0

2 6 −2 0 1 0
−1 1 4 0 0 1

⎤⎦ 1
∼

⎡⎣ 1 2 −3 1 0 0
0 2 4 −2 1 0
0 3 1 1 0 1

⎤⎦ 2
∼

⎡⎣ 1 2 −3 1 0 0
0 1 2 −1 1

2 0
0 3 1 1 0 1

⎤⎦
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3
∼

⎡⎣ 1 0 −7 3 −1 0
0 1 2 −1 1

2 0
0 0 −5 4 − 3

2 1

⎤⎦ 4
∼

⎡⎣ 1 0 −7 3 −1 0
0 1 2 −1 1

2 0
0 0 1 − 4

5
3
10 − 1

5

⎤⎦
5
∼

⎡⎣ 1 0 0 − 13
5

11
10 − 7

5
0 1 0 3

5 − 1
10

2
5

0 0 1 − 4
5

3
10 − 1

5

⎤⎦ = [I3|A−1].

Thus,

A−1 =

⎡⎣ − 13
5

11
10 − 7

5
3
5 − 1

10
2
5− 4

5
3
10 − 1

5

⎤⎦ .

1. A12(−2), A13(1) 2. M2(
1
2 ) 3. A21(−2), A23(−3) 4. M3(− 1

5 ) 5. A31(7), A32(−2)

14. We have

[A|I3] =
⎡⎣ 1 i 2 1 0 0

1 + i −1 2i 0 1 0
2 2i 5 0 0 1

⎤⎦ 1
∼

⎡⎣ 1 i 2 1 0 0
0 −i −2 −1− i 1 0
0 0 1 −2 0 1

⎤⎦ 2
∼

⎡⎣ 1 i 2 1 0 0
0 1 −2i 1− i i 0
0 0 1 −2 0 1

⎤⎦
3
∼

⎡⎣ 1 0 0 −i 1 0
0 1 −2i 1− i i 0
0 0 1 −2 0 1

⎤⎦ 4
∼

⎡⎣ 1 0 0 −i 1 0
0 1 0 1− 5i i 2i
0 0 1 −2 0 1

⎤⎦ = [I3|A−1].

Thus,

A−1 =

⎡⎣ −i 1 0
1− 5i i 2i
−2 0 1

⎤⎦ .

1. A12(−1− i), A13(−2) 2. M2(i) 3. A21(−i) 4. A32(2i)

15. We have

[A|I3] =
⎡⎣ 2 1 3 1 0 0

1 −1 2 0 1 0
3 3 4 0 0 1

⎤⎦ 1
∼

⎡⎣ 1 −1 2 0 1 0
2 1 3 1 0 0
3 3 4 0 0 1

⎤⎦ 2
∼

⎡⎣ 1 −1 2 0 1 0
0 3 −1 1 −2 0
0 6 −2 0 −3 1

⎤⎦
3
∼

⎡⎣ 1 −1 2 0 1 0
0 3 −1 1 −2 0
0 0 0 −2 1 1

⎤⎦
Since 2 = rank(A) < rank(A#) = 3, we know that A−1 does not exist (we have obtained a row of zeros in
the block matrix on the left.

1. P12 2. A12(−2), A13(−3) 3. A23(−2)

16. We have

[A|I4] =

⎡⎢⎢⎣
1 −1 2 3 1 0 0 0
2 0 3 −4 0 1 0 0
3 −1 7 8 0 0 1 0
1 0 3 5 0 0 0 1

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
1 −1 2 3 1 0 0 0
0 2 −1 −10 −2 1 0 0
0 2 1 −1 −3 0 1 0
0 1 1 2 −1 0 0 1

⎤⎥⎥⎦
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2
∼

⎡⎢⎢⎣
1 −1 2 3 1 0 0 0
0 1 1 2 −1 0 0 1
0 2 1 −1 −3 0 1 0
0 2 −1 −10 −2 1 0 0

⎤⎥⎥⎦ 3
∼

⎡⎢⎢⎣
1 0 3 5 0 0 0 1
0 1 1 2 −1 0 0 1
0 0 −1 −5 −1 0 1 −2
0 0 −3 −14 0 1 0 −2

⎤⎥⎥⎦

4
∼

⎡⎢⎢⎣
1 0 3 5 0 0 0 1
0 1 1 2 −1 0 0 1
0 0 1 5 1 0 −1 2
0 0 −3 −14 0 1 0 −2

⎤⎥⎥⎦ 5
∼

⎡⎢⎢⎣
1 0 0 −10 −3 0 3 −5
0 1 0 −3 −2 0 1 −1
0 0 1 5 1 0 −1 2
0 0 0 1 3 1 −3 4

⎤⎥⎥⎦

6
∼

⎡⎢⎢⎣
1 0 0 0 27 10 −27 35
0 1 0 0 7 3 −8 11
0 0 1 0 −14 −5 14 −18
0 0 0 1 3 1 −3 4

⎤⎥⎥⎦ = [I4|A−1].

Thus,

A−1 =

⎡⎢⎢⎣
27 10 −27 35
7 3 −8 11

−14 −5 14 −18
3 1 −3 4

⎤⎥⎥⎦ .

1. A12(−2), A13(−3), A14(−1) 2. P13 3. A21(1), A23(−2), A24(−2)

4. M3(−1) 5. A31(−3), A32(−1), A34(3) 6. A41(10), A42(3), A43(5)

17. We have

[A|I4] =

⎡⎢⎢⎣
0 −2 −1 −3 1 0 0 0
2 0 2 1 0 1 0 0
1 −2 0 2 0 0 1 0
3 −1 −2 0 0 0 0 1

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
1 −2 0 2 0 0 1 0
2 0 2 1 0 1 0 0
0 −2 −1 −3 1 0 0 0
3 −1 −2 0 0 0 0 1

⎤⎥⎥⎦

2
∼

⎡⎢⎢⎣
1 −2 0 2 0 0 1 0
0 4 2 −3 0 1 −2 0
0 −2 −1 −3 1 0 0 0
0 5 −2 −6 0 0 −3 1

⎤⎥⎥⎦ 3
∼

⎡⎢⎢⎣
1 −2 0 2 0 0 1 0
0 1 1

2 − 3
4 0 1

4 − 1
2 0

0 −2 −1 −3 1 0 0 0
0 5 −2 −6 0 0 −3 1

⎤⎥⎥⎦

4
∼

⎡⎢⎢⎣
1 0 1 1

2 0 1
2 0 0

0 1 1
2 − 3

4 0 1
4 − 1

2 0
0 0 0 − 9

2 1 1
2 −1 0

0 0 − 9
2 − 9

4 0 − 5
4 − 1

2 1

⎤⎥⎥⎦ 5
∼

⎡⎢⎢⎣
1 0 1 1

2 0 1
2 0 0

0 1 1
2 − 3

4 0 1
4 − 1

2 0
0 0 − 9

2 − 9
4 0 − 5

4 − 1
2 1

0 0 0 − 9
2 1 1

2 −1 0

⎤⎥⎥⎦

6
∼

⎡⎢⎢⎣
1 0 1 1

2 0 1
2 0 0

0 1 1
2 − 3

4 0 1
4 − 1

2 0
0 0 1 1

2 0 5
18

1
9 − 2

9
0 0 0 − 9

2 1 1
2 −1 0

⎤⎥⎥⎦ 7
∼

⎡⎢⎢⎣
1 0 0 0 0 2

9 − 1
9

2
9

0 1 0 −1 0 1
9 − 5

9
1
9

0 0 1 1
2 0 5

18
1
9 − 2

9
0 0 0 − 9

2 1 1
2 −1 0

⎤⎥⎥⎦

8
∼

⎡⎢⎢⎣
1 0 0 0 0 2

9 − 1
9

2
9

0 1 0 −1 0 1
9 − 5

9
1
9

0 0 1 1
2 0 5

18
1
9 − 2

9
0 0 0 1 − 2

9 − 1
9

2
9 0

⎤⎥⎥⎦ 9
∼

⎡⎢⎢⎣
1 0 0 0 0 2

9 − 1
9

2
9

0 1 0 0 − 2
9 0 − 1

3
1
9

0 0 1 0 1
9

1
3 0 − 2

9
0 0 0 1 − 2

9 − 1
9

2
9 0

⎤⎥⎥⎦ = [I4|A−1].
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Thus,

A−1 =

⎡⎢⎢⎣
0 2

9 − 1
9

2
9− 2

9 0 − 1
3

1
9

1
9

1
3 0 − 2

9− 2
9 − 1

9
2
9 0

⎤⎥⎥⎦ .

1. P13 2. A12(−2), A14(−3) 3. M2(
1
4 ) 4. A21(2), A23(2), A24(−5)

5. P34 6. M3(− 2
9 ) 7. A31(−1), A32(− 1

2 ) 8. M4(− 2
9 ) 9. A42(1), A43(− 1

2 )

18. We have

=

⎡⎢⎢⎣
1 2 0 0 1 0 0 0
3 4 0 0 0 1 0 0
0 0 5 6 0 0 1 0
0 0 7 8 0 0 0 1

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
1 2 0 0 1 0 0 0
0 −2 0 0 −3 1 0 0
0 0 1 6

5 0 0 1
5 0

0 0 7 8 0 0 0 1

⎤⎥⎥⎦
2
∼

⎡⎢⎢⎣
1 2 0 0 1 0 0 0
0 −2 0 0 −3 1 0 0
0 0 1 6

5 0 0 1
5 0

0 0 0 − 2
5 0 0 − 7

5 1

⎤⎥⎥⎦ 3
∼

⎡⎢⎢⎣
1 0 0 0 −2 1 0 0
0 −2 0 0 −3 1 0 0
0 0 1 0 0 0 −4 3
0 0 0 − 2

5 0 0 − 7
5 1

⎤⎥⎥⎦
4
∼

⎡⎢⎢⎣
1 0 0 0 −2 1 0 0
0 1 0 0 3

2 − 1
2 0 0

0 0 1 0 0 0 −4 −3
0 0 0 1 0 0 7

2 − 5
2

⎤⎥⎥⎦ = [I4|A−1].

Thus,

A−1 =

⎡⎢⎢⎣
−2 1 0 0

3
2 − 1

2 0 0
0 0 −4 3
0 0 7

2 − 5
2

⎤⎥⎥⎦ .

1. A12(−3), M3(
1
5 ) 2. A34(−7) 3. A21(1), A13(3) 4. M2(− 1

2 ), M4(− 5
2 )

19. To determine the third column vector of A−1 without determining the whole inverse, we solve the

system

⎡⎣ −1 −2 3
−1 1 1
−1 −2 −1

⎤⎦⎡⎣ x
y
z

⎤⎦ =

⎡⎣ 0
0
1

⎤⎦. The corresponding augmented matrix

⎡⎣ −1 −2 3 0
−1 1 1 0
−1 −2 −1 1

⎤⎦
can be row-reduced to

⎡⎣ 1 2 −3 0
0 1 − 2

3 0
0 0 1 − 1

4

⎤⎦. Thus, back substitution yields z = − 1
4 , y = − 1

6 , and x = − 5
12 .

Thus, the third column vector of A−1 is

⎡⎣ −5/12
−1/6
−1/4

⎤⎦.
20. To determine the second column vector of A−1 without determining the whole inverse, we solve the

linear system

⎡⎣ 2 −1 4
5 1 2
1 −1 3

⎤⎦⎡⎣ x
y
z

⎤⎦ =

⎡⎣ 0
1
0

⎤⎦. The corresponding augmented matrix

⎡⎣ 2 −1 4 0
5 1 2 1
1 −1 3 0

⎤⎦ can
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be row-reduced to

⎡⎣ 1 −1 3 0
0 1 −2 0
0 0 1 −1

⎤⎦. Thus, back-substitution yields z = −1, y = −2, and x = 1. Thus,

the second column vector of A−1 is

⎡⎣ 1
−2
−1

⎤⎦.
21. We have A =

[
6 20
2 7

]
, b =

[ −8
2

]
, and the Gauss-Jordan method yields A−1 =

[
7
2 −10

−1 3

]
.

Therefore, we have

x = A−1b =

[
7
2 −10

−1 3

] [ −8
2

]
=

[ −48
14

]
.

Hence, we have x1 = −48 and x2 = 14.

22. We have A =

[
1 3
2 5

]
, b =

[
1
3

]
, and the Gauss-Jordan method yields A−1 =

[ −5 3
2 −1

]
.

Therefore, we have

x = A−1b =

[ −5 3
2 −1

] [
1
3

]
=

[
4

−1

]
.

So we have x1 = 4 and x2 = −1.

23. We haveA =

⎡⎣ 1 1 −2
0 1 1
2 4 −3

⎤⎦, b =

⎡⎣ −2
3
1

⎤⎦, and the Gauss-Jordan method yieldsA−1 =

⎡⎣ 7 5 −3
−2 −1 1
2 2 −1

⎤⎦.
Therefore, we have

x = A−1b =

⎡⎣ 7 5 −3
−2 −1 1
2 2 −1

⎤⎦⎡⎣ −2
3
1

⎤⎦ =

⎡⎣ −2
2
1

⎤⎦ .

Hence, we have x1 = −2, x2 = 2, and x3 = 1.

24. We haveA =

[
1 −2i

2− i 4i

]
, b =

[
2

−i

]
, and the Gauss-Jordan method yieldsA−1 = 1

2+8i

[
4i 2i

−2 + i 1

]
.

Therefore, we have

x = A−1b =
1

2 + 8i

[
4i 2i

−2 + i 1

] [
2

−i

]
=

1

2 + 8i

[
2 + 8i
−4 + i

]
.

Hence, we have x1 = 1 and x2 = −4+i
2+8i .

25. We haveA =

⎡⎣ 3 4 5
2 10 1
4 1 8

⎤⎦, b =

⎡⎣ 1
1
1

⎤⎦, and the Gauss-Jordan method yieldsA−1 =

⎡⎣ −79 27 46
12 −4 −7
38 −13 −22

⎤⎦.
Therefore, we have

x = A−1b =

⎡⎣ −79 27 46
12 −4 −7
38 −13 −22

⎤⎦⎡⎣ 1
1
1

⎤⎦ =

⎡⎣ −6
1
3

⎤⎦ .

Hence, we have x1 = −6, x2 = 1, and x3 = 3.
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26. We haveA =

⎡⎣ 1 1 2
1 2 −1
2 −1 1

⎤⎦, b =

⎡⎣ 12
24

−36

⎤⎦, and the Gauss-Jordan method yieldsA−1 = 1
12

⎡⎣ −1 3 5
3 3 −3
5 −3 −1

⎤⎦.
Therefore, we have

x = A−1b =
1

12

⎡⎣ −1 3 5
3 3 −3
5 −3 −1

⎤⎦⎡⎣ 12
24

−36

⎤⎦ =

⎡⎣ −10
18
2

⎤⎦ .

Hence, x1 = −10, x2 = 18, and x3 = 2.

27. We have

AAT =

[
0 1

−1 0

] [
0 −1
1 0

]
=

[
(0)(0) + (1)(1) (0)(−1) + (1)(0)
(−1)(0) + (0)(1) (−1)(−1) + (0)(0)

]
=

[
1 0
0 1

]
= I2,

so AT = A−1.

28. We have

AAT =

[ √
3/2 1/2

−1/2
√
3/2

] [ √
3/2 −1/2

1/2
√
3/2

]
=

[
(
√
3/2)(

√
3/2) + (1/2)(1/2) (

√
3/2)(−1/2) + (1/2)(

√
3/2)

(−1/2)(
√
3/2) + (

√
3/2)(1/2) (−1/2)(−1/2) + (

√
3/2)(

√
3/2)

]
=

[
1 0
0 1

]
= I2,

so AT = A−1.

29. We have

AAT =

[
cosα sinα
− sinα cosα

] [
cosα − sinα
sinα cosα

]
=

[
cos2 α+ sin2 α (cosα)(− sinα) + (sinα)(cosα)

(− sinα)(cosα) + (cosα)(sinα) (− sinα)2 + cos2 α

]
=

[
1 0
0 1

]
= I2,

so AT = A−1.

30. We have

AAT =

(
1

1 + 2x2

)⎡⎣ 1 −2x 2x2

2x 1− 2x2 −2x
2x2 2x 1

⎤⎦( 1

1 + 2x2

)⎡⎣ 1 2x 2x2

−2x 1− 2x2 2x
2x2 −2x 1

⎤⎦
=

(
1

1 + 4x2 + 4x4

)⎡⎣ 1 + 4x2 + 4x4 0 0
0 1 + 4x2 + 4x4 0
0 0 1 + 4x2 + 4x4

⎤⎦ = I3,

so AT = A−1.

31. For part 2, we have

(B−1A−1)(AB) = B−1(A−1A)B = B−1InB = B−1B = In,

and for part 3, we have

(A−1)TAT = (AA−1)T = ITn = In.
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32. We prove this by induction on k, with k = 1 trivial and k = 2 proven in part 2 of Theorem 2.6.10.
Assuming the statement is true for a product involving k − 1 matrices, we may proceed as follows:

(A1A2 · · ·Ak)
−1 = ((A1A2 · · ·Ak−1)Ak)

−1 = A−1
k (A1A2 · · ·Ak−1)

−1

= A−1
k (A−1

k−1 · · ·A−1
2 A−1

1 ) = A−1
k A−1

k−1 · · ·A−1
2 A−1

1 .

In the second equality, we have applied part 2 of Theorem 2.6.10 to the two matrices A1A2 · · ·Ak−1 and Ak,
and in the third equality, we have assumed that the desired property is true for products of k − 1 matrices.

33. Since A is skew-symmetric, we know that AT = −A. We wish to show that (A−1)T = −A−1. We have

(A−1)T = (AT )−1 = (−A)−1 = −(A−1),

which shows that A−1 is skew-symmetric. The first equality follows from part 3 of Theorem 2.6.10, and the
second equality results from the assumption that A−1 is skew-symmetric.

34. Since A is symmetric, we know that AT = A. We wish to show that (A−1)T = A−1. We have

(A−1)T = (AT )−1 = A−1,

which shows that A−1 is symmetric. The first equality follows from part 3 of Theorem 2.6.10, and the second
equality results from the assumption that A is symmetric.

35. We have

(In −A3)(In +A3 +A6 +A9) = In(In +A3 +A6 +A9)−A3(In +A3 +A6 +A9)

= In +A3 +A6 +A9 −A3 −A6 −A9 −A12 = In −A12 = In,

where the last equality uses the assumption that A12 = 0. This calculation shows that In − A3 and In +
A3 +A6 +A9 are inverses of one another.

36. We have

(In −A)(In +A+A2 +A3) = In(In +A+A2 +A3)−A(In +A+A2 +A3)

= In +A+A2 +A3 −A−A2 −A3 −A4 = In −A4 = In,

where the last equality uses the assumption that A4 = 0. This calculation shows that In −A and In +A+
A2 +A3 are inverses of one another.

37. We claim that the inverse of A15 is B9. To verify this, use the fact that A5B3 = I to observe that

A15B9 = A5(A5(A5B3)B3)B3 = A5(A5IB3)B3 = A5(A5B3)B3 = A5IB3 = A5B3 = I.

This calculation shows that the inverse of A15 is B9.

38. We claim that the inverse of A9 is B−3. To verify this, use the fact that A3B−1 = I to observe that

A9B−3 = A3(A3(A3B−1)B−1)B−1 = A3(A3IB−1)B−1 = A3(A3B−1)B−1 = A3IB−1 = A3B−1 = I.

This calculation shows that the inverse of A9 is B−3.

39. We have
B = BIn = B(AC) = (BA)C = InC = C.

40. YES. Since BA = In, we know that A−1 = B (see Theorem 2.6.12). Likewise, since CA = In, A
−1 = C.

Since the inverse of A is unique, it must follow that B = C.

(c)2017 Pearson Education. Inc.



178

41. We can simply compute

1

Δ

[
a22 −a12

−a21 a11

] [
a11 a12
a21 a22

]
=

1

Δ

[
a22a11 − a12a21 a22a12 − a12a22
−a21a11 + a11a21 −a21a12 + a11a22

]
=

1

Δ

[
a11a22 − a12a21 0

0 a11a22 − a12a21

]
=

[
1 0
0 1

]
= I2.

Therefore, [
a11 a12
a21 a22

]−1

=
1

Δ

[
a22 −a12

−a21 a11

]
.

42. Assume that A is an invertible matrix and that Axi = bi for i = 1, 2, . . . , p (where each bi is given).
Use elementary row operations on the augmented matrix of the system to obtain the equivalence

[A|b1 b2 b3 . . . bp] ∼ [In|c1 c2 c3 . . . cp].

The solutions to the system can be read from the last matrix: xi = ci for each i = 1, 2, . . . , p.

43. We have ⎡⎣ 1 −1 1 1 −1 2
2 −1 4 1 2 3
1 1 6 −1 5 2

⎤⎦ 1
∼

⎡⎣ 1 −1 1 1 −1 2
0 1 2 −1 4 −1
0 2 5 −2 6 0

⎤⎦
2
∼

⎡⎣ 1 0 3 0 3 1
0 1 2 −1 4 −1
0 0 1 0 −2 2

⎤⎦ 3
∼

⎡⎣ 1 0 0 0 9 −5
0 1 0 −1 8 −5
0 0 1 0 −2 2

⎤⎦ .

Hence,
x1 = (0,−1, 0), x2 = (9, 8,−2), x3 = (−5,−5, 2).

1. A12(−2), A13(−1) 2. A21(1), A23(−2) 3. A31(−3), A32(−2)

44.

(a). Let ei denote the ith column vector of the identity matrix Im, and consider the m linear systems of
equations

Axi = ei

for i = 1, 2, . . . ,m. Since rank(A) = m and each ei is a column m-vector, it follows that

rank(A#) = m = rank(A)

and so each of the systems Axi = ei above has a solution (Note that if m < n, then there will be an infinite
number of solutions). If we let B = [x1,x2, . . . ,xm], then

AB = A [x1,x2, . . . ,xm] = [Ax1, Ax2, . . . , Axm] = [e1, e2, . . . , em] = In.

(b). A right inverse for A in this case is a 3× 2 matrix

⎡⎣ a d
b e
c f

⎤⎦ such that

[
a+ 3b+ c d+ 3e+ f
2a+ 7b+ 4c 2d+ 7e+ 4f

]
=

[
1 0
0 1

]
.
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Thus, we must have

a+ 3b+ c = 1, d+ 3e+ f = 0, 2a+ 7b+ 4c = 0, 2d+ 7e+ 4f = 1.

The first and third equation comprise a linear system with augmented matrix

[
1 3 1 1
2 7 4 0

]
for a, b, and

c. The row-echelon form of this augmented matrix is

[
1 3 1 1
0 1 2 −2

]
. Setting c = t, we have b = −2− 2t

and a = 7+5t. Next, the second and fourth equation above comprise a linear system with augmented matrix[
1 3 1 0
2 7 4 1

]
for d, e, and f . The row-echelon form of this augmented matrix is

[
1 3 1 0
0 1 2 1

]
. Setting

f = s, we have e = 1− 2s and d = −3 + 5s. Thus, right inverses of A are precisely the matrices of the form⎡⎣ 7 + 5t −3 + 5s
−2− 2t 1− 2s

t s

⎤⎦.
Solutions to Section 2.7

True-False Review:

(a): TRUE. Since every elementary matrix corresponds to a (reversible) elementary row operation, the
reverse elementary row operation will correspond to an elementary matrix that is the inverse of the original
elementary matrix.

(b): FALSE. For instance, the matrices

[
2 0
0 1

]
and

[
1 0
0 2

]
are both elementary matrices, but their

product,

[
2 0
0 2

]
, is not.

(c): FALSE. Every invertible matrix can be expressed as a product of elementary matrices. Since every
elementary matrix is invertible and products of invertible matrices are invertible, any product of elementary
matrices must be an invertible matrix.

(d): TRUE. Performing an elementary row operation on a matrix does not alter its rank, and the matrix
EA is obtained from A by performing the elementary row operation associated with the elementary matrix
E. Therefore, A and EA have the same rank.

(e): FALSE. If Pij is a permutation matrix, then P 2
ij = In, since permuting the ith and jth rows of In

twice yields In. Alternatively, we can observe that P 2
ij = In from the fact that P−1

ij = Pij .

(f): FALSE. For example, consider the elementary matrices E1 =

[
1 0
0 7

]
and E2 =

[
1 1
0 1

]
. Then we

have E1E2 =

[
1 1
0 7

]
and E2E1 =

[
1 7
0 7

]
.

(g): FALSE. For example, consider the elementary matrices E1 =

⎡⎣ 1 3 0
0 1 0
0 0 1

⎤⎦ and E2 =

⎡⎣ 1 0 0
0 1 2
0 0 1

⎤⎦.
Then we have E1E2 =

⎡⎣ 1 3 6
0 1 2
0 0 1

⎤⎦ and E2E1 =

⎡⎣ 1 3 0
0 1 2
0 0 1

⎤⎦.
(h): FALSE. The only matrices we perform an LU factorization for are invertible matrices for which the
reduction to upper triangular form can be accomplished without permuting rows.

(c)2017 Pearson Education. Inc.



180

(i): FALSE. The matrix U need not be a unit upper triangular matrix.

(j): FALSE. As can be seen in Example 2.7.8, a 4× 4 matrix with LU factorization will have 6 multipliers,
not 10 multipliers.

Problems:

1.

Permutation Matrices: P12 =

⎡⎣ 0 1 0
1 0 0
0 0 1

⎤⎦ , P13 =

⎡⎣ 0 0 1
0 1 0
1 0 0

⎤⎦ , P23 =

⎡⎣ 1 0 0
0 0 1
0 1 0

⎤⎦ .

Scaling Matrices: M1(k) =

⎡⎣ k 0 0
0 1 0
0 0 1

⎤⎦ , M2(k) =

⎡⎣ 1 0 0
0 k 0
0 0 1

⎤⎦ , M3(k) =

⎡⎣ 1 0 0
0 1 0
0 0 k

⎤⎦.
Row Combinations:

A12(k) =

⎡⎣ 1 0 0
k 1 0
0 0 1

⎤⎦ , A13(k) =

⎡⎣ 1 0 0
0 1 0
k 0 1

⎤⎦ , A23(k) =

⎡⎣ 1 0 0
0 1 0
0 k 1

⎤⎦ ,

A21(k) =

⎡⎣ 1 k 0
0 1 0
0 0 1

⎤⎦ , A31(k) =

⎡⎣ 1 0 k
0 1 0
0 0 1

⎤⎦ , A32(k) =

⎡⎣ 1 0 0
0 1 k
0 0 1

⎤⎦ .

2. We have⎡⎣ −4 −1
0 3

−3 7

⎤⎦ 1
∼

⎡⎣ −1 −8
0 3

−3 7

⎤⎦ 2
∼

⎡⎣ 1 8
0 3

−3 7

⎤⎦ 3
∼

⎡⎣ 1 8
0 3
0 31

⎤⎦ 4
∼

⎡⎣ 1 8
0 1
0 31

⎤⎦ 5
∼

⎡⎣ 1 8
0 1
0 0

⎤⎦ .

1. A31(−1) 2. M1(−1) 3. A13(3) 4. M2(
1
3 ) 5. A23(−31)

Elementary Matrices: A23(31), M2(
1
3 ), A13(3), M1(−1), A31(−1).

3. We have [
3 5
1 −2

]
1
∼

[
1 −2
3 5

]
2
∼

[
1 −2
0 11

]
3
∼

[
1 −2
0 1

]
.

1. P12 2. A12(−3) 3. M2(
1
11 )

Elementary Matrices: M2(
1
11 ), A12(−3), P12.

4. We have [
5 8 2
1 3 −1

]
1
∼

[
1 3 −1
5 8 2

]
2
∼

[
1 3 −1
0 −7 7

]
3
∼

[
1 3 −1
0 1 −1

]
.

1. P12 2. A12(−5) 3. M2(− 1
7 )

Elementary Matrices: M2(− 1
7 ), A12(−5), P12.

5. We have⎡⎣ 3 −1 4
2 1 3
1 3 2

⎤⎦ 1
∼

⎡⎣ 1 3 2
2 1 3
3 −1 4

⎤⎦ 2
∼

⎡⎣ 1 3 2
0 −5 −1
0 −10 −2

⎤⎦ 3
∼

⎡⎣ 1 3 2
0 −5 −1
0 0 0

⎤⎦ 4
∼

⎡⎣ 1 3 2
0 1 1

5
0 0 0

⎤⎦ .
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1. P13 2. A12(−2), A13(−3) 3. A23(−2) 4. M2(− 1
5 )

Elementary Matrices: M2(− 1
5 ), A23(−2), A13(−3), A12(−2), P13.

6. We have⎡⎣ 1 2 3 4
2 3 4 5
3 4 5 6

⎤⎦ 1
∼

⎡⎣ 1 2 3 4
0 −1 −2 −3
0 −2 −4 −6

⎤⎦ 2
∼

⎡⎣ 1 2 3 4
0 1 2 3
0 −2 −4 −6

⎤⎦ 3
∼

⎡⎣ 1 2 3 4
0 1 2 3
0 0 0 0

⎤⎦ .

1. A12(−2), A13(−3) 2. M2(−1) 3. A23(2)

Elementary Matrices: A23(2), M2(−1), A13(−3), A12(−2).

7. We reduce A to the identity matrix:[
1 2
1 3

]
1
∼

[
1 2
0 1

]
2
∼

[
1 0
0 1

]
.

1. A12(−1) 2. A21(−2)

The elementary matrices corresponding to these row operations are E1 =

[
1 0

−1 1

]
and E2 =

[
1 −2
0 1

]
.

We have E2E1A = I2, so that

A = E−1
1 E−1

2 =

[
1 0
1 1

] [
1 2
0 1

]
,

which is the desired expression since E−1
1 and E−1

2 are elementary matrices.

8. We reduce A to the identity matrix:[ −2 −3
5 7

]
1
∼

[ −2 −3
1 1

]
2
∼

[
1 1

−2 −3

]
3
∼

[
1 1
0 −1

]
4
∼

[
1 0
0 −1

]
5
∼

[
1 0
0 1

]
.

1. A12(2) 2. P12 3. A12(2) 4. A21(1) 5. M2(−1)

The elementary matrices corresponding to these row operations are

E1 =

[
1 0
2 1

]
, E2 =

[
0 1
1 0

]
, E3 =

[
1 0
2 1

]
, E4 =

[
1 1
0 1

]
, E5 =

[
1 0
0 −1

]
.

We have E5E4E3E2E1A = I2, so

A = E−1
1 E−1

2 E−1
3 E−1

4 E−1
5 =

[
1 0

−2 1

] [
0 1
1 0

] [
1 0

−2 1

] [
1 −1
0 1

] [
1 0
0 −1

]
,

which is the desired expression since each E−1
i is an elementary matrix.

9. We reduce A to the identity matrix:[
3 −4

−1 2

]
1
∼

[ −1 2
3 −4

]
2
∼

[
1 −2
3 −4

]
3
∼

[
1 −2
0 2

]
4
∼

[
1 −2
0 1

]
5
∼

[
1 0
0 1

]
.
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1. P12 2. M1(−1) 3. A12(−3) 4. M2(
1
2 ) 5. A21(2)

The elementary matrices corresponding to these row operations are

E1 =

[
0 1
1 0

]
, E2 =

[ −1 0
0 1

]
, E3 =

[
1 0

−3 1

]
, E4 =

[
1 0
0 1

2

]
, E5 =

[
1 2
0 1

]
.

We have E5E4E3E2E1A = I2, so

A = E−1
1 E−1

2 E−1
3 E−1

4 E−1
5 =

[
0 1
1 0

] [ −1 0
0 1

] [
1 0
3 1

] [
1 0
0 2

] [
1 −2
0 1

]
,

which is the desired expression since each E−1
i is an elementary matrix.

10. We reduce A to the identity matrix:[
4 −5
1 4

]
1
∼

[
1 4
4 −5

]
2
∼

[
1 4
0 −21

]
3
∼

[
1 4
0 1

]
4
∼

[
1 0
0 1

]
.

1. P12 2. A12(−4) 3. M2(− 1
21 ) 4. A21(−4)

The elementary matrices corresponding to these row operations are

E1 =

[
0 1
1 0

]
, E2 =

[
1 0

−4 1

]
, E3 =

[
1 0
0 − 1

21

]
, E4 =

[
1 −4
0 1

]
.

We have E4E3E2E1A = I2, so

A = E−1
1 E−1

2 E−1
3 E−1

4 =

[
0 1
1 0

] [
1 0
4 1

] [
1 0
0 −21

] [
1 4
0 1

]
,

which is the desired expression since each E−1
i is an elementary matrix.

11. We reduce A to the identity matrix:⎡⎣ 1 −1 0
2 2 2
3 1 3

⎤⎦ 1
∼

⎡⎣ 1 −1 0
0 4 2
3 1 3

⎤⎦ 2
∼

⎡⎣ 1 −1 0
0 4 2
0 4 3

⎤⎦ 3
∼

⎡⎣ 1 −1 0
0 4 2
0 0 1

⎤⎦
4
∼

⎡⎣ 1 −1 0
0 1 1

2
0 0 1

⎤⎦ 5
∼

⎡⎣ 1 −1 0
0 1 0
0 0 1

⎤⎦ 6
∼

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ .

1. A12(−2) 2. A13(−3) 3. A23(−1) 4. M2(
1
4 ) 5. A32(− 1

2 ) 6. A21(1)

The elementary matrices corresponding to these row operations are

E1 =

⎡⎣ 1 0 0
−2 1 0
0 0 1

⎤⎦ , E2 =

⎡⎣ 1 0 0
0 1 0

−3 0 1

⎤⎦ , E3 =

⎡⎣ 1 0 0
0 1 0
0 −1 1

⎤⎦ ,

E4 =

⎡⎣ 1 0 0
0 1

4 0
0 0 1

⎤⎦ , E5 =

⎡⎣ 1 0 0
0 1 − 1

2
0 0 1

⎤⎦ , E6 =

⎡⎣ 1 1 0
0 1 0
0 0 1

⎤⎦ .
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We have E6E5E4E3E2E1A = I3, so

A = E−1
1 E−1

2 E−1
3 E−1

4 E−1
5 E−1

6

=

⎡⎣ 1 0 0
2 1 0
0 0 1

⎤⎦⎡⎣ 1 0 0
0 1 0
3 0 1

⎤⎦⎡⎣ 1 0 0
0 1 0
0 1 1

⎤⎦⎡⎣ 1 0 0
0 4 0
0 0 1

⎤⎦⎡⎣ 1 0 0
0 1 1

2
0 0 1

⎤⎦⎡⎣ 1 −1 0
0 1 0
0 0 1

⎤⎦ ,

which is the desired expression since each E−1
i is an elementary matrix.

12. We reduce A to the identity matrix:⎡⎣ 0 −4 −2
1 −1 3

−2 2 2

⎤⎦ 1
∼

⎡⎣ 1 −1 3
0 −4 −2

−2 2 2

⎤⎦ 2
∼

⎡⎣ 1 −1 3
0 −4 −2
0 0 8

⎤⎦ 3
∼

⎡⎣ 1 −1 3
0 −4 −2
0 0 1

⎤⎦
4
∼

⎡⎣ 1 −1 3
0 −4 0
0 0 1

⎤⎦ 5
∼

⎡⎣ 1 −1 0
0 −4 0
0 0 1

⎤⎦ 6
∼

⎡⎣ 1 −1 0
0 1 0
0 0 1

⎤⎦ 7
∼

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ .

1. P12 2. A13(2) 3. M3(
1
8 ) 4. A32(2) 5. A31(−3) 6. M2(− 1

4 ) 7. A21(1)

The elementary matrices corresponding to these row operations are

E1 =

⎡⎣ 0 1 0
1 0 0
0 0 1

⎤⎦ , E2 =

⎡⎣ 1 0 0
0 1 0
2 0 1

⎤⎦ , E3 =

⎡⎣ 1 0 0
0 1 0
0 0 1

8

⎤⎦ , E4 =

⎡⎣ 1 0 0
0 1 2
0 0 1

⎤⎦ ,

E5 =

⎡⎣ 1 0 −3
0 1 0
0 0 1

⎤⎦ , E6 =

⎡⎣ 1 0 0
0 − 1

4 0
0 0 1

⎤⎦ , E7 =

⎡⎣ 1 1 0
0 1 0
0 0 1

⎤⎦ .

We have E7E6E5E4E3E2E1A = I3, so

A = E−1
1 E−1

2 E−1
3 E−1

4 E−1
5 E−1

6 E−1
7

=

⎡⎣ 0 1 0
1 0 0
0 0 1

⎤⎦⎡⎣ 1 0 0
0 1 0

−2 0 1

⎤⎦⎡⎣ 1 0 0
0 1 0
0 0 8

⎤⎦⎡⎣ 1 0 0
0 1 −2
0 0 1

⎤⎦⎡⎣ 1 0 3
0 1 0
0 0 1

⎤⎦⎡⎣ 1 0 0
0 −4 0
0 0 1

⎤⎦⎡⎣ 1 −1 0
0 1 0
0 0 1

⎤⎦ ,

which is the desired expression since each E−1
i is an elementary matrix.

13. We reduce A to the identity matrix:⎡⎣ 1 2 3
0 8 0
3 4 5

⎤⎦ 1
∼

⎡⎣ 1 2 3
0 1 0
3 4 5

⎤⎦ 2
∼

⎡⎣ 1 2 3
0 1 0
0 −2 −4

⎤⎦ 3
∼

⎡⎣ 1 0 3
0 1 0
0 −2 −4

⎤⎦
4
∼

⎡⎣ 1 0 3
0 1 0
0 0 −4

⎤⎦ 5
∼

⎡⎣ 1 0 3
0 1 0
0 0 1

⎤⎦ 6
∼

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ .

1. M2(
1
8 ) 2. A13(−3) 3. A21(−2) 4. A23(2) 5. M3(− 1

4 ) 6. A31(−3)
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The elementary matrices corresponding to these row operations are

E1 =

⎡⎣ 1 0 0
0 1

8 0
0 0 1

⎤⎦ , E2 =

⎡⎣ 1 0 0
0 1 0

−3 0 1

⎤⎦ , E3 =

⎡⎣ 1 −2 0
0 1 0
0 0 1

⎤⎦ ,

E4 =

⎡⎣ 1 0 0
0 1 0
0 2 1

⎤⎦ , E5 =

⎡⎣ 1 0 0
0 1 0
0 0 − 1

4

⎤⎦ , E6 =

⎡⎣ 1 0 −3
0 1 0
0 0 1

⎤⎦ .

We have E6E5E4E3E2E1A = I3, so

A = E−1
1 E−1

2 E−1
3 E−1

4 E−1
5 E−1

6

=

⎡⎣ 1 0 0
0 8 0
0 0 1

⎤⎦⎡⎣ 1 0 0
0 1 0
3 0 1

⎤⎦⎡⎣ 1 2 0
0 1 0
0 0 1

⎤⎦⎡⎣ 1 0 0
0 1 0
0 −2 1

⎤⎦⎡⎣ 1 0 0
0 1 0
0 0 −4

⎤⎦⎡⎣ 1 0 3
0 1 0
0 0 1

⎤⎦ ,

which is the desired expression since each E−1
i is an elementary matrix.

14. We reduce A to the identity matrix:[
2 −1
1 3

]
1
∼

[
1 3
2 −1

]
2
∼

[
1 3
0 −7

]
3
∼

[
1 3
0 1

]
4
∼

[
1 0
0 1

]
.

1. P12 2. A12(−2) 3. M2(− 1
7 ) 4. A21(−3)

The elementary matrices corresponding to these row operations are

E1 =

[
0 1
1 0

]
, E2 =

[
1 0

−2 1

]
, E3 =

[
1 0
0 − 1

7

]
, E4 =

[
1 −3
0 1

]
.

Direct multiplication verifies that E4E3E2E1A = I2.

15. We have [
3 −2

−1 5

]
1
∼

[
3 −2
0 13

3

]
= U.

1. A12(
1
3 )

Hence, E1 = A12(
1
3 ). Then Equation (2.7.3) reads L = E−1

1 = A12(− 1
3 ) =

[
1 0

− 1
3 1

]
. Verifying Equation

(2.7.2):

LU =

[
1 0

− 1
3 1

] [
3 −2
0 13

3

]
=

[
3 −2

−1 5

]
= A.

16. We have [
2 3
5 1

]
1
∼

[
2 3
0 − 13

2

]
= U =⇒ m21 =

5

2
=⇒ L =

[
1 0
5
2 1

]
.

Then

LU =

[
1 0
5
2 1

] [
2 3
0 − 13

2

]
=

[
2 3
5 1

]
= A.
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1. A12(− 5
2 )

17. We have [
3 1
5 2

]
1
∼

[
3 1
0 1

3

]
= U =⇒ m21 =

5

3
=⇒ L =

[
1 0
5
3 1

]
.

Then

LU =

[
1 0
5
3 1

] [
3 1
0 1

3

]
=

[
3 1
5 2

]
= A.

1. A12(− 5
3 )

18. We have⎡⎣ 3 −1 2
6 −1 1

−3 5 2

⎤⎦ 1
∼

⎡⎣ 3 −1 2
0 1 −3
0 4 4

⎤⎦ 2
∼

⎡⎣ 3 −1 2
0 1 −3
0 0 16

⎤⎦ = U =⇒ m21 = 2,m31 = −1,m32 = 4.

Hence,

L =

⎡⎣ 1 0 0
2 1 0

−1 4 1

⎤⎦ and LU =

⎡⎣ 1 0 0
2 1 0

−1 4 1

⎤⎦⎡⎣ 3 −1 2
0 1 −3
0 0 16

⎤⎦ =

⎡⎣ 3 −1 2
6 −1 1

−3 5 2

⎤⎦ = A.

1. A12(−2), A13(1) 2. A23(−4)

19. We have⎡⎣ 5 2 1
−10 −2 3
15 2 −3

⎤⎦ 1
∼

⎡⎣ 5 2 1
0 2 5
0 −4 −6

⎤⎦ 2
∼

⎡⎣ 5 2 1
0 2 5
0 0 4

⎤⎦ = U =⇒ m21 = −2,m31 = 3,m32 = −2.

Hence,

L =

⎡⎣ 1 0 0
−2 1 0
3 −2 1

⎤⎦ and LU =

⎡⎣ 1 0 0
−2 1 0
3 −2 1

⎤⎦⎡⎣ 5 2 1
0 2 5
0 0 4

⎤⎦ =

⎡⎣ 5 2 1
−10 −2 3
15 2 −3

⎤⎦ = A.

1. A12(2), A13(−3) 2. A23(2)

20. We have⎡⎢⎢⎣
1 −1 2 3
2 0 3 −4
3 −1 7 8
1 3 4 5

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
1 −1 2 3
0 2 −1 −10
0 2 1 −1
0 4 2 2

⎤⎥⎥⎦ 2
∼

⎡⎢⎢⎣
1 −1 2 3
0 2 −1 −10
0 0 2 9
0 0 4 22

⎤⎥⎥⎦ 3
∼

⎡⎢⎢⎣
1 −1 2 3
0 2 −1 −10
0 0 2 9
0 0 0 4

⎤⎥⎥⎦ = U.

1. A12(−2), A13(−3), A14(−1) 2. A23(−1), A24(−2) 3. A34(−2)
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Hence,

m21 = 2, m31 = 3,m41 = 1,m32 = 1,m42 = 2,m43 = 2.

Hence,

L =

⎡⎢⎢⎣
1 0 0 0
2 1 0 0
3 1 1 0
1 2 2 1

⎤⎥⎥⎦ and LU =

⎡⎢⎢⎣
1 0 0 0
2 1 0 0
3 1 1 0
1 2 2 1

⎤⎥⎥⎦
⎡⎢⎢⎣

1 −1 2 3
0 2 −1 −10
0 0 2 9
0 0 0 4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1 −1 2 3
2 0 3 −4
3 −1 7 8
1 3 4 5

⎤⎥⎥⎦ = A.

21. We have⎡⎢⎢⎣
2 −3 1 2
4 −1 1 1

−8 2 2 −5
6 1 5 2

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
2 −3 1 2
0 5 −1 −3
0 −10 6 3
0 10 2 −4

⎤⎥⎥⎦ 2
∼

⎡⎢⎢⎣
2 −3 1 2
0 5 −1 −3
0 0 4 −3
0 0 4 2

⎤⎥⎥⎦ 3
∼

⎡⎢⎢⎣
2 −3 1 2
0 5 −1 −3
0 0 4 −3
0 0 0 5

⎤⎥⎥⎦ = U.

1. A12(−2), A13(4), A14(−3) 2. A23(2), A24(−2) 3. A34(−1)

Hence,

m21 = 2, m31 = −4, m41 = 3, m32 = −2, m42 = 2, m43 = 1.

Hence,

L =

⎡⎢⎢⎣
1 0 0 0
2 1 0 0

−4 −2 1 0
3 2 1 1

⎤⎥⎥⎦ and LU =

⎡⎢⎢⎣
1 0 0 0
2 1 0 0

−4 −2 1 0
3 2 1 1

⎤⎥⎥⎦
⎡⎢⎢⎣

2 −3 1 2
0 5 −1 −3
0 0 4 −3
0 0 0 5

⎤⎥⎥⎦ =

⎡⎢⎢⎣
2 −3 1 2
4 −1 1 1

−8 2 2 −5
6 1 5 2

⎤⎥⎥⎦ = A.

22. We have [
1 2
2 3

]
1
∼

[
1 2
0 −1

]
= U =⇒ m21 = 2 =⇒ L =

[
1 0
2 1

]
.

1. A12(−2)

We now solve the triangular systems Ly = b and Ux = y. From Ly = b, we obtain y =

[
3

−7

]
. Then

Ux = y yields x =

[ −11
7

]
.

23. We have⎡⎣ 1 −3 5
3 2 2
2 5 2

⎤⎦ 1
∼

⎡⎣ 1 −3 5
0 11 −13
0 11 −8

⎤⎦ 2
∼

⎡⎣ 1 −3 5
0 11 −13
0 0 5

⎤⎦ = U =⇒ m21 = 3,m31 = 2,m32 = 1.

1. A12(−3), A13(−2) 2. A23(−1)
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Hence, L =

⎡⎣ 1 0 0
3 1 0
2 1 1

⎤⎦. We now solve the triangular systems Ly = b and Ux = y. From Ly = b, we

obtain y =

⎡⎣ 1
2

−5

⎤⎦. Then Ux = y yields x =

⎡⎣ 3
−1
−1

⎤⎦.
24. We have⎡⎣ 2 2 1

6 3 −1
−4 2 2

⎤⎦ 1
∼

⎡⎣ 2 2 1
0 −3 −4
0 0 −4

⎤⎦ 2
∼

⎡⎣ 2 2 1
0 −3 −4
0 0 −4

⎤⎦ = U =⇒ m21 = 3,m31 = −2,m32 = −2.

1. A12(−3), A13(2) 2. A23(2)

Hence, L =

⎡⎣ 1 0 0
3 1 0

−2 −2 1

⎤⎦. We now solve the triangular systems Ly = b and Ux = y. From Ly = b, we

obtain y =

⎡⎣ 1
−3
−2

⎤⎦. Then Ux = y yields x =

⎡⎣ −1/12
1/3
1/2

⎤⎦.
25. We have⎡⎢⎢⎣

4 3 0 0
8 1 2 0
0 5 3 6
0 0 −5 7

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
4 3 0 0
0 −5 2 0
0 5 3 6
0 0 −5 7

⎤⎥⎥⎦ 2
∼

⎡⎢⎢⎣
4 3 0 0
0 −5 2 0
0 0 5 6
0 0 −5 7

⎤⎥⎥⎦ 3
∼

⎡⎢⎢⎣
4 3 0 0
0 −5 2 0
0 0 5 6
0 0 0 13

⎤⎥⎥⎦ = U.

1. A12(−2) 2. A23(1) 3. A34(1)

The only nonzero multipliers are m21 = 2,m32 = −1, and m43 = −1. Hence, L =

⎡⎢⎢⎣
1 0 0 0
2 1 0 0
0 −1 1 0
0 0 −1 1

⎤⎥⎥⎦. We

now solve the triangular systems Ly = b and Ux = y. From Ly = b, we obtain y =

⎡⎢⎢⎣
2

−1
−1
4

⎤⎥⎥⎦. Then Ux = y

yields x =

⎡⎢⎢⎣
677/1300
−9/325
−37/65
4/13

⎤⎥⎥⎦.
26. We have [

2 −1
−8 3

]
1
∼

[
2 −1
0 −1

]
= U =⇒ m21 = −4 =⇒ L =

[
1 0

−4 1

]
.

1. A12(4)
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We now solve the triangular systems
Lyi = bi, Uxi = yi

for i = 1, 2, 3. We have

Ly1 = b1 =⇒ y1 =

[
3
11

]
. Then Ux1 = y1 =⇒ x1 =

[ −4
−11

]
;

Ly2 = b2 =⇒ y2 =

[
2
15

]
. Then Ux2 = y2 =⇒ x2 =

[ −6.5
−15

]
;

Ly3 = b3 =⇒ y3 =

[
5
11

]
. Then Ux3 = y3 =⇒ x3 =

[ −3
−11

]
.

27. We have ⎡⎣ −1 4 2
3 1 4
5 −7 1

⎤⎦ 1
∼

⎡⎣ −1 4 2
0 13 10
0 13 11

⎤⎦ 2
∼

⎡⎣ −1 4 2
0 13 10
0 0 1

⎤⎦ = U.

1. A12(3), A13(5) 2. A23(−1)

Thus, m21 = −3, m31 = −5, and m32 = 1. We now solve the triangular systems

Lyi = bi, Uxi = yi

for i = 1, 2, 3. We have

Ly1 = e1 =⇒ y1 =

⎡⎣ 1
3
2

⎤⎦. Then Ux1 = y1 =⇒ x1 =

⎡⎣ −29/13
−17/13

2

⎤⎦;
Ly2 = e2 =⇒ y2 =

⎡⎣ 0
1

−1

⎤⎦. Then Ux2 = y2 =⇒ x2 =

⎡⎣ 18/13
11/13

−1

⎤⎦;
Ly3 = e3 =⇒ y3 =

⎡⎣ 0
0
1

⎤⎦. Then Ux3 = y3 =⇒ x3 =

⎡⎣ −14/13
−10/13

1

⎤⎦.
28. Observe that if Pi is an elementary permutation matrix, then P−1

i = Pi = PT
i . Therefore, we have

P−1 = (P1P2 . . . Pk)
−1 = P−1

k P−1
k−1 . . . P

−1
2 P−1

1 = PT
k PT

k−1 . . . P
T
2 . . . PT

1 = (P1P2 . . . Pk)
T = PT .

29.

(a). Let A be an invertible upper triangular matrix with inverse B. Therefore, we have AB = In. Write
A = [aij ] and B = [bij ]. We will show that bij = 0 for all i > j, which shows that B is upper triangular. We
have

n∑
k=1

aikbkj = δij .

Since A is upper triangular, aik = 0 whenever i > k. Therefore, we can reduce the above summation to

n∑
k=i

aikbij = δij .

Let i = n. Then the above summation reduces to annbnj = δnj . If j = n, we have annbnn = 1, so
ann �= 0. For j < n, we have annbnj = 0, and therefore bnj = 0 for all j < n.
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Next let i = n− 1. Then we have

an−1,n−1bn−1,j + an−1,nbnj = δn−1,j .

Setting j = n−1 and using the fact that bn,n−1 = 0 by the above calculation, we obtain an−1,n−1bn−1,n−1 = 1,
so an−1,n−1 �= 0. For j < n− 1, we have an−1,n−1bn−1,j = 0 so that bn−1,j = 0.

Next let i = n−2. Then we have an−2,n−2bn−2,j+an−2,n−1bn−1,j+an−2,nbnj = δn−2,j . Setting j = n−2
and using the fact that bn−1,n−2 = 0 and bn,n−2 = 0, we have an−2,n−2bn−2,n−2 = 1, so that an−2,n−2 �= 0.
For j < n− 2, we have an−2,n−2bn−2,j = 0 so that bn−2,j = 0.

Proceeding in this way, we eventually show that bij = 0 for all i > j.
For an invertible lower triangular matrix A with inverse B, we can either modify the preceding argument,

or we can proceed more briefly as follows: Note that AT is an invertible upper triangular matrix with inverse
BT . By the preceding argument, BT is upper triangular. Therefore, B is lower triangular, as required.

(b). Let A be an invertible unit upper triangular matrix with inverse B. Use the notations from (a). By
(a), we know that B is upper triangular. We simply must show that bjj = 0 for all j. From annbnn = 1
(see proof of (a)), we see that if ann = 1, then bnn = 1. Moreover, from an−1,n−1bn−1,n−1 = 1, the fact
that an−1,n−1 = 1 proves that bn−1,n−1 = 1. Likewise, the fact that an−2,n−2bn−2,n−2 = 1 implies that if
an−2,n−2 = 1, then bn−2,n−2 = 1. Continuing in this fashion, we prove that bjj = 1 for all j.

For the last part, if A is an invertible unit lower triangular matrix with inverse B, then AT is an invertible
unit upper triangular matrix with inverse BT , and by the preceding argument, BT is a unit upper triangular
matrix. This implies that B is a unit lower triangular matrix, as desired.

30.

(a). Since A is invertible, Corollary 2.6.13 implies that both L2 and U1 are invertible. Since L1U1 = L2U2,
we can left-multiply by L−1

2 and right-multiply by U−1
1 to obtain L−1

2 L1 = U2U
−1
1 .

(b). By Problem 29, we know that L−1
2 is a unit lower triangular matrix and U−1

1 is an upper triangular
matrix. Therefore, L−1

2 L1 is a unit lower triangular matrix and U2U
−1
1 is an upper triangular matrix. Since

these two matrices are equal, we must have L−1
2 L1 = In and U2U

−1
1 = In. Therefore, L1 = L2 and U1 = U2.

31. The system Ax = b can be written as QRx = b. If we can solve Qy = b for y and then solve Rx = y
for x, then QRx = b as desired. Multiplying Qy = b by QT and using the fact that QTQ = In, we obtain
y = QTb. Therefore, Rx = y can be replaced by Rx = QTb. Therefore, to solve Ax = b, we first determine
y = QTb and then solve the upper triangular system Rx = QTb by back-substitution.

Solutions to Section 2.8

True-False Review:

(a): FALSE. According to the given information, part (c) of the Invertible Matrix Theorem fails, while
part (e) holds. This is impossible.

(b): TRUE. This holds by the equivalence of parts (d) and (f) of the Invertible Matrix Theorem.

(c): FALSE. Part (d) of the Invertible Matrix Theorem fails according to the given information, and
therefore part (b) also fails. Hence, the equation Ax = b does not have a unique solution. But it is not
valid to conclude that the equation has infinitely many solutions; it could have no solutions. For instance, if

A =

⎡⎣ 1 0 0
0 1 0
0 0 0

⎤⎦ and b =

⎡⎣ 0
0
1

⎤⎦, there are no solutions to Ax = b, although rank(A) = 2.

(d): FALSE. An easy counterexample is the matrix 0n, which fails to be invertible even though it is upper
triangular. Since it fails to be invertible, it cannot e row-equivalent to In, by the Invertible Matrix Theorem.

(c)2017 Pearson Education. Inc.



190

Problems:

1. Since A is an invertible matrix, the only solution to Ax = 0 is x = 0. However, if we assume that
AB = AC, then A(B − C) = 0. If xi denotes the ith column of B − C, then xi = 0 for each i. That is,
B − C = 0, or B = C, as required.

2. If rank(A) = n, then the augmented matrix A# for the system Ax = 0 can be reduced to REF such
that each column contains a pivot except for the right-most column of all-zeros. Solving the system by
back-substitution, we find that x = 0, as claimed.

3. Since Ax = 0 has only the trivial solution, REF(A) contains a pivot in every column. Therefore, the
linear system Ax = b can be solved by back-substitution for every b in R

n. Therefore, Ax = b does have a
solution.

Now suppose there are two solutions y and z to the system Ax = b. That is, Ay = b and Az = b.
Subtracting, we find

A(y − z) = 0,

and so by assumption, y − z = 0. That is, y = z. Therefore, there is only one solution to the linear system
Ax = b.

4. If A and B are each invertible matrices, then A and B can each be expressed as a product of elementary
matrices, say

A = E1E2 . . . Ek and B = E′
1E

′
2 . . . E

′
l .

Then
AB = E1E2 . . . EkE

′
1E

′
2 . . . E

′
l ,

so AB can be expressed as a product of elementary matrices. Thus, by the equivalence of (a) and (e) in the
Invertible Matrix Theorem, AB is invertible.

5. We are assuming that the equations Ax = 0 and Bx = 0 each have only the trivial solution x = 0. Now
consider the linear system

(AB)x = 0.

Viewing this equation as
A(Bx) = 0,

we conclude that Bx = 0. Thus, x = 0. Hence, the linear equation (AB)x = 0 has only the trivial solution.

Solutions to Section 2.9

Problems:

1. AT − 5B =

⎡⎢⎢⎣
−2 −1
4 −1
2 5
6 0

⎤⎥⎥⎦−

⎡⎢⎢⎣
−15 0
10 10
5 −15
0 5

⎤⎥⎥⎦ =

⎡⎢⎢⎣
13 −1
−6 −11
−3 20
6 −5

⎤⎥⎥⎦.

2. CTB =
[ −5 −6 3 1

] ⎡⎢⎢⎣
−3 0
2 2
1 −3
0 1

⎤⎥⎥⎦ =
[
6 −20

]
.

3. Since A is not a square matrix, it is not possible to compute A2.

4. −4A−BT =

[
8 −16 −8 −24
4 4 −20 0

]
−
[ −3 2 1 0

0 2 −3 1

]
=

[
11 −18 −9 −24
4 2 −17 −1

]
.
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5. We have

AB =

[ −2 4 2 6
−1 −1 5 0

]⎡⎢⎢⎣
−3 0
2 2
1 −3
0 1

⎤⎥⎥⎦ =

[
16 8
6 −17

]
.

Moreover,
tr(AB) = −1.

6. We have

(AC)(AC)T =

[ −2
26

] [ −2 26
]
=

[
4 −52

−52 676

]
.

7. (−4B)A =

⎡⎢⎢⎣
12 0
−8 −8
−4 12
0 −4

⎤⎥⎥⎦[ −2 4 2 6
−1 −1 5 0

]
=

⎡⎢⎢⎣
−24 48 24 72
24 −24 −56 −48
−4 −28 52 −24
4 4 −20 0

⎤⎥⎥⎦.
8. Using Problem 5, we find that

(AB)−1 =

[
16 8
6 −17

]−1

= − 1

320

[ −17 −8
−6 16

]
.

9. We have

CTC =
[ −5 −6 3 1

] ⎡⎢⎢⎣
−5
−6
3
1

⎤⎥⎥⎦ = [71],

and
tr(CTC) = 71.

10.

(a). We have

AB =

[
1 2 3
2 5 7

]⎡⎣ 3 b
−4 a
a b

⎤⎦ =

[
3a− 5 2a+ 4b
7a− 14 5a+ 9b

]
.

In order for this product to equal I2, we require

3a− 5 = 1, 2a+ 4b = 0, 7a− 14 = 0, 5a+ 9b = 1.

We quickly solve this for the unique solution: a = 2 and b = −1.

(b). We have

BA =

⎡⎣ 3 −1
−4 2
2 −1

⎤⎦[ 1 2 3
2 5 7

]
=

⎡⎣ 1 1 2
0 2 2
0 −1 −1

⎤⎦ .

11. We compute the (i, j)-entry of each side of the equation. We will denote the entries of AT by aTij , which

equals aji. On the left side, note that the (i, j)-entry of (ABT )T is the same as the (j, i)-entry of ABT , and

(j, i)-entry of ABT =
n∑

k=0

ajkb
T
ki =

n∑
k=0

ajkbik =
n∑

k=0

bika
T
kj ,
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and the latter expression is the (i, j)-entry of BAT . Therefore, the (i, j)-entries of (ABT )T and BAT are
the same, as required.

12.

(a). The (i, j)-entry of A2 is
n∑

k=1

aikakj .

(b). Assume that A is symmetric. That means that AT = A. We claim that A2 is symmetric. To see this,
note that

(A2)T = (AA)T = ATAT = AA = A2.

Thus, (A2)T = A2, and so A2 is symmetric.

13. We are assuming that A is skew-symmetric, so AT = −A. To show that BTAB is skew-symmetric, we
observe that

(BTAB)T = BTAT (BT )T = BTATB = BT (−A)B = −(BTAB),

as required.

14. We have

A2 =

[
3 9

−1 −3

]2
=

[
0 0
0 0

]
,

so A is nilpotent.

15. We have

A2 =

⎡⎣ 0 0 1
0 0 0
0 0 0

⎤⎦
and

A3 = A2A =

⎡⎣ 0 0 1
0 0 0
0 0 0

⎤⎦⎡⎣ 0 1 1
0 0 1
0 0 0

⎤⎦ =

⎡⎣ 0 0 0
0 0 0
0 0 0

⎤⎦ ,

so A is nilpotent.

16. We have

A′(t) =

⎡⎣ −3e−3t −2 sec2 t tan t
6t2 − sin t
6/t −5

⎤⎦ .

17. We have ∫ 1

0

B(t) dt =

⎡⎢⎢⎣
−7t t3/3

6t− t2/2 3t4/4 + 2t3

t+ t2/2 2
π sin(πt/2)

et t− t4/4

⎤⎥⎥⎦ ∣∣∣∣1
0

=

⎡⎢⎢⎣
−7 1/3
11/2 11/4
3/2 2/π
e− 1 3/4

⎤⎥⎥⎦ .

18. Since A(t) is 3× 2 and B(t) is 4× 2, it is impossible to perform the indicated subtraction.

19. Since A(t) is 3× 2 and B(t) is 4× 2, it is impossible to perform the indicated subtraction.
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20. From the last equation, we see that x3 = 0. Substituting this into the middle equation, we find that
x2 = 0.5. Finally, putting the values of x2 and x3 into the first equation, we find x1 = −6 − 2.5 = −8.5.
Thus, there is a unique solution to the linear system, and the solution set is

{(−8.5, 0.5, 0)}.

21. To solve this system, we need to reduce the corresponding augmented matrix for the linear system to
row-echelon form. This gives us

⎡⎣ 5 −1 2 7
−2 6 9 0
−7 5 −3 −7

⎤⎦ 1
∼

⎡⎣ 1 11 20 7
−2 6 9 0
−7 5 −3 −7

⎤⎦ 2
∼

⎡⎣ 1 11 20 7
0 28 49 14
0 82 137 42

⎤⎦ 3
∼

⎡⎣ 1 11 20 7
0 1 7/4 1/2
0 82 137 42

⎤⎦
4
∼

⎡⎣ 1 11 20 7
0 1 7/4 1/2
0 0 −13/2 1

⎤⎦ 5
∼

⎡⎣ 1 11 20 7
0 1 7/4 1/2
0 0 1 −2/13

⎤⎦ .

From the last row, we conclude that x3 = −2/13, and using the middle row, we can solve for x2: we have
x2+

7
4 ·
(− 2

13

)
= 1

2 , so x2 = 20
26 = 10

13 . Finally, from the first row we can get x1: we have x1+11· 1013+20·(− 2
13

)
=

7, and so x1 = 21
13 . So there is a unique solution:{(

21

13
,
10

13
,− 2

13

)}
.

1. A21(2) 2. A12(2), A13(7) 3. M2(1/28) 4. A23(−82) 5. M3(−2/13)

22. To solve this system, we need to reduce the corresponding augmented matrix for the linear system to
row-echelon form. This gives us

⎡⎣ 1 2 −1 1
1 0 1 5
4 4 0 12

⎤⎦ 1
∼

⎡⎣ 1 2 −1 1
0 −2 2 4
0 −4 4 8

⎤⎦ 2
∼

⎡⎣ 1 2 −1 1
0 1 −1 −2
0 −4 4 8

⎤⎦ 3
∼

⎡⎣ 1 2 −1 1
0 1 −1 −2
0 0 0 0

⎤⎦ .

From this row-echelon form, we see that z is a free variable. Set z = t. Then from the middle row of the
matrix, y = t− 2, and from the top row, x+ 2(t− 2)− t = 1 or x = −t+ 5. So the solution set is

{(−t+ 5, t− 2, t) : t ∈ R} = {(5,−2, 0) + t(−1, 1, 1) : t ∈ R}.

1. A12(−1), A13(−4) 2. M2(−1/2) 3. A23(4)

23. To solve this system, we need to reduce the corresponding augmented matrix for the linear system to
row-echelon form. This gives us

⎡⎣ 1 −2 −1 3 0
−2 4 5 −5 3
3 −6 −6 8 2

⎤⎦ 1
∼

⎡⎣ 1 −2 −1 3 0
0 0 3 1 3
0 0 −3 −1 2

⎤⎦ 2
∼

⎡⎣ 1 −2 −1 3 0
0 0 3 1 3
0 0 0 0 5

⎤⎦ 3
∼

⎡⎣ 1 −2 −1 3 0
0 0 1 1/3 1
0 0 0 0 1

⎤⎦ .

The bottom row of this matrix shows that this system has no solutions.
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1. A12(2), A13(−3) 2. A23(1) 3. M2(1/3), M3(1/3)

24. To solve this system, we need to reduce the corresponding augmented matrix for the linear system to
row-echelon form. This gives us

⎡⎢⎢⎣
3 0 −1 2 −1 1
1 3 1 −3 2 −1
4 −2 −3 6 −1 5
0 0 0 1 4 −2

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
1 3 1 −3 2 −1
3 0 −1 2 −1 1
4 −2 −3 6 −1 5
0 0 0 1 4 −2

⎤⎥⎥⎦ 2
∼

⎡⎢⎢⎣
1 3 1 −3 2 −1
0 −9 −4 11 −7 4
0 −14 −7 18 −9 9
0 0 0 1 4 −2

⎤⎥⎥⎦

3
∼

⎡⎢⎢⎣
1 3 1 −3 2 −1
0 −27 −12 33 −21 12
0 28 14 −36 18 −18
0 0 0 1 4 −2

⎤⎥⎥⎦ 4
∼

⎡⎢⎢⎣
1 3 1 −3 2 −1
0 −27 −12 33 −21 12
0 1 2 −3 −3 −6
0 0 0 1 4 −2

⎤⎥⎥⎦
5
∼

⎡⎢⎢⎣
1 3 1 −3 2 −1
0 1 2 −3 −3 −6
0 −27 −12 33 −21 12
0 0 0 1 4 −2

⎤⎥⎥⎦ 6
∼

⎡⎢⎢⎣
1 3 1 −3 2 −1
0 1 2 −3 −3 −6
0 0 42 −48 −102 −150
0 0 0 1 4 −2

⎤⎥⎥⎦ 7
∼

⎡⎢⎢⎣
1 3 1 −3 2 −1
0 1 2 −3 −3 −6
0 0 1 − 8

7 − 17
7 − 25

7
0 0 0 1 4 −2

⎤⎥⎥⎦ .

We see that x5 = t is the only free variable. Back substitution yields the remaining values:

x5 = t, x4 = −4t− 2, x3 = −41

7
− 15

7
t, x2 = −2

7
− 33

7
t, x1 = −2

7
+

16

7
t.

So the solution set is {(
−2

7
+

16

7
t,−2

7
− 33

7
t,−41

7
− 15

7
t,−4t− 2, t

)
: t ∈ R

}

=

{
t

(
16

7
,−33

7
,−15

7
,−4, 1

)
+

(
−2

7
,−2

7
,−41

7
,−2, 0

)
: t ∈ R

}
.

1. P12 2. A12(−3), A13(−4) 3. M2(3), M3(−2) 4. A23(1) 5. P23 6. A23(27) 7. M3(1/42)

25. To solve this system, we need to reduce the corresponding augmented matrix for the linear system to
row-echelon form. This gives us⎡⎢⎢⎣

1 1 1 1 −3 6
1 1 1 2 −5 8
2 3 1 4 −9 17
2 2 2 3 −8 14

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
1 1 1 1 −3 6
0 0 0 1 −2 2
0 1 −1 2 −3 5
0 0 0 −1 2 −2

⎤⎥⎥⎦ 2
∼

⎡⎢⎢⎣
1 1 1 1 −3 6
0 0 0 1 −2 2
0 1 −1 2 −3 5
0 0 0 0 0 0

⎤⎥⎥⎦
3
∼

⎡⎢⎢⎣
1 1 1 1 −3 6
0 1 −1 2 −3 5
0 0 0 1 −2 2
0 0 0 0 0 0

⎤⎥⎥⎦ .

From this row-echelon form, we see that x5 = t and x3 = s are free variables. Furthermore, solving this
system by back-substitution, we see that

x5 = t, x4 = 2t+ 2, x3 = s, x2 = s− t+ 1, x1 = 2t− 2s+ 3.
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So the solution set is

{(2t− 2s+ 3, s− t+ 1, s, 2t+ 2, t) : s, t ∈ R} = {t(2,−1, 0, 2, 1) + s(−2, 1, 1, 0, 0) + (3, 1, 0, 2, 0) : s, t ∈ R}.

1. A12(−1), A13(−2), A14(−2) 2. A24(1) 3. P23

26. To solve this system, we need to reduce the corresponding augmented matrix for the linear system to
row-echelon form. This gives us[

1 −3 2i 1
−2i 6 2 −2

]
1
∼

[
1 −3 2i 1
0 6− 6i −2 −2 + 2i

]
2
∼

[
1 −3 2i 1
0 1 − 1

6 (1 + i) − 1
3

]
.

1. A12(2i) 2. M2(
1

6−6i )

From the last augmented matrix above, we see that x3 is a free variable. Let us set x3 = t, where t is
a complex number. Then we can solve for x2 using the equation corresponding to the second row of the
row-echelon form: x2 = − 1

3 +
1
6 (1+i)t. Finally, using the first row of the row-echelon form, we can determine

that x1 = 1
2 t(1− 3i). Therefore, the solution set for this linear system of equations is

{(1
2
t(1− 3i),−1

3
+

1

6
(1 + i)t, t) : t ∈ C}.

27. We reduce the corresponding linear system as follows:[
1 −k 6
2 3 k

]
1
∼

[
1 −k 6
0 3 + 2k k − 12

]
.

If k �= − 3
2 , then each column of the row-reduced coefficient matrix will contain a pivot, and hence, the linear

system will have a unique solution. If, on the other hand, k = − 3
2 , then the system is inconsistent, because

the last row of the row-echelon form will have a pivot in the right-most column. Under no circumstances
will the linear system have infinitely many solutions.

28. First observe that if k = 0, then the second equation requires that x3 = 2, and then the first equation
requires x2 = 2. However, x1 is a free variable in this case, so there are infinitely many solutions.

Now suppose that k �= 0. Then multiplying each row of the corresponding augmented matrix for the
linear system by 1/k yields a row-echelon form with pivots in the first two columns only. Therefore, the
third variable, x3, is free in this case. So once again, there are infinitely many solutions to the system.

We conclude that the system has infinitely many solutions for all values of k.

29. Since this linear system is homogeneous, it already has at least one solution: (0, 0, 0). Therefore, it only
remains to determine the values of k for which this will be the only solution. We reduce the corresponding
matrix as follows:⎡⎣ 10 k −1 0

k 1 −1 0
2 1 −1 0

⎤⎦ 1
∼

⎡⎣ 10k k2 −k 0
10k 10 −10 0
1 1/2 −1/2 0

⎤⎦ 2
∼

⎡⎣ 1 1/2 −1/2 0
10k 10 −10 0
10k k2 −k 0

⎤⎦
3
∼

⎡⎣ 1 1/2 −1/2 0
0 10− 5k 5k − 10 0
0 k2 − 5k 4k 0

⎤⎦ 4
∼

⎡⎣ 1 1/2 −1/2 0
0 1 −1 0
0 k2 − 5k 4k 0

⎤⎦ 5
∼

⎡⎣ 1 1/2 −1/2 0
0 1 −1 0
0 0 k2 − k 0

⎤⎦ .
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1. M1(k), M2(10), M3(1/2) 2. P13 3. A12(−10k), A13(−10k) 4. M2(
1

10−5k ) 5. A23(5k − k2)

Note that the steps above are not valid if k = 0 or k = 2 (because Step 1 is not valid with k = 0 and Step
4 is not valid if k = 2). We will discuss those special cases individually in a moment. However if k �= 0, 2,
then the steps are valid, and we see from the last row of the last matrix that if k = 1, we have infinitely
many solutions. Otherwise, if k �= 0, 1, 2, then the matrix has full rank, and so there is a unique solution to
the linear system.

If k = 2, then the last two rows of the original matrix are the same, and so the matrix of coefficients of
the linear system is not invertible. Therefore, the linear system must have infinitely many solutions.

If k = 0, we reduce the original linear system as follows:

⎡⎣ 10 0 −1 0
0 1 −1 0
2 1 −1 0

⎤⎦ 1
∼

⎡⎣ 1 0 −1/10 0
0 1 −1 0
2 1 −1 0

⎤⎦ 2
∼

⎡⎣ 1 0 −1/10 0
0 1 −1 0
0 1 −4/5 0

⎤⎦ 3
∼

⎡⎣ 1 0 −1/10 0
0 1 −1 0
0 0 1/5 0

⎤⎦ .

The last matrix has full rank, so there will be a unique solution in this case.

1. M1(1/10) 2. A13(−2) 3. A23(−1)

To summarize: The linear system has infinitely many solutions if and only if k = 1 or k = 2. Otherwise,
the system has a unique solution.

30. To solve this system, we need to reduce the corresponding augmented matrix for the linear system to
row-echelon form. This gives us⎡⎣ 1 −k k2 0

1 0 k 0
0 1 −1 1

⎤⎦ 1
∼

⎡⎣ 1 −k k2 0
0 k k − k2 0
0 1 −1 1

⎤⎦ 2
∼

⎡⎣ 1 −k k2 0
0 1 −1 1
0 k k − k2 0

⎤⎦ 3
∼

⎡⎣ 1 −k k2 0
0 1 −1 1
0 0 2k − k2 −k

⎤⎦ .

1. A12(−1) 2. P23 3. A23(−k)

Now provided that 2k − k2 �= 0, the system can be solved without free variables via back-substitution, and
therefore, there is a unique solution. Consider now what happens if 2k−k2 = 0. Then either k = 0 or k = 2.
If k = 0, then only the first two columns of the last augmented matrix above are pivoted, and we have a free
variable corresponding to x3. Therefore, there are infinitely many solutions in this case. On the other hand,
if k = 2, then the last row of the last matrix above reflects an inconsistency in the linear system, and there
are no solutions.

To summarize, the system has no solutions if k = 2, a unique solution if k �= 0 and k �= 2, and infinitely
many solutions if k = 0.

31. No, there are no common points of intersection. A common point of intersection would be indicated by
a solution to the linear system consisting of the equations of the three planes. However, the corresponding
augmented matrix can be row-reduced as follows:⎡⎣ 1 2 1 4

0 1 −1 1
1 3 0 0

⎤⎦ 1
∼

⎡⎣ 1 2 1 4
0 1 −1 1
0 1 −1 −4

⎤⎦ 2
∼

⎡⎣ 1 2 1 4
0 1 −1 1
0 0 0 −5

⎤⎦ .

The last row of this matrix shows that the linear system is inconsistent, and so there are no points common
to all three planes.
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1. A13(−1) 2. A23(−1)

32.

(a). We have [
4 7

−2 5

]
1
∼

[
1 7/4

−2 5

]
2
∼

[
1 7/4
0 17/2

]
3
∼

[
1 7/4
0 1

]
.

1. M1(1/4) 2. A12(2) 3. M2(2/17)

(b). We have: rank(A) = 2, since the row-echelon form of A in (a) consists two nonzero rows.

(c). We have

[
4 7 1 0

−2 5 0 1

]
1
∼

[
1 7/4 1/4 0

−2 5 0 1

]
2
∼

[
1 7/4 1/4 0
0 17/2 1/2 1

]
3
∼

[
1 7/4 1/4 0
0 1 1/17 2/17

]
4
∼

[
1 0 5/34 −7/34
0 1 1/17 2/17

]
.

1. M1(1/4) 2. A12(2) 3. M2(2/17) 4. A21(−7/4)

Thus,

A−1 =

[
5
34 − 7

34
1
17

2
17

]
.

33.

(a). We have [
2 −7

−4 14

]
1
∼

[
2 −7
0 0

]
2
∼

[
1 −7/2
0 0

]
.

1. A12(2) 2. M1(1/2)

(b). We have: rank(A) = 1, since the row-echelon form of A in (a) has one nonzero row.

(c). Since rank(A) < 2, A is not invertible.

34.

(a). We have⎡⎣ 3 −1 6
0 2 3
3 −5 0

⎤⎦ 1
∼

⎡⎣ 1 −1/3 2
0 2 3
1 −5/3 0

⎤⎦ 2
∼

⎡⎣ 1 −1/3 2
0 2 3
0 −4/3 −2

⎤⎦ 3
∼

⎡⎣ 1 −1/3 2
0 2 3
0 0 0

⎤⎦ 4
∼

⎡⎣ 1 −1/3 2
0 1 3/2
0 0 0

⎤⎦ .

1. M1(1/3), M3(1/3) 2. A13(−1) 3. A23(2/3) 4. M2(1/2)
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(b). We have: rank(A) = 2, since the row-echelon form of A in (a) consists of two nonzero rows.

(c). Since rank(A) < 3, A is not invertible.

35.

(a). We have⎡⎢⎢⎣
2 1 0 0
1 2 0 0
0 0 3 4
0 0 4 3

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
1 2 0 0
2 1 0 0
0 0 3 4
0 0 4 3

⎤⎥⎥⎦ 2
∼

⎡⎢⎢⎣
1 2 0 0
0 −3 0 0
0 0 3 4
0 0 1 −1

⎤⎥⎥⎦ 3
∼

⎡⎢⎢⎣
1 2 0 0
0 −3 0 0
0 0 1 −1
0 0 3 4

⎤⎥⎥⎦
4
∼

⎡⎢⎢⎣
1 2 0 0
0 1 0 0
0 0 1 −1
0 0 0 7

⎤⎥⎥⎦ 5
∼

⎡⎢⎢⎣
1 2 0 0
0 1 0 0
0 0 1 −1
0 0 0 1

⎤⎥⎥⎦ .

1. P12 2. A12(−2), A34(−1) 3. P34 4. M2(−1/3), A34(−3) 5. M4(1/7)

(b). We have: rank(A) = 4, since the row-echelon form of A in (a) consists of four nonzero rows.

(c). We have⎡⎢⎢⎣
2 1 0 0 1 0 0 0
1 2 0 0 0 1 0 0
0 0 3 4 0 0 1 0
0 0 4 3 0 0 0 1

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
1 2 0 0 0 1 0 0
2 1 0 0 1 0 0 0
0 0 3 4 0 0 1 0
0 0 4 3 0 0 0 1

⎤⎥⎥⎦ 2
∼

⎡⎢⎢⎣
1 2 0 0 0 1 0 0
0 −3 0 0 1 −2 0 0
0 0 3 4 0 0 1 0
0 0 1 −1 0 0 −1 1

⎤⎥⎥⎦
3
∼

⎡⎢⎢⎣
1 2 0 0 0 1 0 0
0 −3 0 0 1 −2 0 0
0 0 1 −1 0 0 −1 1
0 0 3 4 0 0 1 0

⎤⎥⎥⎦ 4
∼

⎡⎢⎢⎣
1 2 0 0 0 1 0 0
0 1 0 0 −1/3 2/3 0 0
0 0 1 −1 0 0 −1 1
0 0 0 7 0 0 4 −3

⎤⎥⎥⎦
5
∼

⎡⎢⎢⎣
1 0 0 0 2/3 −1/3 0 0
0 1 0 0 −1/3 2/3 0 0
0 0 1 −1 0 0 −1 1
0 0 0 1 0 0 4/7 −3/7

⎤⎥⎥⎦ 6
∼

⎡⎢⎢⎣
1 0 0 0 2/3 −1/3 0 0
0 1 0 0 −1/3 2/3 0 0
0 0 1 0 0 0 −3/7 4/7
0 0 0 1 0 0 4/7 −3/7

⎤⎥⎥⎦ .

1. P12 2. A12(−2), A34(−1) 3. P34 4. A34(−3), M2(−1/3) 5. M4(1/7), A21(−2) 6. A43(1)

Thus,

A−1 =

⎡⎢⎢⎣
2/3 −1/3 0 0
−1/3 2/3 0 0
0 0 −3/7 4/7
0 0 4/7 −3/7

⎤⎥⎥⎦ .

36.

(a). We have⎡⎣ 3 0 0
0 2 −1
1 −1 2

⎤⎦ 1
∼

⎡⎣ 1 0 0
0 2 −1
1 −1 2

⎤⎦ 2
∼

⎡⎣ 1 0 0
0 2 −1
0 −1 2

⎤⎦ 3
∼

⎡⎣ 1 0 0
0 −1 2
0 2 −1

⎤⎦ 4
∼

⎡⎣ 1 0 0
0 −1 2
0 0 3

⎤⎦ 5
∼

⎡⎣ 1 0 0
0 1 −2
0 0 1

⎤⎦ .
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1. M1(1/3) 2. A13(−1) 3. P23 4. A23(2) 5. M2(−1), M3(1/3)

(b). We have: rank(A) = 3, since the row-echelon form of A in (a) has 3 nonzero rows.

(c). We have⎡⎣ 3 0 0 1 0 0
0 2 −1 0 1 0
1 −1 2 0 0 1

⎤⎦ 1
∼

⎡⎣ 1 0 0 1/3 0 0
0 2 −1 0 1 0
1 −1 2 0 0 1

⎤⎦ 2
∼

⎡⎣ 1 0 0 1/3 0 0
0 2 −1 0 1 0
0 −1 2 −1/3 0 1

⎤⎦
3
∼

⎡⎣ 1 0 0 1/3 0 0
0 −1 2 −1/3 0 1
0 2 −1 0 1 0

⎤⎦ 4
∼

⎡⎣ 1 0 0 1/3 0 0
0 −1 2 −1/3 0 1
0 0 3 −2/3 1 2

⎤⎦
5
∼

⎡⎣ 1 0 0 1/3 0 0
0 1 −2 1/3 0 −1
0 0 1 −2/9 1/3 2/3

⎤⎦ 6
∼

⎡⎣ 1 0 0 1/3 0 0
0 1 0 −1/9 2/3 1/3
0 0 1 −2/9 1/3 2/3

⎤⎦ .

1. M1(1/3) 2. A13(−1) 3. P23 4. A23(2) 5. M2(−1), M3(1/3) 6. A32(2)

Hence,

A−1 =

⎡⎣ 1/3 0 0
−1/9 2/3 1/3
−2/9 1/3 2/3

⎤⎦ .

37.

(a). We have⎡⎣ −2 −3 1
1 4 2
0 5 3

⎤⎦ 1
∼

⎡⎣ 1 4 2
−2 −3 1
0 5 3

⎤⎦ 2
∼

⎡⎣ 1 4 2
0 5 5
0 5 3

⎤⎦ 3
∼

⎡⎣ 1 4 2
0 5 5
0 0 −2

⎤⎦ 4
∼

⎡⎣ 1 4 2
0 1 1
0 0 1

⎤⎦ .

1. P12 2. A12(2) 3. A23(−1) 4. M2(1/5), M3(−1/2)

(b). We have: rank(A) = 3, since the row-echelon form of A in (a) consists of 3 nonzero rows.

(c). We have⎡⎣ −2 −3 1 1 0 0
1 4 2 0 1 0
0 5 3 0 0 1

⎤⎦ 1
∼

⎡⎣ 1 4 2 0 1 0
−2 −3 1 1 0 0
0 5 3 0 0 1

⎤⎦ 2
∼

⎡⎣ 1 4 2 0 1 0
0 5 5 1 2 0
0 5 3 0 0 1

⎤⎦
3
∼

⎡⎣ 1 4 2 0 1 0
0 5 5 1 2 0
0 0 −2 −1 −2 1

⎤⎦ 4
∼

⎡⎣ 1 4 2 0 1 0
0 1 1 1/5 2/5 0
0 0 1 1/2 1 −1/2

⎤⎦
5
∼

⎡⎣ 1 0 −2 −4/5 −3/5 0
0 1 1 1/5 2/5 0
0 0 1 1/2 1 −1/2

⎤⎦ 6
∼

⎡⎣ 1 0 0 1/5 7/5 −1
0 1 0 −3/10 −3/5 1/2
0 0 1 1/2 1 −1/2

⎤⎦ .
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1. P12 2. A12(2) 3. A23(−1) 4. M2(1/5), M3(−1/2) 5. A21(−4) 6. A31(2), A32(−1)

Thus,

A−1 =

⎡⎣ 1/5 7/5 −1
−3/10 −3/5 1/2
1/2 1 −1/2

⎤⎦ .

38. We use the Gauss-Jordan method to find A−1:⎡⎣ 1 −1 3 1 0 0
4 −3 13 0 1 0
1 1 4 0 0 1

⎤⎦ 1
∼

⎡⎣ 1 −1 3 1 0 0
0 1 1 −4 1 0
0 2 1 −1 0 1

⎤⎦ 2
∼

⎡⎣ 1 −1 3 1 0 0
0 1 1 −4 1 0
0 0 −1 7 −2 1

⎤⎦
3
∼

⎡⎣ 1 −1 3 1 0 0
0 1 1 −4 1 0
0 0 1 −7 2 −1

⎤⎦ 4
∼

⎡⎣ 1 0 4 −3 1 0
0 1 1 −4 1 0
0 0 1 −7 2 −1

⎤⎦ 5
∼

⎡⎣ 1 0 0 25 −7 4
0 1 0 3 −1 1
0 0 1 −7 2 −1

⎤⎦ .

1. A12(−4), A13(−1) 2. A23(−2) 3. M3(−1) 4. A21(1) 5. A31(−4), A32(−1)

Thus,

A−1 =

⎡⎣ 25 −7 4
3 −1 1

−7 2 −1

⎤⎦ .

Now xi = A−1ei for each i. So

x1 = A−1e1 =

⎡⎣ 25
3

−7

⎤⎦ , x2 = A−1e2 =

⎡⎣ −7
−1
2

⎤⎦ , x3 = A−1e3 =

⎡⎣ 4
1

−1

⎤⎦ .

39. We have xi = A−1bi, where

A−1 = − 1

39

[ −2 −5
−7 2

]
.

Therefore,

x1 = A−1b1 = − 1

39

[ −2 −5
−7 2

] [
1
2

]
= − 1

39

[ −12
−3

]
=

1

39

[
12
3

]
=

1

13

[
4
1

]
,

x2 = A−1b2 = − 1

39

[ −2 −5
−7 2

] [
4
3

]
= − 1

39

[ −23
−22

]
=

1

39

[
23
22

]
,

and

x3 = A−1b3 = − 1

39

[ −2 −5
−7 2

] [ −2
5

]
= − 1

39

[ −21
24

]
=

1

39

[
21

−24

]
=

1

13

[
7

−8

]
.

40.

(a). We have
(A−1B)(B−1A) = A−1(BB−1)A = A−1InA = A−1A = In

and
(B−1A)(A−1B) = B−1(AA−1)B = B−1InB = B−1B = In.
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Therefore,

(B−1A)−1 = A−1B.

(b). We have

(A−1B)−1 = B−1(A−1)−1 = B−1A,

as required.

41(a). We haveB4 = (S−1AS)(S−1AS)(S−1AS)(S−1AS) = S−1A(SS−1)A(SS−1)A(SS−1)AS = S−1AIAIAIAS =
S−1A4S, as required.

41(b). We can prove this by induction on k. For k = 1, the result is B = S−1AS, which was already
given. Now assume that Bk = S−1AkS. Then Bk+1 = BBk = S−1AS(S−1AkS) = S−1A(SS−1)AkS =
S−1AIAkS = S−1Ak+1S, which completes the induction step.

42.

(a). We reduce A to the identity matrix:[
4 7

−2 5

]
1
∼

[
1 7

4−2 5

]
2
∼

[
1 7

4
0 17

2

]
3
∼

[
1 7

4
0 1

]
4
∼

[
1 0
0 1

]
.

1. M1(
1
4 ) 2. A12(2) 3. M2(

2
17 ) 4. A21(− 7

4 )

The elementary matrices corresponding to these row operations are

E1 =

[
1
4 0
0 1

]
, E2 =

[
1 0
2 1

]
, E3 =

[
1 0
0 2

17

]
, E4 =

[
1 − 7

4
0 1

]
.

We have E4E3E2E1A = I2, so that

A = E−1
1 E−1

2 E−1
3 E−1

4 =

[
4 0
0 1

] [
1 0

−2 1

] [
1 0
0 17

2

] [
1 7

4
0 1

]
,

which is the desired expression since E−1
i is an elementary matrix for each i.

(b). We can reduce A to upper triangular form by the following elementary row operation:[
4 7

−2 5

]
1
∼

[
4 7
0 17

2

]
.

1. A12(
1
2 )

Therefore we have the multiplier m12 = − 1
2 . Hence, setting

L =

[
1 0

− 1
2 1

]
and U =

[
4 7
0 17

2

]
,

we have the LU factorization A = LU , which can be easily verified by direct multiplication.

43.
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(a). We reduce A to the identity matrix:⎡⎢⎢⎣
2 1 0 0
1 2 0 0
0 0 3 4
0 0 4 3

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
1 2 0 0
2 1 0 0
0 0 3 4
0 0 4 3

⎤⎥⎥⎦ 2
∼

⎡⎢⎢⎣
1 2 0 0
0 −3 0 0
0 0 3 4
0 0 4 3

⎤⎥⎥⎦ 3
∼

⎡⎢⎢⎣
1 2 0 0
0 1 0 0
0 0 3 4
0 0 4 3

⎤⎥⎥⎦ 4
∼

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 3 4
0 0 4 3

⎤⎥⎥⎦

5
∼

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 4

3
0 0 4 3

⎤⎥⎥⎦ 6
∼

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 4

3
0 0 0 − 7

3

⎤⎥⎥⎦ 7
∼

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 4

3
0 0 0 1

⎤⎥⎥⎦ 8
∼

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ .

1. P12 2. A12(−2) 3. M2(− 1
3 ) 4. A21(−2) 5. M3(

1
3 )

6. A34(−4) 7. M4(− 3
7 ) 8. A43(− 4

3 )

The elementary matrices corresponding to these row operations are

E1 =

⎡⎢⎢⎣
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ , E2 =

⎡⎢⎢⎣
1 0 0 0

−2 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ , E3 =

⎡⎢⎢⎣
1 0 0 0
0 − 1

3 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ , E4 =

⎡⎢⎢⎣
1 −2 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦

E5 =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1

3 0
0 0 0 1

⎤⎥⎥⎦ , E6 =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 −4 1

⎤⎥⎥⎦ , E7 =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 − 3

7

⎤⎥⎥⎦ , E8 =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 − 4

3
0 0 0 1

⎤⎥⎥⎦ .

We have
E8E7E6E5E4E3E2E1A = I4

so that

A = E−1
1 E−1

2 E−1
3 E−1

4 E−1
5 E−1

6 E−1
7 E−1

8

=

⎡⎢⎢⎣
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

1 0 0 0
2 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

1 0 0 0
0 −3 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

1 2 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ · · ·

· · ·

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 3 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 4 1

⎤⎥⎥⎦
⎡⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 − 7

3

⎤⎥⎥⎦
⎡⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 4

3
0 0 0 1

⎤⎥⎥⎦ ,

which is the desired expression since E−1
i is an elementary matrix for each i.

(b). We can reduce A to upper triangular form by the following elementary row operations:⎡⎢⎢⎣
2 1 0 0
1 2 0 0
0 0 3 4
0 0 4 3

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
2 1 0 0
0 3

2 0 0
0 0 3 4
0 0 4 3

⎤⎥⎥⎦ 2
∼

⎡⎢⎢⎣
2 1 0 0
0 3

2 0 0
0 0 3 4
0 0 0 − 7

3

⎤⎥⎥⎦ .
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1. A12(− 1
2 ) 2. A34(− 4

3 )

Therefore, the nonzero multipliers are m12 = 1
2 and m34 = 4

3 . Hence, setting

L =

⎡⎢⎢⎣
1 0 0 0
1
2 1 0 0
0 0 1 0
0 0 4

3 1

⎤⎥⎥⎦ and U =

⎡⎢⎢⎣
2 1 0 0
0 3

2 0 0
0 0 3 4
0 0 0 − 7

3

⎤⎥⎥⎦ ,

we have the LU factorization A = LU , which can be easily verified by direct multiplication.

44.

(a). We reduce A to the identity matrix:⎡⎣ 3 0 0
0 2 −1
1 −1 2

⎤⎦ 1
∼

⎡⎣ 1 −1 2
0 2 −1
3 0 0

⎤⎦ 2
∼

⎡⎣ 1 −1 2
0 2 −1
0 3 −6

⎤⎦ 3
∼

⎡⎣ 1 −1 2
0 1 − 1

2
0 3 −6

⎤⎦ 4
∼

⎡⎣ 1 −1 2
0 1 − 1

2
0 0 − 9

2

⎤⎦
5
∼

⎡⎣ 1 −1 2
0 1 − 1

2
0 0 1

⎤⎦ 6
∼

⎡⎣ 1 0 3
2

0 1 − 1
2

0 0 1

⎤⎦ 7
∼

⎡⎣ 1 0 0
0 1 − 1

2
0 0 1

⎤⎦ 8
∼

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ .

1. P13 2. A13(−3) 3. M2(
1
2 ) 4. A23(−3) 5. M3(− 2

9 )

6. A21(1) 7. A31(− 3
2 ) 8. A32(

1
2 )

The elementary matrices corresponding to these row operations are

E1 =

⎡⎣ 0 0 1
0 1 0
1 0 0

⎤⎦ , E2 =

⎡⎣ 1 0 0
0 1 0

−3 0 1

⎤⎦ , E3 =

⎡⎣ 1 0 0
0 1

2 0
0 0 1

⎤⎦ , E4 =

⎡⎣ 1 0 0
0 1 0
0 −3 1

⎤⎦
E5 =

⎡⎣ 1 0 0
0 1 0
0 0 − 2

9

⎤⎦ , E6 =

⎡⎣ 1 1 0
0 1 0
0 0 1

⎤⎦ , E7 =

⎡⎣ 1 0 − 3
2

0 1 0
0 0 1

⎤⎦ , E8 =

⎡⎣ 1 0 0
0 1 1

2
0 0 1

⎤⎦ .

We have
E8E7E6E5E4E3E2E1A = I3

so that
A = E−1

1 E−1
2 E−1

3 E−1
4 E−1

5 E−1
6 E−1

7 E−1
8

=

⎡⎣ 0 0 1
0 1 0
1 0 0

⎤⎦⎡⎣ 1 0 0
0 1 0
3 0 1

⎤⎦⎡⎣ 1 0 0
0 2 0
0 0 1

⎤⎦⎡⎣ 1 0 0
0 1 0
0 3 1

⎤⎦ · · ·

· · ·
⎡⎣ 1 0 0

0 1 0
0 0 − 9

2

⎤⎦⎡⎣ 1 −1 0
0 1 0
0 0 1

⎤⎦⎡⎣ 1 0 3
2

0 1 0
0 0 1

⎤⎦⎡⎣ 1 0 0
0 1 − 1

2
0 0 1

⎤⎦ ,

which is the desired expression since E−1
i is an elementary matrix for each i.

(b). We can reduce A to upper triangular form by the following elementary row operations:⎡⎣ 3 0 0
0 2 −1
1 −1 2

⎤⎦ 1
∼

⎡⎣ 3 0 0
0 2 −1
0 −1 2

⎤⎦ 2
∼

⎡⎣ 3 0 0
0 2 −1
0 0 3

2

⎤⎦ .
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1. A13(− 1
3 ) 2. A23(

1
2 )

Therefore, the nonzero multipliers are m13 = 1
3 and m23 = − 1

2 . Hence, setting

L =

⎡⎣ 1 0 0
0 1 0
1
3 − 1

2 1

⎤⎦ and U =

⎡⎣ 3 0 0
0 2 −1
0 0 3

2

⎤⎦ ,

we have the LU factorization A = LU , which can be verified by direct multiplication.

45.

(a). We reduce A to the identity matrix:⎡⎣ −2 −3 1
1 4 2
0 5 3

⎤⎦ 1
∼

⎡⎣ 1 4 2
−2 −3 1
0 5 3

⎤⎦ 2
∼

⎡⎣ 1 4 2
0 5 5
0 5 −3

⎤⎦ 3
∼

⎡⎣ 1 4 2
0 5 5
0 1 −8

⎤⎦ 4
∼

⎡⎣ 1 4 2
0 1 −8
0 5 5

⎤⎦
5
∼

⎡⎣ 1 4 2
0 1 −8
0 0 45

⎤⎦ 6
∼

⎡⎣ 1 4 2
0 1 −8
0 0 1

⎤⎦ 7
∼

⎡⎣ 1 0 34
0 1 −8
0 0 1

⎤⎦ 8
∼

⎡⎣ 1 0 34
0 1 0
0 0 1

⎤⎦ 9
∼

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ .

1. P12 2. A12(2) 3. A23(−1) 4. P23 5. A23(−5)

6. M3(
1
45 ) 7. A21(−4) 8. A32(8) 9. A31(−34)

The elementary matrices corresponding to these row operations are

E1 =

⎡⎣ 0 1 0
1 0 0
0 0 1

⎤⎦ , E2 =

⎡⎣ 1 0 0
2 1 0
0 0 1

⎤⎦ , E3 =

⎡⎣ 1 0 0
0 1 0
0 −1 1

⎤⎦ ,

E4 =

⎡⎣ 1 0 0
0 0 1
0 1 0

⎤⎦ , E5 =

⎡⎣ 1 0 0
0 1 0
0 −5 1

⎤⎦ , E6 =

⎡⎣ 1 0 0
0 1 0
0 0 1

45

⎤⎦ ,

E7 =

⎡⎣ 1 −4 0
0 1 0
0 0 1

⎤⎦ , E8 =

⎡⎣ 1 0 0
0 1 8
0 0 1

⎤⎦ , E9 =

⎡⎣ 1 0 −34
0 1 0
0 0 1

⎤⎦ .

We have
E9E8E7E6E5E4E3E2E1A = I3

so that

A = E−1
1 E−1

2 E−1
3 E−1

4 E−1
5 E−1

6 E−1
7 E−1

8 E−1
9

=

⎡⎣ 0 1 0
1 0 0
0 0 1

⎤⎦⎡⎣ 1 0 0
−2 1 0
0 0 1

⎤⎦⎡⎣ 1 0 0
0 1 0
0 1 1

⎤⎦⎡⎣ 1 0 0
0 0 1
0 1 0

⎤⎦ · · ·

· · ·
⎡⎣ 1 0 0

0 1 0
0 5 1

⎤⎦⎡⎣ 1 0 0
0 1 0
0 0 45

⎤⎦⎡⎣ 1 4 0
0 1 0
0 0 1

⎤⎦⎡⎣ 1 0 0
0 1 −8
0 0 1

⎤⎦⎡⎣ 1 0 34
0 1 0
0 0 1

⎤⎦ ,
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which is the desired expression since E−1
i is an elementary matrix for each i.

(b). We can reduce A to upper triangular form by the following elementary row operations:⎡⎣ −2 −3 1
1 4 2
0 5 3

⎤⎦ 1
∼

⎡⎣ −2 −3 1
0 5

2
5
2

0 5 3

⎤⎦ 2
∼

⎡⎣ −2 −3 1
0 5

2
5
2

0 0 −2

⎤⎦ .

Therefore, the nonzero multipliers are m12 = − 1
2 and m23 = 2. Hence, setting

L =

⎡⎣ 1 0 0
− 1

2 1 0
0 2 1

⎤⎦ and U =

⎡⎣ −2 −3 1
0 5

2
5
2

0 0 −2

⎤⎦ ,

we have the LU factorization A = LU , which can be verified by direct multiplication.

46(a). Using the distributive laws of matrix multiplication, first note that

(A+2B)2 = (A+2B)(A+2B) = A(A+2B)+2B(A+2B) = A2+A(2B)+(2B)A+(2B)2 = A2+2AB+2BA+4B2.

Thus, we have

(A+ 2B)3 = (A+ 2B)(A+ 2B)2

= A(A+ 2B)2 + 2B(A+ 2B)2

= A(A2 + 2AB + 2BA+ 4B2) + 2B(A2 + 2AB + 2BA+ 4B2)

= A3 + 2A2B + 2ABA+ 4AB2 + 2BA2 + 4BAB + 4B2A+ 8B3,

as needed.

46(b). Each occurrence of B in the answer to part (a) must now be accompanied by a minus sign. Therefore,
all terms containing an odd number of Bs will experience a sign change. The answer is

(A− 2B)3 = A3 − 2A2B − 2ABA− 2BA2 + 4AB2 + 4BAB + 4B2A− 8B3.

47.The answer is 2k, because each term in the expansion of (A + B)k consists of a string of k matrices,
each of which is either A or B (2 possibilities for each matrix in the string). Multiplying the possibilities
for each position in the string of length k, we get 2k different strings, and hence 2k different terms in
the expansion of (A + B)k. So, for instance, if k = 4, we expect 16 terms, corresponding to the 16 strings
AAAA, AAAB, AABA, ABAA, BAAA, AABB, ABAB, ABBA, BAAB, BABA, BBAA, ABBB, BABB,
BBAB, BBBA, and BBBB. Indeed, one can verify that the expansion of (A+B)4 is precisely the sum of
the 16 terms we just wrote down.

48. We claim that (
A 0
0 B−1

)−1

=

(
A−1 0
0 B

)
.

To see this, simply note that(
A 0
0 B−1

)(
A−1 0
0 B

)
=

(
In 0
0 Im

)
= In+m

and (
A−1 0
0 B

)(
A 0
0 B−1

)
=

(
In 0
0 Im

)
= In+m.
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49. For a 2× 4 matrix, the leading ones can occur in 6 different positions:

[
1 ∗ ∗ ∗
0 1 ∗ ∗

]
,

[
1 ∗ ∗ ∗
0 0 1 ∗

]
,

[
1 ∗ ∗ ∗
0 0 0 1

]
,

[
0 1 ∗ ∗
0 0 1 ∗

]
,

[
0 1 ∗ ∗
0 0 0 1

]
,

[
0 0 1 ∗
0 0 0 1

]
For a 3× 4 matrix, the leading ones can occur in 4 different positions:⎡⎣ 1 ∗ ∗ ∗

0 1 ∗ ∗
0 0 1 ∗

⎤⎦ ,

⎡⎣ 1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 0 1

⎤⎦ ,

⎡⎣ 1 ∗ ∗ ∗
0 0 1 ∗
0 0 0 1

⎤⎦ ,

⎡⎣ 0 1 ∗ ∗
0 0 1 ∗
0 0 0 1

⎤⎦
For a 4× 6 matrix, the leading ones can occur in 15 different positions:

⎡⎢⎢⎣
1 ∗ ∗ ∗ ∗ ∗
0 1 ∗ ∗ ∗ ∗
0 0 1 ∗ ∗ ∗
0 0 0 1 ∗ ∗

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
1 ∗ ∗ ∗ ∗ ∗
0 1 ∗ ∗ ∗ ∗
0 0 1 ∗ ∗ ∗
0 0 0 0 1 ∗

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
1 ∗ ∗ ∗ ∗ ∗
0 1 ∗ ∗ ∗ ∗
0 0 1 ∗ ∗ ∗
0 0 0 0 0 1

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
1 ∗ ∗ ∗ ∗ ∗
0 1 ∗ ∗ ∗ ∗
0 0 0 1 ∗ ∗
0 0 0 0 1 ∗

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
1 ∗ ∗ ∗ ∗ ∗
0 1 ∗ ∗ ∗ ∗
0 0 0 1 ∗ ∗
0 0 0 0 0 1

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
1 ∗ ∗ ∗ ∗ ∗
0 1 ∗ ∗ ∗ ∗
0 0 0 0 1 ∗
0 0 0 0 0 1

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
1 ∗ ∗ ∗ ∗ ∗
0 0 1 ∗ ∗ ∗
0 0 0 1 ∗ ∗
0 0 0 0 1 ∗

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
1 ∗ ∗ ∗ ∗ ∗
0 0 1 ∗ ∗ ∗
0 0 0 1 ∗ ∗
0 0 0 0 0 1

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
1 ∗ ∗ ∗ ∗ ∗
0 0 1 ∗ ∗ ∗
0 0 0 0 1 ∗
0 0 0 0 0 1

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
1 ∗ ∗ ∗ ∗ ∗
0 0 0 1 ∗ ∗
0 0 0 0 1 ∗
0 0 0 0 0 1

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
0 1 ∗ ∗ ∗ ∗
0 0 1 ∗ ∗ ∗
0 0 0 1 ∗ ∗
0 0 0 0 1 ∗

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
0 1 ∗ ∗ ∗ ∗
0 0 1 ∗ ∗ ∗
0 0 0 1 ∗ ∗
0 0 0 0 0 1

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
0 1 ∗ ∗ ∗ ∗
0 0 1 ∗ ∗ ∗
0 0 0 0 1 ∗
0 0 0 0 0 1

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
0 1 ∗ ∗ ∗ ∗
0 0 0 1 ∗ ∗
0 0 0 0 1 ∗
0 0 0 0 0 1

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
0 0 1 ∗ ∗ ∗
0 0 0 1 ∗ ∗
0 0 0 0 1 ∗
0 0 0 0 0 1

⎤⎥⎥⎦
For an m× n matrix with m ≤ n, the answer is the binomial coefficient

C(n,m) =

(
n
m

)
=

n!

m!(n−m)!
.

This represents n “choose” m, which is the number of ways to choose m columns from the n columns of the
matrix in which to put the leading ones. This choice then determines the structure of the matrix.

50. We claim that the inverse of A10 is B5. To prove this, use the fact that A2B = I to observe that

A10B5 = A2A2A2A2(A2B)BBBB = A2A2A2A2IBBBB = A2A2A2(A2B)BBB

= A2A2A2IBBB = A2A2(A2B)BB = A2A2IBB = A2(A2B)B = A2IB = A2B = I,

as required.

51. We claim that the inverse of A9 is B6. To prove this, use the fact that A3B2 = I to observe that

A9B6 = A3A3(A3B2)B2B2 = A3A3IB2B2 = A3(A3B2)B2 = A3IB2 = A3B2 = I,

as required.
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