ual for Calculus A Complete Course Canadian 8th Edition by Adams IBSN 9780321880215
- http://downl oadlink.org/product/sol utions-manual -for-cal cul us-a-compl ete-course-canadi an-8th-edition-by-adams-ibsn-9780321
SECTION 2.1 (PAGE 100) ADAMS and ESSEX: CALCULUS 8

CHAPTER 2. DIFFERENTIATION 7. Slope ofy=+/x+1atx=31is
i VATh-2 JAFh+2
Section 2.1 Tangent Lines and Their Slopes " h>0 h JEYh+2
(page 100) _m _4th-4
- h—0h(VA+h+2)
1. Slope ofy=3x—-1at(1,2)is i 1 1
=1 — = -.
h—0 4
 31+h-1-@x1-1 . 3h Va+h+2
m = lim = lim — =3
h—0 h h—0 h L 1
Tangent line isy — 2 = Z(X —3),0orx —4y = -5,
The tangent line iy —2=3(x—1), ory =3x—1. (The 1
tangent to a straight line at any point on it is the same 8. The slope ofy = — atx =9 is
straight line.) VX
2. Sincey = x/2 is a straight line, its tangent at any point . 1 1
(a,a/2) on it is the same lingy = x/2. m= rlinoﬁ J9+h 3
3. Slope ofy =2x2—5 at(2,3) is _im 3= v2+h 3+v9+h
h—0 3n/9+h 3+./9+h
m— fim 22+ h)2 —5—(2(22) - 5) _ lim 9-9-h
" hoo h h—03hv/9+h(B++v/9+h)
_ i 880+ 2n% -8 -+ _ 1
~ o h 336 54
= lim(@+2h)=8
h—0 The tangent line a9, 3) isy = 3 — &(x —9), or
—1_1
Tangent line isy — 3=8(x — 2) or y = 8x — 13. y=2-=X
2X .
4. Theslope ofy=6—x—x2atx=—2is 9. SIopeofy:X+2atx:2|s
(= (= 2 _
m=Aim06 ( 2+h)h( 2+hy? -4 2040
2 m= lim M
—im M ime_hy =3 h—0 h
 h—0 >0 )=3 i At2h-2-h-2
The tangent line at—2, 4) is y = 3x + 10. h-0  h(Z+h 4‘12)
5. Slope ofy=x3+8atx=—-21is :rLILnoh(4+h) —a
3
m = lim (=2+h +h8 —(8+9 Tangent line isy — 1 = %(x -2,
h—0
or X —4y = -2,
. —8+12h—6h?+h%4+8-0 =
= A'L“O h 10. The slope ofy=+/5—x2atx=1s
— i _ 2\ _
= Jim, (12— 60+ 7) — 12 B+ h?-2
Tangent line isy — 0 = 12(x + 2) or y = 12x + 24. 5-(1+h?2—4
= lim
. h—0 /e _
6. The slope ofy = % at(0,1) is h( 5-Q+ h)2+2)
xc+1 —2_h 1
m—Iiml ! 1) =Ilm il =0 e 5_(1+h)2+2_ 2
T h>oh\h24+1 T h>0h241° 7 , , 1
The tangent line a1,2) isy =2— 5(x — 1), or
The tangent line af0, 1) is y = 1. y= % - %X-
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Slope ofy = x2 at x = xg iS
(o +h?2—x2  2xgh+h?
m:“mM:“mL

h—0 h h—0 h = 2.

Tangent line isy — x2 = 2xo(X — Xo),
2

or y = 2XoX — Xg.
1
The slope ofy=;at(a, 1y is
—im Ity YY) o, 2ah 1
“hooh\a+h ' a/ hsoh@+hy() a2
1 1 1
The t tli —-)isy=—-—-—=((x-a),
e tangent line aa, a) isy a az(x a), or

2 X
y=—--

m

a a2’
JI0+h][ =0 1
Since lim_o % = h@om does not

exist (and is nobo or —oo), the graph off (x) = /[x|
has no tangent at = 0.

The slope off (x) = (x — D)¥3 atx=1is
1+h-1¥3—-0
_ jim &Y

m= = =~  —limh¥3=0
h—0 h h—0

The graph off has a tangent line with slope 0 at= 1.

Since f (1) = 0, the tangent has equatigh= 0
The slope off (x) = (x +2)%% atx = —2 is
. (=2+h+2% -0

m = lim
h—0 h

= lim h™%° = .
h—0

The graph off has vertical tangermnt = —2 atx = —2.

The slope off(x) = [x2 — 1l atx = 1is
[(A+h2 -1 —1-1] __|2h+h?
= lim ,
. . h . h—0 h
which does not exist, and is netoco or co. The graph
of f has no tangent at = 1.

m = limp_o

100 ={ Vg 2 mer
im QN -fO _ VR
h—0+ h h—0+ h
lim w: lim _—‘_h:oo
h—0— h h—»0- h

Thus the graph off has a vertical tangent = 0.

The slope ofy =x2 — 1 atx = xg is

19.

20.

21.

22.

SECTION 2.1 (PAGE 100)

If m= -3, thenxp = —%. The tangent line with slope
m= —3at(-3,3)isy = 3 —3(x + 3), that is,
y=-3x-23

a) Slope ofy=x3atx=ais

. (@a+h3-a
m= lim ———
h—0 h
_a®+3a?h +3ah? +h3-ad
= lim
h—0 h

= lim (3a® + 3ah + h?) = 3a?
h—0

b) We havem =3 if 3a2 =3, i.e., ifa = +1.
Lines of slope 3 tangentty = x3 are
y=143x-1andy = -1+ 3(x + 1), or
y=3x—2andy = 3x + 2.

The slope ofy = x3 —3x atx = a is

—im L 3 3
m = lim H[(a+ h)® — 3@+ h) — (a Sa)]
= lim 5[a3+3a2h+3ah2+h3—3a— 3h — a3+3a]
h—0 h
= lim[3a + 3ah + h? — 3] = 3a® - 3.
h—0
At points where the tangent line is parallel to thexis,
the slope is zero, so such points must satisfy 33 = 0.

Thus,a = +1. Hence, the tangent line is parallel to the
x-axis at the pointg1, —2) and (—1, 2).

The slope of the curvg = x3—x+1 atx =a is

3_ _ (a3 _
m=|irn(a+h) @+h+1-@—-a+1l

h—0 h

_ 3a%h+3ah?+a%—h
= lim

h—0 h

= tLimo(e,a2 +3ah+h?—1)=3a%—1.

The tangent ak = a is parallel to the liney = 2x + 5 if
3a2 —1=2, that is, ifa= +1. The corresponding points
on the curve aré—1,1) and (1, 1).

The slope of the curvg =1/x atx =a is

1 1
m = lim a+h a

_ a-@+h 1
h—0 h " h>0 ah(@a+h) = a?’

The tangent ak = a is perpendicular to the line

y = 4x — 3 if —1/a2 = —1/4, that is, ifa = +2. The
corresponding points on the curve dre2, —1/2) and
2,1/2).
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23. The slope of the curvg = x2 atx = a is 27. Horizontal tangent at—1/2, 5/4). No tangents at
(-1,1) and (1, —1).
o (@t+h?-a® y
m= lim —————— = lim (2a+ h) = 2a.
h—0 h h—0
The normal aix = a has slope—1/(2a), and has equa- 21
tion
1 X 1 \
— 2 = —— — —_— = — 2,
y-4 2a(x ), or 2a+y 2+a b . . | f v
This is the linex + y = kif2a = 1, and so 3 2 -1 \1/ 2
k= (1/2) + (1/2)? = 3/4. 17
24. The curvesy = kx? andy = k(x — 2)? intersect at(1, k). oY= X% — 1] —x
The slope ofy =kx? atx =1 is
 k(A+h?-k -3
my = m ——=—— = lim 2+ h)k = 2. Fig. 2.1.27

The slope ofy = k(x —2)2 atx =1 is
28. Horizontal tangent afa, 2) and (—a, —2) for all a > 1.
k(2— (A +h)% -k No tangents atl, 2) and (-1, —2).

my = rI}l_r}nO H = rI]ILnO(—Z + hk = —2k. y
. . . y=IX+1—|x—1]
The two curves intersect at right angles if ol
2k = —1/(=2k), that is, if 4% = 1, which is satisfied
if k==+1/2. 11
25. Horizontal tangents a0, 0), (3, 108), and (5, 0).
1 (3109 32 1 2 ¥
14
21+
-3
Fig. 2.1.28
29. Horizontal tangent af0, —1). The tangents atd-1, 0)
are vertical.
y
Fig. 2.1.25
g y=02-3 5]
26. Horizontal tangent af—1, 8) and (2, —19).
Y 4 14
201 ; t t >
T —_ 9y3 _ay2 -3 -2 - 2 X
;1.8)\10 y =2x° —3x° — 12x + k})
£ 1 % 27
-3
Fig. 2.1.29
207 2, —19
-30 30. Horizontal tangent af0, 1). No tangents af—1, 0) and
Fig. 2.1.26 1, 0).
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Ya

y= (62 - D)
24

!
N
1
=
4
N
x

Fig. 2.1.30

The graph of the functiorf (x) = x%/3 (see Figure 2.1.7
in the text) has a cusp at the origd, so does not have
a tangent line there. However, the angle betw&xdn
and the positivey-axis does— 0 asP approaches 0
along the graph. Thus the answer is NO.

The slope ofP(x) atx =a is

h—0 h

SinceP(a + h) = ag + ath + ash? + - - - + a;,h" and
P(a) = ap, the slope is

ah+ah?+... hh —
m= ljm 20t +ah"+ - +ah — 8
h—0 h
=lima +ah+---+a,h"1=a.
h—0

Thus the liney = ¢(x) = m(x — a) + b is tangent to

y=PX) atx =aifand only if m = a; andb = ag,

that is, if and only if

PO)—{(X) = ap(x —@)* + a3(x —@)> + - + an(x — )"
=(X— a)z[az +ag(X —a)+ - +an(x — a)”‘z]
= (x —a)°Q(x)

where Q is a polynomial.

Section 2.2 The Derivative (page 107)
y A
y= ()
o0——o0 + o—o0
o o >

3.

SECTION 2.2 (PAGE 107)

y
oO———0
o—-0
y=9gX)
o—-0 o
o——o0
y
y=h(x)
X
y
l # ‘ +
y=K(x)

5. Assuming the tick marks are spaced 1 unit apart, the

function f is differentiable on the intervalé-2, —1),
(-1,1), and (1, 2).

Assuming the tick marks are spaced 1 unit apart, the
function g is differentiable on the interval6-2, —1),
(=1,0), (0,1), and (1, 2).

7. y= f(x) has its minimum ak = 3/2 where f'(x) =0

43
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y
=x3-1

y=f(x)=3x-x?>-1

T T S R R R B
—t—t—+

Y4 |
\' y =1 N
\ ’ I S| \¢ X

1 \X

Fig. 2.2.7 Fig. 2.2.9

T T S Y N N
1

10. y = f(x) is constant on the intervais-oo, —2), (-1, 1),
and (2, c0). It is not differentiable ak = +2 and

y = f(x) has horizontal tangents at the points ne& 1 x =+l

e y
and 32 where f’(x) =0 y=f(x)=x2— 1 :|x2—4|

Y1 1
T y=fx)=x3—-3x2+2x+1 1
1 y /
y= X

~— X
§ y= f'(x) /

Fig. 2.2.10
Fig. 2.2.8
11.  y=x>-3x
, (x +h)2 —3(x + h) — (x2 — 3x)
y = h—>0 h
2

y = f(x) fails to be differentiable ak = —1, x = 0, _ i XhAhT o8 o 3
andx = 1. It has horizontal tangents at two points, one h—0 h
between—1 and 0 and the other between 0 and 1. dy = (2x — 3)dx
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12. f(x) = 14 4x — 5x° 17. FH) =2t +1
_ 2 _ g2 B

£(x) = lim 14+ 4(x+h) —5x+h)c— (1 +4x 5>!<:,)(t) _ lim J2t+h) +1-V2t+1

h—0 h h—0 h
4h — 10xh — 5h? . 2t+2h+1-2t -1

= lim ——————— =410 = lim
h—0 h h—oh (V2 +h) +1+ V2t +1)
df (x) = (4 — 10x) dx 2

= lim
h—0 .2+ h) +1+ /2t +1
1

2t+1
13.  fx)=x° 1
dF(t) = dt
, . (x+h3=x3 VA +1
f'x) = lim ——
h—0 h
2 2. 13
— iim 3x°h 4+ 3xh“ +h _ 3,2
h—0 h
df (x) = 3x%dx
09 18.  f(x)=3v2-x
3 3
V2—(X+h) —3v2—x
f/(x) = lim V2= XHN - 4
h—0 h
2-x—h-2
14, s—_1_ =Iim—[ X +x }
3+4t h—~04 [ h(v2—(xX+h) +v2-x)
dS_ im 1 1 1 B 3
dt ~nh-oh[3+4t+h) 3+4t - 8/2—x
im 3TA4-3-4t—4n 4 df 34
= = — X) = — X
h—0 h(3 + 4t)[3 + (4t + h)] (3+4t)2 ) 82 — X
ds = 4 dt
(3442
1
19, y=x+-
2—X X
15. 9(><)=2 1 1
+ X X+h+—— —x—=
2—-(x+h)y 2-x y = lim +h X
, i - _h—>0 h
g(x)zmo 2+x+rr1] 24X | N
_im @XM+ - R+ x+ MR =X ﬂ'ﬂh(” h(x+h)x>
h—0 h2+ x+h)(2+ x) 1 lim _1_i
4 T T U hso(x4+hx x2
= 2 2 1
d =——-d
g(x) 21 %2 X
16. y=3x®-x 20, 7= _>_
1 5 13 1+s
y =lim =|3x+h3 = x+h) —ExE-x) dz . 1] s+h s
h-ohl3 3 —=lm=|— = —
1/, s 13 ds h-oh|1l+s+h 1+s
= lim = (x?h+ xh? + 3h° ~ h) L (s+hA+s)—sd+s+h 1
=rI]imO(x2+xh+%h2—1)=x2—1 hﬁol h(1+s)(1+s+h) (1+5s)?
dy = (x2 — 1) dx dz = (1+s)? ds
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1
21. F(X) = —— 25.
) V1+x2
1 1
2 2
F'(x) = lim ﬂ”"”‘i} Vitx
h—0 26.
_ lim V1I+x2 -1+ (x+h)?
S h=0 h/1T+ (x+ h)2VI1 2
2 2 2
— lim 1+xc—1—x“—2hx—h 27

B —2X B X
T 21+ x2)3/2 T+ x2)3/2

1
22. y_ﬁ
e .
Y ="n x+h?2 x2
i o x+22
T h—0 hx2(x +h)2 — x3
2
dyz—ﬁdx
1
23. =
y V14X
1 1
ron o A/ IEX+h 14X
Y00 = Jim S
_jim YItX-V1+x+h
- h>0 hyT+x+hy1+x
— lim 1+x—-1-x-—h
>0 hyTH X+ hVI+ X (VI+X+I+x+h)
= lim — 1
T >0 VIt x+hyI+x(VItx++I+x+h)
1
T 21+ x)32
1
Y=o
t2-3
24. 0 =503
poo o 1(t+h?-3 t2-3
f(t)_rllinoﬁ<(t+h)2+3_t2+3
—im [(t 4+ h)2 = 3](t2 + 3) — (t2 — 3)[(t + h)? + 3]
" h>0 h(t2 + 3)[(t + h)2 + 3]
_im 12th + 6h? 1
T h>0h(t2+3)[(t+h)2+3]  (t2+3)?
12
df(t):mdt
46

h=~0h/1+ (x +h)2V1+ x2 <\/1+ X2+ /14 (x + h)2>

28.

29.

30.

ADAMS and ESSEX: CALCULUS 8

Since f(x) = xsgnx = x|, for x # 0, f will become
continuous ax = 0 if we define f (0) = 0. However,
f will still not be differentiable atx = 0 since|x| is not
differentiable atx = 0.

x2  ifx>0 g
-x2 ifx<0

will become continuous and differentiable xat= 0 if we
defineg(0) = 0.

h(x) = |x? + 3x + 2| fails to be differentiable where
x2+3x+2=0, that is, atx = —2 andx = —1. Note:
both of these are single zeros xf + 3x + 2. If they
were higher order zeros (i.e. (k +2)" or (x + 1)" were
a factor ofx2 + 3x + 2 for some integen > 2) thenh
would be differentiable at the corresponding point.

Sinceg(x) = x2sgnx = x|x| = {

y = x3 —2x
« fO)— (D « fO)— (D
x—1 x—1
0.9 0.71000 11 1.31000
0.99 0.97010 1.01 1.03010
0.999 0.99700 1.001 1.00300
0.9999 0.99970 1.0001 1.00030

d 1+hB—21+h)— (-1
2 x3—20 =Iim(+) 1+h) -1
dx xe1 h—0 h
. h+3n2+h3
= lim —
h—0 h
=lim1+3h+h?=1
h—0
f(x) =1/x
f — —
« x)—-f@ « fx)— (2
X—2 X—2
19 —0.26316 21 —0.23810
199 | -0.25126 201 | —0.24876
1.999 | —0.25013 2.001 | —0.24988
1.9999| —0.25001 2.0001| —0.24999

1
2 2—(2+h)

’ T 2+h B _
F =l =M h2 2
1 1

Mo 212 4

The slope ofy =5+ 4x — x? atx =2 is

Y im 5+4(2+h) —(2+h?-9
dX|y_p h—0 h
_n2
= lim — =0.
hILnO h

Thus, the tangent line at = 2 has the equatioy = 9.
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y = +/X+ 6. Slope at(3, 3) is 44,
. 4/94+h-3 . 9+h-9 1
m= lim = lim = -.
h—0 h h—0h (Js;Jr—h + 3) 6

1
Tangent line isy — 3 = 6(x —3), or x — 6y = —15.

t
The slope ofy = v att=—-2andy=-1is

dy 1 —2+h

dt|__, “nsbh [(—2+ h2—-2 (_1)]
im —2+h+[(-2+h?*-2] 3 45,
" ho0 h[(—2+ h)2 — 2] T2

Thus, the tangent line has the equation
y=-1-3(t+2), thatis,y = -3t — 4.

y:m Slope att = a is

2 2
o im AT+ @+h)  @+a 46.
T ho0 h

. 2@®+a—a?—-2ah—h?—a—h)
= lim

h—0 h[(@a+h)?2+a+hj@2+a)

i —4a—2h—2

" h>0[(@+h)2+a+h]@2+a)

_ da+t2

T (@2 +a)?

o 2 2(2a+ 1)
Tangent line isy = Z1a @+ 22 t—a
f'(x) = —17x 18 for x £ 0
g'(t) = 22421 for all t
dy 1 53
b A f 0
ix X or X #
dy 1 _4p3
i~ 3 X for x £0
47.
9225 _ _po5-32510r 150
dt
15119/4 _ 1_195115/4 for s> 0
ds 4
d 1 1
6V " 2l T 6
1 1 1

FX) ==, Fy=——=, F/(Z)=-16

0= Fx=—, (4)

2 1

f/8 - —— —5/3 _

@=—3x"" T
dy| _Lise _ 1
dt|_, 4 t=a 82

SECTION 2.2 (PAGE 107)

The slope ofy = /X at x = xg is

dy 1
2/X0

AX | x=xq

Thus, the equation of the tangent line is

1 . X 4+ Xo
= - that is,y = .
y \/Xo+2 _XO(X X0), IS,y =3 %
1 1 1
Slope ofy = — atx=ais —— = —.
P y X X ! x2 a2

X=a

Normal has slop&?, and equatiory — 2= a’(x — a),

1
ory:azx—a3+a

The intersection points of = x2 and x + 4y = 18 satisfy

4x24+x—18=0
(4x +9)(x —2) =0.

Thereforex = —§ or x = 2.

d
The slope ofy = x2 is my = d_z = 2X.

9 9
At X:—Z, mlz—i. At x=2,m =4
The slope ofx + 4y = 18,ie.y = —ix + 8 is
mp = —%.
Thus, atx = 2, the product of these slopes is

(4)(—%1) = —1. So, the curve and line intersect at right

angles at that point.

Let the point of tangency bé, a2). Slope of tangent is

=2a
X=a
This is the slope from(a, a) to (1, —3), so
a®+3
+ = 2a, and
a—1

a2+3=2a%2-2a
a>-2a—-3=0
a=3o0r —1

The two tangent lines are
(fora=3): y—9=6(x—3) or6x—9
(fora=-1): y—1=-2x+1)ory=-2x-1

47
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y
(@.a%)
-
1,-3)
Fig. 2.2.47
1 .
48. The slope ofy = o atx=ais
dy 1
dX|y_q @2
. 1 1
If the slope is—2, then— = —2,0ra =+—.

a2
Therefore, the equations of the two straight lines are

Y=ﬁ—2<x—%> andy=—ﬁ—2<x+%§>-
ory=—2x+2J2.

49. Let the point of tangency bé, /a)
Slope of tangent is;—xﬁ

_ 1
—a 273

1 -0
Thus—=\/a ,S0a+2=2a, anda = 2.
2,/a a+2
. 1
The required slope is—.

22

y

(a,v/a)

/ y=vx >

_2 X
Fig. 2.2.49

50. If a line is tangent toy = x2 at (t, t2), then its slope is

d

% = 2t. If this line also passes throudh, b), then
=t

its s>I(ope satisfies

=2t, thatist?—2at+b=0.

48

ADAMS and ESSEX: CALCULUS 8

2a+ +/4a?2 — 4b
Hencet = — =a++va?-—bh.

Ifb < a? ie.a2—b > 0,thent = a++vaZ—b

has two real solutions. Therefore, there will be two dis-

tinct tangent lines passing through, b) with equations
y = b+2(ai\/a2—b) (x —a). If b=a?, thent = a.
There will be only one tangent line with slopa 2nd
equationy = b + 2a(x — a).

If b> a2, thena?—b < 0. There will be no real solution

for t. Thus, there will be no tangent line.

51. Supposef is odd: f(—x) = —f(x). Then
f(=x+h) - f(=x)

f/(=x) = li
0=,

h
— lim _f(x—h)— f(x)
h—0 h

(let h = —k)
— iim f(X+ k) — f(x)
k—0 k
Thus f’ is even.
Now supposef is even: f(—x) = f(x). Then
, . f=x+h) - f(=x)
P = r|1|£>n0 h
m f(x—h)— f(x)

= f'(x)

h—0 h
lim M
k—0 —k
= —f'(x)
so f’ is odd.

52. Let f(x) =x~". Then

xX+h™"—-x"
h

—im & (2 L
T hoh \(x+h)"  xn

_ X1 — (x +h)"
~ h—0 hx"(x +h)"
X — (X +h)
=1IIm — X
h—0 hx"((x + h)"

(xn—l X2 ) - (X h)”‘l>

Foo =g,

1
_ n-1_ y,—(+D
= _in X NX = —NX .
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53. f(x)=xY3 If f'(a+) is finite, call the half-line with equation
(x4 h)3_x13 y = f(@ + f'(a+)(x — a), (x > a), theright tangent
f'(x) = A@OT line to the graph off atx = a. Similarly, if f'(a—)

(x + Y3 — x1/3 is finite, call the half-liney = f(a) + f'(a—)(x — a),

= lim (x < a), theleft tangent line. If f/(a+) = co (or —oc0),
h—0 5 3h 1313 03 the right tangent line is the half-line =a, y > f(a) (or
L B 4 (A 4+ x x=a,y< f@) If f'lam) = oo (or —o0), the right
(X +h)2/3 + (x + h)1/3x1/3 4 x2/3 tangent line is the half-link = a, y < f(a) (or x = a,
i X+h—x y > f(a).
- hanO h[(x + h)2/3 + (x + h)1/3x1/3 4 x2/3] The graph has a tangent linesat= a if and only if
) 1 f’(a+) = f/(a—). (This includes the possibility that both
= A'Lno (X + )23 + (x + h)1/3x1/3 + x2/3 quantities may bet-co or both may be—oc.) In this
1 1 case the right and left tangents are two opposite halves of
=325~ 3 —23 the same straight line. Foir(x) = x%/3, f/(x) = $x~1/3.
At (0, 0), we havef’(0+) = 400 and f/(0—) = —oo.
In this case both left and right tangents are pasitive
y-axis, and the curve does not have a tangent line at the
origin.
54. Let f(x) =x¥". Then For f(x) = ||, we have
/ 1 if x>0
hyY/n _ x1/n f'(X) = sgn(x) = .
f/(x):rl]imo—(x+ )h X (letx +h=a", x = b") %1 ix <o
_ lim a—b At (0,0), f'(0+) = 1, and f/(0—) = —1. In this case
T asbal —bn the right tangent iy = x, (X > 0), and the left tangent is
— lim 1 y = —X, (x < 0). There is no tangent line.
- a—b an—l + an—Zb + an—3b2 4+t bn—l
= ':_1 _Lam- Section 2.3 Differentiation Rules
nb n (page 115)
1. y=3?-5x—7, y =6x-5.
5
2. y=4x12_ o y =2xY2 4 5x72
d (x4 —x"
55. X" =im ———— 3. f(x)=Ax*+Bx+C, f/(x)=2Ax+B.
T I | B nn-1 .., 6 2 , 18 4
_M]oh[x +1x h+ 1><2x h 4., f(x):Fer_z, f(x):_F_F
N n(nl— 1;(n;2)xn_3h3+---+hn—xn] _— $_3  dz 1, 152
xex 1 ST 715 0 dx 3 5
. 1 n(n — P
= r|1|Ln0<nxn + h[ T3 x""%h 6. y=x¥_ x5y = a5 | 456
n(nl_ 1;(” ; 232 hn—l]) 7. gt) = tll/3 + 2t1/:‘: +3tY® ,
xex Iy t4—2/3  T.-3/4  S._as5
R g =gt + St 2t
2
8. y=3Vi2- — —3¥3 %2
Vs
dy .1 _
= =23 352
56. Let dt +
. fla+h) - f(a 3 5
/ — 5/3 —3/5
F@a+) = lim h 9. u=gx/ - 35X /
. f@a+h)— f(@ du
f'(a=) = lim ———————~ au 23, -8/5
@) hl[g— h dx X7+ X

49
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

SECTION 2.3 (PAGE 115)

F(X) = (3x —2)(1 —-5x%)
F/(X) = 3(1 — 5%) + (3x — 2)(-5) = 13— 30x

y:ﬁ( —x——)_5ﬁ—x ;xf’/z

3
,_ 5 3 53/2
N f
1 2
e = )= —— "
g(t) 3 g @372
1
y_x2+5x
;L 1 __ Z+5
e A A v S
4 ) 4
Y=3-%x Y= G=x2
f(t)zz—nnt
2
My — — o T
Fo= -2 ") T @02
_ 2 oAy
W =13 IV=g

2
f()_l a5 4

f/(x) = —3x % + 4x72

u/u—3
g(u) — \/;72 — u—l/2 _ SU—Z

1 12— uJu
‘) = —2u-32 4 ey-3 = 2 Uvu
g'(u) 2u + 6u e
24+t +1t? )
= =V it
v N
a _ s, L _f_w
dt 2{ 2t t
x—-1 13 ,-2/3
ZZWZX/—X/
dz 1,5 2 X+ 2
_ -2/3 =5/3 _
— =X —X =
dx 3 +3 3x5/3
3—4x
f(x) =
(x) 3+ 4x
F(x) = B+4)(—4) — B-=4x)4)
(3+4x)2
B 24
(3+ 4x)?
50

22.

23.

24,

25.

26.

27.

28.

ADAMS and ESSEX: CALCULUS 8

+3(1 4+ X)L 4 20 (L 4 4%) + 41+ X)(L + 2X) (1 + 3%)

OR

42
T t2-1
, (=D +2) — (24 20)(20)
2= -1y
2P +t+1D)
T2—1?
14+t
=1
1
ds 1-VD=——= [ -1+ «/t')(—ﬁ)
dt 1-vb?
B 1
RVACEINGY
x3—4
oo = X+ 1
s X+ DEXH) - (3 - H(Q)
P = X+ 1)2
23432+ 4
T (x+1)2
ax+b
100=d
yon  (ex+d)a— (ax+ by
Feo = (cx + d)?
_ad—hc
T (ex+d)?
t2+7t 8
FO = —t+1
) — (t —t+DE+7) — 2+ 7t —8)(2t — 1)
®= (t2—t+41)2
_ -ef41s -1
T2 —t+1)72
f(x)=A+x)A+ 2x)(1+ 3x)(1 + 4x)
£/(x) = (14 2x)(L + 3x) (1 + 4X) + 2(1 + x)(1 + 3X)(1 + 4x)

f(x) = [(14 X)L+ 4)] [(1 + 2x)(1 + 3x)]
= (1 + 5% 4 4x?)(1 + 5x + 6x?)
= 1+ 10x + 25x? + 10x?(1 + 5x) + 24x*
=1+ 10x + 35x2 + 50x3 + 24x*

f/(x) = 10+ 70x + 150x> + 96x°

fO)=0c2+r2—8@r?+r3+1)

f/(r)y = (—2r 3 —

or
fr)y=-2+r"t+r24r34r
f/(ry=—-r—2—

I Hr’+r3+1)
+ 2412 a2 +3r?

—4r2 48

23 *41-—8 —122
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29. y=(*+HWX+ DB -2)
y = 2x(vX 4+ 1)(5x%3 - 2)
1 e 23 _
+ 2ﬁ(x + 4)(5x 2)
+ %)x‘l/s(x2 +4HWX+1)

C+D(x2+2)
T X+ + D
X+ X422+ 2
= 2d 2
;0G4 233 + x% 4 2)(5x* + 3x? 4 4x)
B (x5 + 2x3 + x2 + 2)2
(x5 4+ x3 4+ 2x2 + 2)(5x* + 6x2 + 2X)
a (x5 +2x3 + x2 + 2)2
_2x7 =3x8 — 3x* — 6x% 4 4x
T (x5 +2x3+x242)2
2x7 — 3x8 — 3x% — 6x2 + 4x
(X2 +2)2(x3 + 1)2

30.

X 3% +x
1 "~ ex2+2x+1
xX+1

31. y=

2X +

y = 6X2 +2x + 1)(6x + 1) — BX2 + X)(12x + 2)

(6x2 4 2x 4 1)2
_ 6x + 1
T(6x2 4 2x + 1)2

C WX=DR2-0A-x3)
N VX(E+2%)

1\ 2—x—2x2+x3
JX 3+ 2x

1 2—x—2x2+x3 1
fl)=(sx32)—— == +(1- =
) (2 3rx . UK

32. fXx)

5 B+2X)(—1—4x+3x%) — (2—x — 2X2 + x3)(2)

)

(3+ 2x)2
=01 -x?
T 2x3/2(34 2x)
( 1 )4x3+5x2—12x—7
+(1- =
JX (3+2x)2

0% — x21/(x)
[f (012

d x2
™ (Tx))

x=2

X=2
_M@-4t'e 4
[f(2]? 4
d /fXx) x2£/(x) — 2xf (x)
34. & <7> X=2 - X4 X=2
At -4 4 1
- 16 T 16 4

35.

36.

37.

38.

39.

40.

41.

2 o)

SECTION 2.3 (PAGE 115)

= (2xf ) + xzf’(x))

X=2 X=2

d f(x)
& <X2+ f(X)) X=2

O+ )0 = FO0@x + /(X))
B (X2 + f(x))? Xx=2
G+t -fM@+ ') 18-14 1

= 4f(2) +41'(2) = 20

@+ ()2 & 9
d [x2—4 d 8
—| = x=—2 = —— (1= 5
dx \x¢+4 dx Xe+4/)|_ o

8
=— (2
(X2+4)2( )x=—2
32 1
T 64 2

d [t@+ 0
E[ 5t }

. d [t+t3/2]
dt [ 5t [l

B+ Y2 — t+1¥2) (-1

t=4

a (5-1)7? t=4
:(1)(4) - (12(-1) _16
12
WX
oo = X+1
1
/ X+ 1)2—ﬁ —Vx(1)
f'(x) =
(X + 1)2
3
2 _ 5
9 182

di[(l FOL 4201 + 3L+ 4]
t t=0

= (D)L + 2t)(1+ 3L+ 4t) + (L + ) () (L + 3t)(1 + 4)+

L+ )L+ 2t)(B)(1 + 4t) + (1 + t)(L + 2t)(1 + 3t)(4)

t=0
=1+2+3+4=10
y= 2 Y 2 ( 4 )
“3_ax’ T T 2\Ta2x
3—-4/X% (3—4ﬁ) 2/X
Slope of tangent atl, —2) ism = m =4
Tangent line has the equatign= —2 + 4(x — 1) or
y=4x—-6
51
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42.

43.

44,

45.

46.

47.

SECTION 2.3 (PAGE 115)

X+1
Fory = x—+1 we calculate

Y = x-DBH-x+H@ _ 2
(x—1)? (x— 12
At x = 2 we havey = 3 andy = —2. Thus, the
equation of the tangent line i = 3 — 2(x — 2), or
y = —2x + 7. The normal line isy = 3+ %(x —2), or
y=3x+2.

1
y'=1- 2 .
For horizontal tangent: &y =1 — 2 sox? =1 and
Xx==%1
The tangent is horizontal &t, 2) and at(—1, —2)

— x4
y=x+<,

48.
If y=x2(4—x?), then
y = 2X(4 — x?) + x3(—2x) = 8x — 4x° = 4x(2 — x?).
The slope of a horizontal line must be zero, so
4x(2 — x?) = 0, which implies thaix = 0 or x = ++/2.
At x=0,y=0 and atx = £/2,y = 4.
Hence, there are two horizontal lines that are tangent to
the curve. Their equations age= 0 andy = 4.
_ 1 ;L 2x+1
Y=+ Y T (X2 + X + 1)2
For horizon- 49
tal tangent we want G= y' = —ﬂ Thus .
T+ x+12
1
2X+1=0andx=—=
2 114
The tangent is horizontal only <t—§, 5).
If y= X—+1 then
X+ 2
y = x+2@D - x+DH@Q) _ 1
(x+2)? (X +2)2?
In order to be parallel ty = 4x, the tangent line must
have slope equal to 4, i.e., 50.
1 or (x +2)% = 1.
(X +2)2 ’
Hencex + 2 = £3, andx = —3 or —3. Atx = -3,
y=-1, and atx_—— y=3.

Hence, the tangent |s parallel o= 4x at the points
(-3,-1) anc(—%, )

Let the point of tangency béa, l). The slope of the

-1 2

=0 4 Thusb——:%anda:B.
b? b?

Tangent has slopez so has equatioly = b — ZX'

tangent is——

52

ADAMS and ESSEX: CALCULUS 8

y A

Fig. 2.3.47

. 1
Since— =y = x?> = x%? =1, thereforex = 1 at

X

the intersection point. The slope gf= x2 atx = 1 is

1
2x =2. The slope ofy = — atx=11is
x=1 ﬁ
dy| _ 1 -ae 1
dx |y_q 2 el 2

The product of the slopes i) (—3) = —1. Hence, the
two curves intersect at right angles.

The tangent toy = x2 at (a, a) has equation

y = a® + 3a%(x — a), ory = 3a’x — 2a%. This line
passes througk2, 8) if 8 = 6a2 — 2a or, equivalently, if
a®—3a2+4=0. Since(2,8) lies ony = x3, a =2 must

be a solution of this equation. In fact it must be a double
root; (a — 2)2 must be a factor of® — 3a2 + 4. Dividing

by this factor, we find that the other factoras+ 1, that

is,

a®—3a’+4=(a—2>%@+1.

The two tangent lines ty = x3 passing through2, 8)
correspond ta = 2 anda = —1, so their equations are
y=12x — 16 andy = 3x + 2.

The tangent toy = x2/(x—1) at (a, a2/(a— 1)) has slope

(x — 1)2x — x3(1) _a?-2a
(x —1)2 - (@a-1?

X=a
The equation of the tangent is

a2 a2
a-1 (a— 1)2

y-— 2 x—a.

This line passes througf2, 0) provided

a2 a2

(a 1)2 (2 a),
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INSTRUCTOR’'S SOLUTIONS MANUAL SECTION 2.4 (PAGE 120)

or, upon simplification, 8 — 4a = 0. Thus we can have  54. To be proved:
eithera = 0 ora = 4/3. There are two tangents through

(2, 0). Their equations arg =0 andy = —8x + 16.

(fofa--- fn)
=ty ot fifyee fobo ot b f]

d i NI+ = VT(X)
S1. dx Feo = r|1|£>no h Proof: The casen = 2 is just the Product Rule. Assume
i f(x+h)— f(x) 1 the formula holds fon = k for some integek > 2.
- hanO h JIX+h) +/TX) Using the Product Rule and this hypothesis we calculate
f/(X) ’
= (f1fz-- fi fkya)
2/F /
; L) ) = [(fafo - £ fia]
_ 2 — — _ / /
dx Xrl= 2Vx2+1  JxZ+1 B (fl/fzm 1 Bt 4 (fafz - 0 B
. =(fifo-- fe+ fofy o fet+ -+ fofo oo ) fig
52. f(x)=x3=1% if X=0 Thereforef is differen- + (fafz-- i) fry

53.

—x3 ifx<0
tiable everywhere excegossibly at x = 0, However,

=fifo fufipr+ fofo fefga +- -
+ fifo fefgr + fofao fie iy

f(0O+h)— f(0
im ———————~ — |im h*= so the formula is also true far = . The formula is
0+ r)1 0) 2 . .
h—0+ h—~0+ therefore for all integers > 2 by induction.
 fO+h—-f@O )
lim V7 % _ i (=h?) = 0.
h—0— h h—0—

Thus f’(0) exists and equals 0. We have

/ 3*x2  ifx>0
f(x) = =
) { —3x2 if x <O0.

d n
To be proved: —x"? = —x™"?=1forn=1, 2, 3,....

Proof: It is already known that the case= 1 is true:
the derivative ofx¥/2 is (1/2)x~1/2.

Section 2.4 The Chain Rule (page 120)

y=(2x+3)° y =6(2x+3)°%2=122x+3)°

-3

ol () w6y

f(x) = (@4-x*™
f/(x) = 10(4 — x?)2(=2x) = —20x(4 — x?)°

; ; dy d —6X 3x
Assume that the formula is valid for = k for some DT /1-3x2 = - _
positive integerk: dx  dx 21— 3x2 V1=3x2

d k
/2 _ (k/2)-1
—X¥e = —x .
dx 2

Then, by the Product Rule and this hypothesis,

d vz _ 9 12 k2

dx dx

-10
F(t):(2+§)

3\ -3 30 3\ 1
F'(t) = —-10(2+ 2 —==(2+:
® <+t> t2 t2<+t>

z=(1+x%3)%2
Z/ — %(l 4 X2/3)1/2(%X—1/3) — X—1/3(1 + X2/3)1/2

_ Lz Kapwaa KL e 3
2 2 2 Y=g
Thus the formula is also true far = k + 1. Therefore it y =— 3 5(—4) = 12 5
is true for all positive integera by induction. G-4) (5 —4x)

For negativen = —m (wherem > 0) we have

y=(@1-2t%)7%2

d o d 1 y =31 - 2%)7>/2(—4t) = 6t (1 - 2t%) /2
dx ~ dx xM/2 2x3 — 2x
=11-x%, y =-2xsgn(l—x%) =" "=
=__n1'gx(m/2)_l y | | y 0] ( ) |1—X2|
X 3
_ M —m2-1_ N w1 fO) =12+t7
2 2 ' 3t2(2 4+ t3)

/ _ 3 2y _
fi(t) = [sgn(2+ t)](3t%) = 20

53
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11.

12.

13.

14.

15.

16.

SECTION 2.4 (PAGE 120)

y =4x+[4x — 1] 17.
y' = 4+ 4(sgn(4x — 1))
_[8 ifx> %
“lo ifx<i
y=@Q+Ix"?
y =12+ x13)7?3@Ix1?)sgn(x)
= IX2@+ X% 77 (%) = x|x|@+ |x|*)~%/* 18,
_
P IR
y/ _ 1 < 3 )
- 2
(z+ m) 2/3x + 4
3
- 2
2/3x +4(2+ V3x 1 4) d
Sa_ @
19. dXx o
X2 ‘ d 3/4
f(x) = <1+ T) 20, 9y
3
’ _ X—2 } 3 } d 3/2
f'(x) = +\/ ) (2\/—)(_2) <3) 21. x>

(15
3
2 [ 3 \/x—2
= — 1
3\/x—2< + 3 )
1 —-5/3
Z:<U+m>

ADAMS and ESSEX: CALCULUS 8

= 2\/—<I+—>=ZX
d\/—_

y=[2+t3|
_21/3 t'
yl
slope 8
y=4x+]4x—1|
slope 0
(11)
\*7) X
1 1 1 4
— — Ty34
X = X —— = =X
VX 2,/ /X 2/x 4

3 14

(3x2) = >x'/?

22. %f(Zt +3)=2f'(2t +3)

23. ;—X f(5x — x%) = (5—2x) f'(5x — x?)

d 2
24 o |12

dz _ S5(, L\ 1
du 3 u—1 u—1)2

=L@ ()
NEE)

—-8/3
-3 ( ) (i) | 25. L Araro- 20 T
u-1 u- " dx _2\/3+2f(x)_\/3+2f(x)
26. —f«/3 20 = f'(V3+

RS VIR = R
4+ x?)3 = f'(V3+2t
y/—;<(4+x2)3|:5x4 3+x6—|—x5<37x5):| V3+2t (V3+2t)

@+ 20 )] o7 %f(3+2«/§)=%f/(3+2ﬁ)

—x5V/3+ x6[3(4 + x2)2(2x)]>

(4+ X3 5x4(@3 + x6) + 3x10]

x5(3+ x%)(6x)

(4 +x2)4/3+ x8
— 3x% 4 32x10 4 2x12

4+ x2)4/3+ x5

_ 60x*

54

28. %f(2f(3f(x))>
- f/<2f<3f(x))> . 2f

/(3f(x)) .3f/(x)

- ef/(x)f/(sf(x)) f/<2f (3f(x)))
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29. dd—xf<2—3f(4—5t))

= f/(z— 3f(4— 5t)) (—3f’(4— 5t))(—5)
— 15f/(4— 5t)f/(2— 3f(4— 5t))

d x2—1
30. &(xz—kl)

X=—2
X
_(x2+1)m—\/x2—1(2x)
(x241)2 X=—
2
5 —— ) — V3(—4
=()( ﬁ,) V3( )= 5
25 25/3
d 3 3
31, V3 -7 =———| =—0
dt t=3 23t —Tlis 2V2
1
32. f(x):J2><—4—l
e — 1 1
e 1 M

33. y=x34+9%?

17
Y _ E(Xs +9)15/23,2

X=—2

17
= (12 =102

X=—2
34, F(X)=1+x)2+x%B+ x4+ x)*
F/(X) = 2+ x)2B+ )34+ x)*+
21+ X2+ )B4+ )34 + )+
31+ X) (24 x)2B + X)°(4+ x)*+
41+ X2+ x)°B+x)3(4+x)°
F'(0) = (2@ @) + 2D @) @h+
32 (3 @) + 41 (2 (3 4%
=4(2°.3%. 4% =110 592

35. y= (x + ((3X)5 - 2)_1/2) -

y =— <x + ((?»x)5 - 2)_1/2> -
x (1 - %((3x)5 - 2)_3/ ? (5(3x)43))

B 15 4i & \-32
_—6<1—7(3x) ((3x) —2) )

x (x + ((3x)5 _ 2) - 2) -

36. The slope ofy =+v1+2x2atx =2 is

dy _ 4x 4
dX |,  2V1+2¢2|x_n 3

37.

38.

39.

40.

41.
42.
43.
44,
45,

46.

SECTION 2.5 (PAGE 125)

Thus, the equation of the tangent line(@t 3) is
y=3+2(x—2), 0ory=ax+1.

Slope ofy = (1+x%3)%2 atx = —1is

§(1 4 x2/3)12 (Ex—l/sx) — 2

2 3

X=—1
The tangent line af—1, 22) has equation

y =252 _ /2(x + 1).

b
The slope ofy = (ax + b)® at x = < is

dy

= 1024b".
dx

x=b/a

= 8a(ax + b)’
x=b/a

b
The equation of the tangent line at= 3 and
y = (2b)8 = 25608 is
b
y = 25608+1024ab’ (x — 5), or y = 210ah7x —3x 28p8.

Slope ofy = 1/(x2 — x+3)¥2 atx = -2 is

3 2 —5/2 3 —5, S
—Z(x2—x+3)"%2(2x~1 = -—2(97%?)(-5) = —
S0P —x+3)%2(2x-1) SO5) =

X=—2

. 1 .
The tangent line a{—2, 2—7) has equation

1 5
e+ 2 (x+2)
Y=gt 1%+

Given that f (x) = (x — a)™(x — b)" then

/) =mx —a)™ 1 x —b)" + n(x —a)™(x — b)" !
= (x —a)™ 1(x — b)"(mx — mb + nx — na).

If x # a andx # b, then f/(x) = 0 if and only if
mx —mb+nx —na=20,

which is equivalent to

n m

X=——a+——b.
m+n m+n

This point lies lies between andb.

x(x* + 2x%2 — 2)/(x? + 1)°/?

A(7X* — 4? + 54)/x”

857,592

5/8

The Chain Rule doeBot enable you to calculate the

derivatives of|x|2 and |x?| at x = O directly as a compo-

sition of two functions, one of which |, becauséx|

is not differentiable ax = 0. However,|x|?2 = x2 and

Ix2| = x2, so both functions are differentiable at= 0
and have derivative 0O there.

It may happen thak = g(x + h) — g(x) = 0 for values
of h arbitrarily close to 0 so that the division lyin the
“proof” is not justified.
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Section 2.5 Derivatives of Trigonometric

Functions (page 125)
— CSCX = 4.1 — SO csexcotx
dx dx sinx Siré x
d oy o 9 cosx _ —cog X — siP x s
dx dx sinx Siré x
y=cosX, Yy =-3sinX
y:sini, y/:lcosi.
5 5 5

y=tanzx, Y =nrselrx

y =secx, Y = asecaxtanax.

y =cot(4—3x), Yy =3csé(4—3x)
d gn® =X _ 1o =X
dx 3 3 3
f(x) =cogs—rx), f'(X)=rsin(s—rx)
y =sin(Ax + B), Yy = AcogAx + B)
d
Ix sin(z x%) = 2r x cogx X?)
D costy/R) = — 2= sin(vR)
dx 22X
—sinx
=+/1+cosx, Y =—7o—
y y 21+ cosx

dd_x sin(2 cosx) = cog2 cosx)(—2 sinx)
= —25sinx coq2 cosx)

f (X) = cogx + sinx)
f/(x) = —(1 + cosx) sin(x + sinx)

g(6) = tan(@ sing)
g'(0) = (sind + 6 cosd) seé (0 sind)
u=sin(rx/2), U = 37” coqw x/2) Sirf(r X/2)

y = seql/x), Yy =—(1/x%) seql/x)tan(1/x)
F(t) = sinatcosat (= % sin 2at)

F’(t) = acosat cosat — asinat sinat
(=acosat)

sinad
G@O) =
© cosbd
G0) = acoshf cosad + bsinad sinbf).

co bd

(f—x (sin(zx) — cos(zx)) = 2c0g2X) + 25in(2x)
d . d

&(cosz X — siP x) = I S0

= —25sin(2x) = —4sinx cosx
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ADAMS and ESSEX: CALCULUS 8

d

&(tanx + cotx) = se€ x — csE X

d

&(secx — CSCX) = Secx tanx + cscx cotx
i(tanx —x) =seéx —1=tarfx

dx

d tan(3x) cot(3x) = d D=0

dx Tdx T

d . . .
a(t cost — sint) = cost — t sint — cost = —t sint

d . . :
a(t sint + cost) = sint + t cost — sint =t cost

d sinx (1 + cosx)(cosx) — sin(x)(— sinx)
dx 1+ cosx (14 cosx)?
cosx +1 1
T+ cosx)?2 ~ 1+ cosx
d cosx  (1+sinx)(—sinx) — cogx)(cosx)
dx 1+sinx (1+ sinx)2
—sinx —1 -1

- (1 + sinx)?2 ~ 1+ sinx

d
Ix x2 cog(3x) = 2x cog3x) — 3x? sin(3x)

g(t) = v/ (sint)/t

‘o 1 t cost — sint
= X
g 2./(sint)/t t2

_ tcost — sint

T 2t3/2,/sint

v = sedx?) tan(x?)
v/ = 2x sedx?) tarf(x%) + 2x sec(x?)

L sin/X
1+ cosy/x
7 - (14 cosyX)(€osy/X/2y/X) — (siny/X) (= siny/X/2/X)
- (14 cos/X)>?
1+ cosy/x 1

T 2/X(1+ cosyX)2  2JX(L+ cosyX)

%sin(cos(tant)) = —(sect)(sin(tant)) cogcogtant))

f(s) = coqs + cogs + coss))
f/(s) = —[sin(s + cos + coss))]
x [1 — (sin(s + c0ss))(1 — sins)]

Differentiate both sides of si@ix) = 2sinx cosx and
divide by 2 to get co@x) = co x — sir x.
Differentiate both sides of c&x) = co€x — si?x and
divide by —2 to get siri2x) = 2 sinx cosx.

Slope ofy = sinx at (z, 0) is cost = —1. Therefore
the tangent and normal lines {o= sinx at (x, 0) have
equationsy = —(x — ) andy = X — &, respectively.

Copyright © 2014 Pearson Canada Inc.
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INSTRUCTOR’'S SOLUTIONS MANUAL

The slope ofy = tan(2x) at (0, 0) is 2seé(0) = 2.
Therefore the tangent and normal linesyte= tan(2x) at
(0, 0) have equationy = 2x andy = —x/2, respectively.

The slope ofy = +/2cogx/4) at (r, 1) is

—(V/2/4) sin(z /4) = —1/4. Therefore the tangent and
normal lines toy = v/2 cogx/4) at (x, 1) have equations
y=1—-(X—=x)/4 andy = 1+ 4(x — x), respectively.

The slope ofy = co€ x at (z/3, 1/4) is

—sin(2r/3) = —+/3/2. Therefore the tangent and normal
lines toy = tan(2x) at (0, 0) have equations

y = (1/4) — (v/3/2)(x — (z/3)) and

y = (1/4) + (2/+/3)(x — (7 /3)), respectively.

oy e (X
Slope <7)Tfy = ”s;n(x ) = S|n<180> is
r_ = ~-n — H
y = _1SOCOS<180>' At x = 45 the tangent line has
equation
1 T

=— 4+ —(x—45).
=% 180\/2( Y

X
Fory = sec(x®) = sec(l—go) we have

o = 150> 50) = (g0)-
7V/3
s

0
Thus, the normal line has slope—3 and has equation
T

At x = 60 the slope isl%)(Z«/é) =

90
=2— ——(x — 60).
y n«/§( )

The slope ofy = tanx atx = a is seéa. The tan-
gent there is parallel ty = 2x if seca = 2, or

cosa = +1/+/2. The only solutions i—z/2, 7/2)
area = +x /4. The corresponding points on the graph
are(r/4,1) and(—=x/4,1).

The slope ofy = tan(2x) atx = a is 2seé(2a). The
tangent there is normal tp = —x/8 if 2sec(2a) = 8, or
coq2a) = +1/2. The only solutions i(—x /4, = /4) are
a = +x /6. The corresponding points on the graph are

(77:/61 \/§) and (_7[/6a _\/§)

d
— sinx = cosx = 0 at odd multiples ofzr /2.

dx

™ cosx = —sinx = 0 at multiples ofz .

d .

ax secx = secx tanx = 0 at multiples ofr.

d )

ax cscx = — csex cotx = 0 at odd multiples ofr /2.

X
Thus each of these functions has horizontal tangents at
infinitely many points on its graph.
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d
Ix tanx = seé x = 0 nowhere.

d
g Cox = — cs@ x = 0 nowhere.
Thus neither of these functions has a horizontal tangent.

y = X + sinx has a horizontal tangent at= = because
dy/dx = 1+ cosx = 0O there.

y = 2x + sinx has no horizontal tangents because
dy/dx = 2+ cosx > 1 everywhere.

y = X + 2sinx has horizontal tangents at= 2z /3 and
X = 4z /3 becausealy/dx = 1+ 2cosx = 0 at those
points.

y = X 4+ 2cosx has horizontal tangents at= = /6 and
X = 5z /6 becausaly/dx = 1 — 2sinx = 0 at those
points.

im tan(2x) i

li
x=>0 X x—=0 2X

sin(2x) 2

=1x2=2
co92x) x

Xlim sedl+ cosx) =seql—1) =secO0=1
—> T

. 2 ; X 2 2
lim x“cscx cotx = lim (— ) cosx=1"x1=1
x—0 x—0 InXx

. T — 1 coE X ) sinx\ 2
lim cos — )= lim cosz (—) =C
x—0 X x—0 X

fim 2750 _ iy
h—0 h2 ) h2

2sirt(h/2) im L (sin(h/2)>2 1

_h—>05 h/2 _E

f will be differentiable atx = 0 if

2sin0+ 3cos0= b, and
d

— (2 sinx + 3 cosx) =a.
dx X=0

Thus we need = 3 anda = 2.

There are infinitely many lines through the origin that
are tangent toy = cosx. The two with largest slope are
shown in the figure.

™\

I

27 X

y = COSX

Fig. 2.5.59
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SECTION 2.5 (PAGE 125) ADAMS and ESSEX: CALCULUS 8

The tangent toy = cosx atx = a has equation y = 6 5 = 6(x — 1)~2
y = cosa — (sina)(x — a). This line passes through x-1
the origin if cosa = —asina. We use a calculator with y =—12(x —1)73
a “solve” function to find solutions of this equation near "_ -4
. ) y’' =36(x — 1)
a = —z anda = 2z as suggested in the figure. The
i N . y/// — _144()( _ 1)—5
solutions area ~ —2.798386 anda ~ 6.121250. The
slopes of the corresponding tangents are given-tgna, 5
. . a
so they are (336508 and (161228 to six decimal places. 4. y=+ax<b Yy =— —
a 4(ax + b)3/
60. 1 = 3
REYC R R —
ax +
61. —v2r +3@2r%? — 4z +3)/x ( )
5 y = x¥3 _ x-1/3
62. a) As suggested by the figure in the problem, 1 1
the square of the length of chodiP is y = x84 Zx~43
(1 — cosh)? + (0 — sind)?, and the square of the 3 2 3 4
length of arcAP is 2. Hence y = —§x‘5/3 - §x‘7/3
10 28
2 . 2 m_ —-y—8/3  =2,-10/3
(1+ cost)? +sirf 0 < 62, y" =S 4 oox
and, since squares cannot be negative, each termin g y = x10 1 o8 y" = 90x& + 115

the sum on the left is less tha#?f. Therefore , 9 7 - 5
y = 10x” + 16x y" = 720" + 672

O0<|1-cosf| <1|0], 0<|sind| < |0|.
7. y=(2+3)/Xx=xY%43x1?

Since lim_o10] = 0, the squeeze theorem implies y = §X3/2 + §X—l/2
that 2 2
lim1—cosf =0, limsing =0. y' = 1_5X1/2 _ §X—3/2
0—0 6—0 4 4
From the first of these, lig,gcosf = 1. y" = %‘:’x—l/2 + §X—5/2
b) Using the result of (a) and the addition formulas for
cosine and sine we obtain 8 o x-1 v 4
YT X T Y ="xx13
tI1imO cog6p +h) = Aimo(coseo cosh — sinfp sinh) = cosy Y 2 W 12

l!imosin(ﬁo +h)= Aimo(sinf)o cosh + cosfp sinh) = sinfo. x+1) x+1
— —

9. y=tanx Yy’ =2seéxtanx

This says that cosine and sine are continuous at any y =se@x y" =2seéx+4selxtarfx

point p.
10. y=secx y’ = secxtarf X + se€ x
Section 2.6 Higher-Order Derivatives y'=secxtanx y” = secxtar? x + 5se x tanx
(page 130)
11. y=cogx?) y’ = —2sin(x?) — 4x? cogx?)
1. y=@-2x) y = —2xsin(x?) y” = —12xcogx?) + 8x>sin(x?)
y = —143 - 20)° 12 sinx
y’ = 1683 — 2x)° I el
Y = —16803 — 2x)* y = cosx _ sinx
X X2
1 2 ,  (2—x%sinx 2cosx
2 - _
2. y=x"-< y'=2-3 y 3 2
, 1 6 (6—x%)cosx 3(x2—2)sinx
y = 2X + F y/// = F y/// = x3 + x4
58
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1
F) == =x !
f/(x) = —x?
f7(x) = 2x~3
£7(x) = —3Ix ™4

f@(x) = 41x™>

Guess: fM(x) = (=1)"nix~ D ()

Proof: (*) is valid forn=1 (and 2, 3, 4).

Assume f ® (x) = (=1)¥kIx~&+D for somek > 1

Then £ &1 (x) = (—1)kk! (—(k + 1))x-<k+1>—1

= (=D)*L(k + 1)Ix~(k+D+D which is (*) for n = k + 1.
Therefore, (*) holds fom = 1,2, 3, ... by induction.

1 -2
f(x)=F=x

f,(X) = —2)(_3
f7(x) = —2(=3x~* = 3Ix*
fO(x) = —2(~3)(—4)x 5 = —4Ix 5
Conjecture:
f(n)(x) = (_1)n(n + 1)!X—(n+2) forn=1,2 3, ...

Proof: Evidently, the above formula holds for= 1, 2
and 3. Assume it holds fon = k,
e, fO) = (=1KK + 1)!Ix~&®+D Then

foFD (x) = % £ 0 (x)

= (=¥ + D[ (=) (k + 2)]x~*+2-1
= (D} (k4 2)x 10D+,

Thus, the formula is also true far= k + 1. Hence it is
true forn=1, 2, 3, ... by induction.

1
fx)=——=02-x)t
) =5——=@2-x

f'(x) = +@2-x)72

f7(x) =22 —x)"2

f7(x) = 4312 — x)~*
Guess: fMW(x) =n!(2—x)~ ™D ()
Proof: (*) holds forn =1, 2, 3.
Assumef®(x) = k(2 — x)~®k+D (i.e., (*) holds for
n = k)
Then £+ (x) = kI (—(k 12— x)—<k+1>—1(—1))

= (k+ 1)!(2 — x)~(+D+D,

Thus (*) holds forn = k + 1 if it holds for k.
Therefore, (*) holds fom = 1,2, 3, ... by induction.

fx) = X = x1/?

f'(x) = $x71/2

f/(x) = 3(=3)x 2
() = 3(=3)(=3x">2

SECTION 2.6 (PAGE 130)

Proof: Evidently, the above formula holds for= 2,3
and 4. Assume that it holds for=k, i.e.

ke11:-3:5---(2k—3) x—(@-1)/2

f900 = (=) X

Then

d
(K+1) vy _ (k)
f (x)_dxf X)
k_11-3-5---(2k—3).[—(Zk—l)

=D 2 2

_ (_1)(k+1)_1 1.3.5.--(2k—3)[2(k+ 1) — 3] 2011172
- ok+1 '

} X 12k-1)/21-1

Thus, the formula is also true for = k + 1. Hence, it is
true forn > 2 by induction.

17.  f(x) = =(@a+bx)?

a+ bx
f/(x) = —b(a+bx)~?
f(x) = 2b%(@a+ bx)~3
f7(x) = —3lb%(a+ bx)~*
Guess: fM(x) = (=1)"nib"(@+ bx)~M™+D (%)
Proof: (*) holds forn=1,2,3

Assume (*) holds fom = k:
£ (x) = (=1)*KkIb* (@ + bx) =+

Then
£ kD (x) = (—1)KkIbK (—(k + 1)) (@ + bx)~+D-1(p)

— (_1)k+l(k + 1)!bk+l(a + bx)((k+l)+l)
So (*) holds forn =k + 1 if it holds for n = k.
Therefore, (*) holds fon =1, 2, 3,4, ... by induction.

18. f(x) =x%3
f/(x) = §x~1/3
f7(x) = §(—3)x /3
700 = 3(=3)(=g)x77®

Conjecture:
1-4.7----3Bn—=5) _a_
_ o(_1)n-1 (3n—2)/3
fM(x) = 2(-1)" & X for
n>2.

Proof: Evidently, the above formula holds for= 2 and
3. Assume that it holds fon =k, i.e.

11:4:7 (k=5 _@cays

fOx) = 2(-1)% =

Then,

f (k+1) x) = dd_x f (k) (x)

(];(cjr)u()ef?:tjré'(_%)(_%)(_g)x_m = 2D L 3k =2 [_(32_ 2)] xS
,1.3.5...2n—3) _ ktp-11-4-7---- Ck=9Bk+D —5] _3kr1)-2)3
(n) _ (_1\n—1 (2n-1)/2 — 2(— .
fVx) = (-1 o X n=2. =2(-1 3kt 1) X
59
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Thus, the formula is also true far = k + 1. Hence, it is
true forn > 2 by induction.

f (X) = cogax)
f/(x) = —asin(ax)
f7(x) = —a? cogax)
£(x) = a°sin(ax)
f@(x) = a*cogax) = a*f (x)
It follows that f ™ (x) = a*f "4 (x) for n > 4, and
a"cogax) if n=4k
My ) —a"sin@@x) ifn=4k+1 ,
P00 = —a"coqax) if n=4k+2 k=012 ..)
a" sin(ax) if n=4k+3
Differentiating any of these four formulas produces the
one for the next higher value @f, so induction confirms
the overall formula.
f (X) = x cosx
f/(X) = cosx — xsinx
f”(x) = —2sinx — X cosx
f”(x) = —3c0osx + X sinx
f @ (x) = 4sinx + x cosx
This suggests the formula (fe=0, 1, 2, ...)
Nsinx + X Cosx if n=4k
£ (x) = ncosx —xsinx  if n=4k+1
~ ]| —nsinx —xcosx if n=4k+ 2
—ncosx + xsinx if n=4k+3
Differentiating any of these four formulas produces the
one for the next higher value of, so induction confirms
the overall formula.
f (X) = x sin(ax)
f/(x) = sin(ax) + ax cogax)
f”(x) = 2acogax) — ax sin(ax)
f7(x) = —3a? sin(ax) — ax cogax)
£4(x) = —4a® cogax) + a*x sin(ax)
This suggests the formula
—na""lcogax) + a"xsin(ax) if n =4k
£ (x) = na"lsin(ax) + a"xcogax) if n=4k+1
na"lcogax) — a"xsin(ax) if n=4k+2
—na"1sin(ax) — a"xcogax) if n=4k+3
fork =0, 1, 2, .... Differentiating any of these four
formulas produces the one for the next higher value,of
so induction confirms the overall formula.
1 d
f(x) = m = |x|‘1. Recall that&|x| = sgnx, SO

f/(x) = —|x|~%sgnx.

60

23.

ADAMS and ESSEX: CALCULUS 8

If x # 0 we have

d
dngnx and (sgnx)

Thus we can calculate successive derivatived afsing
the product rule where necessary, but will get only one
nonzero term in each case:

f7(x) = 2|x|~3(sgnx)? = 2|x| 3
£®(x) = —31x|*sgnx
@ (x) = 41x|75.

The pattern suggests that

if nis odd

£ (x) = —n!|x|~MDsgnx
if nis even

n!|x|~(+D

Differentiating this formula leads to the same formula
with n replaced byn + 1 so the formula is valid for all
n > 1 by induction.

f(x)=v1I—-3x=(1-3x)2
00 = 2(-3)1 - 32

2

" _1 _1 _§ _ 31 _ —5/2
f (X)—2< 2)( 2)( 3)°(1-3x)

Wy (1 _§><_§>_ 401 _ ay7/2
¢ (x)_2< 2)( 2)(-3) 3fa-39

1x3x5x--- 2n —3
Guess: f(M(x) = =2 2X 2% x ( )3“

2I"I
(1—3x)"=D/2 (y)
Proof: (*) is valid forn = 2, 3,4, (but notn = 1)
Assume (*) holds fom = k for some integek > 2
e, 10 (x) = ~1x3x 5><él.(. X (2k—3)3k
(1 _ 3X)—(2k—l)/2

Then f®D(x) = _1x3x 5Xél'<' X (k= 3) 4

(_ 2(|<2— 1)) (1— 3~ @-D/2-1(_3)

1x3x5x --.(2(k+1)—1)
= k+1
(1 — 3x)~@+D-1/2
Thus (*) holds forn = k + 1 if it holds for n = k.
Therefore, (*) holds fom = 2, 3, 4, ... by induction.

P00 = = (—%) (=321 - 30?2

3k+1

24. If y=tankx), theny = kse&(kx) and

y” = 2k?sec?(kx)tan(kx)
= 2k?(1 + tarf(kx)) tan(kx) = 2k?y(1 + y?).

Copyright © 2014 Pearson Canada Inc.
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If y=seckx), theny’ = ksedkx) tan(kx) and

y" = k?(se@(kx) tarf (kx) + sec(kx))
= K?y(2seé(kx) — 1) = k?y(2y? — 1).

To be proved: iff (x) = sin(ax + b), then

if n=2k

_1\kan qj
f(n)(x)z{( 1)*a" sin(ax + b) 1

(=Dka" cogax + b)

fork=0, 1, 2, ... Proof: The formula works fok =0
mM=2x0=0andn=2x0+1=1):

fOx) = f(x) = (=1)%°sin(ax + b) = sin(ax + b)
fD(x) = f/(x) = (—~1)%al cogax + b) = acogax + b)

Now assume the formula holds for sorke> 0.
If n=2(k+ 1), then

d d
f(n) (X) — & f (n—-1) (X) — & f (2k+1) (X)
= dd_x ((—1)ka2k+1 cogax + b))
= (-1)*1a®*2 sin(ax + b)

and ifn=2k+1) + 1= 2k + 3, then

f™(x) = dd_x ((—1)"+1a2k+2 sin(ax + b)

= (—1)**1aZ+3 cogax + b).

Thus the formula also holds fdr+ 1. Therefore it holds
for all positive integersk by induction.

If y=tanx, then
y =se€x=1+tarfx =1+ y?= Py(y),

where P, is a polynomial of degree 2. Assume that
y™ = P,,1(y) where Po,1 is a polynomial of degree
n+ 1. The derivative of any polynomial is a polynomial
of one lower degree, so

d d
YT = = Pra) = Pay) gy = Pa)(A+Y?) = Pasay),

dx

a polynomial of degre@ + 2. By induction,
(d/dx)"tanx = Phy1(tanx), a polynomial of degree
n+1in tanx.

(fg)// — (f/g_"_ fg/) — f//g+ f/g/_"_ f/g/_"_ fg//
— f//g_"_zf/g/_"_ fg//

29.

SECTION 2.7 (PAGE 136)

d "
(fg® = - (fg)
d
— &[f//g_i_zf/g/_i_ fg//]
— f(S)g+ f//g/+2f//g/+2f/g//+ f/g//+ fg(S)
— f(3)g+3f//g/+3f/g//+ fg(S)

d
(fg)@ = &(fg)@)
d
= &[f(e’)g+3f”g/+3f’g”+ fg®
— f(4)g+ f(3)g/+3f(3)g/+3f//g//+3f//g//

+3f'g® + 1/g® + fg@¥
= f@g+4fOg +6f"g" +41'g® + g9,

|
fog)M = (M f(n=1dad n f (=2
(fg) g+nf(n )9+2!(n_2)! g
n! f-3g® L ... £ nfign-D 1 fgm

TG

nt
" g
k; K —K)! g

Section 2.7 Using Differentials and Deriva-
tives (page 136)

1 0.01

Ay ~dy = —-= dx = — 2 = —0.0025.

If x = 2.01, theny ~ 0.5 = 0.0025= 0.4975.
3d 3
Af(X) ~ df (x) = X 2008 =006

2J3x+1 4
f(1.08) ~ f(1) + 0.06 = 2.06.

t 1 1
Ah(t) ~ dh(t) = —%sin% dt — %(1)E -

1 1 1 40

1 s 1
Au~du = = se@ (—) ds = 5(2)(~0.04 = —0.04.
If s=x —0.06, thenu~1-0.04~ 0.96.

If y = x2, thenAy ~ dy = 2xdx. If dx = (2/100)x,
then Ay ~ (4/100x2 = (4/100)y, soy increases by
about 4%.

If y = 1/x,thenAy ~ dy = (—=1/x%)dx. If
dx = (2/100)x, then Ay ~ (-2/100)/x = (—2/100)y, so
y decreases by about 2%.

If y = 1/x2 thenAy ~ dy = (-2/x%)dx. If
dx = (2/100)x, then Ay ~ (—4/100)/x2 = (—4/100)y,
soy decreases by about 4%.

If y = x3, thenAy ~ dy = 3x2dx. If dx = (2/100)x,
then Ay ~ (6/100x3 = (6/100)y, soy increases by
about 6%.

61

Copyright © 2014 Pearson Canada Inc.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

SECTION 2.7 (PAGE 136)

If y = X%, thendy ~ dy = (1/2/x)dx. If
Ax = (2/100)x, then Ay ~ (1/100/X = (1/100)y,
S0y increases by about 1%.

If y=x"23 thenAy~dy = (—=2/3)x>3dx. If
dx = (2/100)x, then Ay ~ (—4/300x%3 = (—4/300)y,
so y decreases by about 1.33%.

If V = 3ar3 thenAV ~ dV = 4zr2dr. If r increases
by 2%, thendr = 2r /100 andAV = 8zr3/100. There-
fore AV/V =~ 6/100. The volume increases by about
6%.

If V is the volume an is the edge length of the
cube thenV = x3. ThusAV ~ dV = 3xZAx. If

AV = —(6/100V, then—6x3/100 ~ 3x2dx, so

dx ~ —(2/100x. The edge of the cube decreases by
about 2%.

Rate change of Are& with respect to sides, where

A=¢52 is ?j—': = 2s. Whens = 4 ft, the area is changing

at rate 8 fR/ft.

If A = s2 thens = /A andds/dA = 1/(2VA).
If A = 16 n?, then the side is changing at rate
ds/dA = 1/8 m/n?.

The diameterD and areaA of a circle are related by

D = 2,/A/x. The rate of change of diameter with re-
spect to area isD/dA = /1/(z A) units per square
unit.

Since A = = D?/4, the rate of change of area with re-
spect to diameter idA/dD = 7 D/2 square units per
unit.

4 . .
Rate of change o¥/ = §7rr3 with respect to radius is
dv

a s 4zr2. Whenr = 2 m, this rate of change is 6

m3/m.
Let A be the area of a squarg,be its side length and
be its diagonal. Then, 2 = s? + s = 252 and

dA
A=¢g?= %Lz, S0 i = L. Thus, the rate of change of
the area of a square with respect to its diagdnas L.

If the radius of the circle is thenC = 2zr and
A=rxr2
A
ThusC = 2”\/j =27 VA
T
Rate of change o€ with respect toA is
dCc  Jz 1
dA~ JA '
Let s be the side length and be the volume of a cube.
ds
ThenV =s® = s = VY3 and — = V%3 Hence,

the rate of change of the side length of a cube with re-
spect to its volumeV is 3V ~%3,
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21. Volume in tank isV (t) = 35020 — t)2 L at t min.

a) Att =5, water volume is changing at rate

dv
—| =-70020—t
at 0( )

t=5

= —10, 500
t=5

Water is draining out at 10,500 L/min at that time.
At t = 15, water volume is changing at rate

dv

——| =-70020-t
at 0( )

t=15

= —3,500
t=15

Water is draining out at 3,500 L/min at that time.

b) Average rate of change betwetn- 5 andt = 15 is

V(15 — V(5) _ 350x (25— 225 — _7.000
15-5 10

The average rate of draining is 7,000 L/min over that
interval.

22. Flow rateF = kr#, so AF ~ 4kr3 Ar. If AF = F/10,
then

o F ket
T a0kr3 T 40k
The flow rate will increase by 10% if the radius is in-
creased by about 2.5%.

23. F =k/r? implies thatdF/dr = —2k/r3. Since
dF/dr = 1 pound/mi whenr = 4,000 mi, we have
2k = 4,000°. If r = 8,000, we have
dF/dr = —(4,000/8,000° = —1/8. Atr = 8,000
mi F decreases with respect toat a rate of 1/8
pounds/mi.

Ar = 0.025.

24. |If price = $p, then revenue is B = 4, 000p — 10p2.
a) Sensitivity of R to p is dR/dp = 4, 000— 20p. If
p = 100, 200, and 300, this sensitivity is 2,000 $/$,
0 $/$, and—2, 000 $/$ respectively.

b) The distributor should charge $200. This maximizes
the revenue.

25. Costis £(x) = 8,000+ 400x — 0.5x2 if x units are
manufactured.

a) Marginal cost ifx = 100 is
C’(100 = 400— 100 = $300.

b) C(101) — C(100) = 43,29950 — 43,000 = $29950
which is approximatelyC’(100).

26. Daily profit if production isx sheets per day isFx)
where
P(x) = 8x — 0.005x% — 1, 000

a) Marginal profitP’(x) = 8 — 0.01x. This is positive
if X <800 and negative ik > 800.

b) To maximize daily profit, production should be 800
sheets/day.
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80, 000 n?
C = 2 4n R
TN 100

n
dc 80, 000 4 n

an - e +4+ 50’
dC .
(& n = 100 an = —2. Thus, the marginal cost of
production is—$2.

dC 82
(b) n = 300, an=9 ~ 9.11. Thus, the marginal cost

of production is approximately $9.11.
2
X

Daily profit P = 13x — Cx = 13x — 10x — 20— 1000

2
—3x 20—

Graph of P is a parabola opening downward® will be

maximum where the slope is zero:

_dP _ 2X
Tdx 1000

Should extract 1500 tonnes of ore per day to maximize
profit.

0 so x = 1500

One of the components comprisi@yx) is usually a

fixed cost, %, for setting up the manufacturing opera-
tion. On a per item basis, this fixed coss&, decreases
as the numbek of items produced increases, especially
when x is small. However, for large other components
of the total cost may increase on a per unit basis, for
instance labour costs when overtime is required or main-

tenance costs for machinery when it is over used.

cto

Let the average cost bA(x) = . The minimal av-

erage cost occurs at point where the graphA@f) has a
horizontal tangent:

_dA _ xC'(x) — C(x)

0_ R
dx x2

Hence,xC'(x) —C(x) = 0= C'(x) = = AX).

Thus the marginal cosE’(x) equals the average cost at
the minimizing value ofx.

C(x)
X

If y=Cp™", then the elasticity ofy is
pdy p

ydp  Cp~'

(-ncpt=r.

Section 2.8 The Mean-Value Theorem
(page 143)

f(x)=x% f'(x)=2x
b2—a2 f(b)— f(a)
b+a= b-a b-a
=f'(c)=2c :>c=b¥1

SECTION 2.8 (PAGE 143)

If f(x)= % and f'(x) = _X_lz then

fQ-f1 1 11
-1 2 1T 27 e~

wherec = +/2 lies between 1 and 2.

fx)=x3-3x+1, f'x)=3x2—3,a=-2,b=2
fo)— f@) f(2)— f(-2)

b—a 4
_8-6+1-(-8+6+1)
- 4
4
:—:1
1 _ 2 _ 4
f'(c) =3¢ -3

2
302—3=lz>302=4:>c=i—3
(Both points will be in(—2, 2).)

If f(x) = cosx + (x2/2), then f’(x) = x — sinx > 0
forx > 0. By the MVT,ifx > 0, then

f(x) — f(0) = f’(c)(x — 0) for somec > 0, so
f(x) > f(0) = 1. Thus cox + (x?/2) > 1 and
cosx > 1— (x2/2) for x > 0. Since both sides of
the inequality are even functions, it must hold for< O
as well.

Let f(x) =tanx. If 0 < x < n/2, then by the MVT
f(x) — f(0) = f'(c)(x — 0) for somec in (0, = /2).
Thus tarx = xse@c > x, sincesecc > 1.

Let f(X) = (L+x)" —1—rx wherer > 1.

Then f'(x) =r(1+x)""1 —r.

If —1<x <0 thenf’(x) <0;if x > 0, then f’(x) > 0.
Thus f(x) > f(O)=0if —1<x <0orx>0.
Thus(1+x)" > 1+rxif —1<x <0orx > 0.

Let f(x) = (1+ x)" where O<r < 1. Thus,
f/(x) = r(1 + x)'~1. By the Mean-Value Theorem, for
X > —1, andx # 0,

f(x) — f(0)
x—0
R 1-x" -1
X

= f'(c)

=r(l+c?

for somec between 0 an&. Thus,
QA+x)" =1+rx(L+of L
If —1<x <0, thenc<0and O<1+c < 1. Hence

A+c)t>1
rx(L+c) 1 <rx

(sincer —1 < 0),
(sincex < 0).
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Hence,(1+ x)" < 1+rxX.
If x > 0, then
c>0
l1+c>1
1+c)t<1
rx(1+c) 1t <rx.

Hence,(1+ x)" < 1+rx in this case also.
Hence,(1+X)" < 1+rx for either—1 < x <0 orx > 0.

If f(x) = x3 —12x + 1, thenf’'(x) = 3(x? — 4).

The critical points off arex = £2. f is increasing on
(—o00, —2) and (2, o0) where f’(x) > 0, and is decreas-
ing on (—2, 2) where f’(x) < 0.

If f(x) = x2— 4, thenf’(x) = 2x. The critical point of
f isx = 0. f is increasing on0, co) and decreasing on
(—00,0).

If y=1—x—x5 theny = —1—-5x* < 0 for all x. Thus
y has no critical points and is decreasing on the whole
real line.

If y = x3+6x2, theny = 3x2 + 12x = 3X(x + 4).
The critical points ofy arex = 0 andx = —4. y is
increasing on(—oo, —4) and (0, co) wherey’ > 0, and is
decreasing or{—4, 0) wherey’ < 0.

If f(x) =x%2+2x+ 2 thenf/(x) = 2x +2 = 2(x + 1).
Evidently, f’'(x) > 0if x > —1 and f'(x) < 0 if x < —1.
Therefore, f is increasing on—1, co) and decreasing on
(—o0, —1).

fx)=x3—4x+1

f'(x) =3x2 -4 X

f'(x) > 0 if |x| > ?

f'(x) <0 if |X|<f§ , ,

f is increasing on(—oo, _ﬁ) and(ﬁ, 00).
f is decreasing om—%, %).

If f(x) = x3+4x+ 1, thenf’(x) = 3x2 + 4. Since
f’(x) > 0 for all realx, hencef (x) is increasing on the
whole real line, i.e., or(—oo, o).

f(x) = (x2 —4)2

f/(X) = 2x2(x2 — 4) = 4x(X — 2)(X + 2)
f'(x) >0if x>20r-2<x<0
f'(x) <0ifx<—-20r0<x <2

f is increasing on—2, 0) and (2, c0).

f is decreasing ori—oco, —2) and (0, 2).

1 —2X
If f = ——— thenf'(X) = —/——.
0= 1 oen 0 (X2 +1)?
f'(x) > 0if x <0 andf’/(x) <0 if x > 0. Therefore,f
is increasing on—oo, 0) and decreasing ofD, co).

Evidently,
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f(x) =x3(5—x)?
f/(x) = 3x%(5 — x)% + 2x3(5 — x)(—1)
= x2(5 — X)(15 — 5x)
=5x%(5 - x)(3= X)
f’(x) >0if x <0,0<x <3,0rx>5
f'(x) <0if3<x<5
f is increasing on—o0, 3) and (5, c0).
f is decreasing on3, 5).

If f(X) = x — 2sinx, thenf’(x) = 1—2cosx = 0 at
X =+r/3+2nzforn=0,+1, +2,....

f is decreasing ott—z /3 + 2nz, = + 2nx).

f is increasing onz /3 + 2nz, —z /3 + 2(n + L)x) for
integersn.

If f(x) =x+sinx, then f’(x) =1+ cosx >0
f/(x) = 0 only at isolated pointx = +z, +3x, ....
Hence f is increasing everywhere.

If f(X) = x+ 2sinx, thenf’(x) = 1+ 2cosx > 0
if cosx > —1/2. Thus f is increasing on the intervals
(=(4x/3) + 2nz, (47 /3) + 2nx) wheren is any integer.

f(x) = x3 is increasing on(—oo, 0) and (0, co) because
f/(x) = 3x2 > 0 there. Butf(xy) < f(0) =0 < f(x2)
wheneverx; < 0 < Xp, so f is also increasing on inter-
vals containing the origin.

There is no guarantee that the MVT applications for
and g yield the samec.

CPsx = 0.535898 andx = 7.464102
CPsx = —1.366025 andx = 0.366025
CPsx = —0.518784 andk =0

CP x = 0.521350

If X3 <X2 <...< X belong tol, and f(x;) =0,
(1 <i < n), then there existy; in (X, Xj+1) such that
f'(yi)=0,(1<i <n-—1) by MVT.

For x # 0, we havef’/(x) = 2xsin(1/x) — cog1/x)
which has no limit ax — 0. However,

f/(0) = limp_o f(h)/h = limp_ohsin(l/h) = 0
does exist even thoughi’ cannot be continuous at 0.

If f’ exists on &, b] and f'(a) # f'(b), let us assume,
without loss of generality, that’(a) > k > f/(b). If

gx) = f(x) — kx on [a, b], theng is continuous on

[a, b] becausef, having a derivative, must be contin-
uous there. By the Max-Min Theorerg, must have a
maximum value (and a minimum value) on that interval.
Suppose the maximum value occurscatSinceg’(a) > 0
we must havee > a; sinceg’(b) < 0 we must have

¢ < b. By Theorem 14, we must hayg(c) = 0 and so
f’(c) = k. Thus f’ takes on the (arbitrary) intermediate

valuek.
f(x) = { X+ 2x?sin(1/x) if x #0
0 if x=0.

Copyright © 2014 Pearson Canada Inc.
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a) f'(0) =A@0w

h
2 -

— lim h + 2h<sin(1/h)
h—0 h

= rI1im0(1 + 2hsin(1/h) =1,
becausd2hsin(1/h)| < 2lh| - 0 ash — 0.
b) Forx # 0, we have

f/(x) = 1+ 4xsin(1/x) — 2 cog1/x).

There are numbers arbitrarily close to 0 where
f’(x) = —1; namely, the numbers = +1/(2nx),
wheren =1, 2, 3,.... Since f/(x) is continuous at
everyx # 0, it is negative in a small interval about
every such number. Thug cannot be increasing on
any interval containing« = 0.

31. Leta, b, andc be three points il where f vanishes;
thatis, f(a) = f(b) = f(c) = 0. Supposaa < b < c.
By the Mean-Value Theorem, there exist pointf
(a,b) ands in (b, ¢) such thatf’(r) = f’(s) = 0. By
the Mean-Value Theorem applied fd on [r, s], there
is some point in (r, s) (and therefore in) such that
f”(t) =0.

32. If ™ exists on interval and f vanishes an + 1 dis-
tinct points ofl, then f ™ vanishes at at least one point
of I.

Proof: True forn = 2 by Exercise 8.

Assume true fom = k. (Induction hypothesis)
Supposen = k+ 1, i.e., f vanishes ak + 2 points of |
and f&+D exists.

By Exercise 7,f’ vanishes ak + 1 points ofl.

By the induction hypothesist &1 = (/)& vanishes at
a point of | so the statement is true for=k + 1.
Therefore the statement is true for alk> 2 by induction.
(casen =1 is just MVT.)

33. Giventhatf(0) = f(1) =0 and f(2) = 1:
a) By MVT,
f-fO0 1-0 1

f'(a) = -
@ 2-0 2-0 2

for somea in (0, 2).
b) By MVT, for somer in (0, 1),

f()— f0 0-0
o= (i—o()zl—ozo'

Also, for somes in (1, 2),

f@—-f(1) 1-0
o= (:)2—1()22—121'

SECTION 2.9 (PAGE 148)

Then, by MVT applied tof’ on the interval I, s],
for someb in (r, s),

f'9)—f'r) 1-0

f//b: —
® s—r S—r

NI =

=—>
S—r

sinces—r < 2.

c) Since f”(x) exists on [02], therefore f’(x) is con-
tinuous there. Sincd’(r) = 0 and f’(s) = 1, and
1

since 0 < 7 <1 the Intermediate-Value Theorem

assures us that’(c) = % for somec betweenr and
S.

Section 2.9 Implicit Differentiation
(page 148)

Xy—x+2y=1
Differentiate with respect ta:
y+xy —1+2y' =0

-y

Thusy = —
y 2+Xx

xBryi=1

2 2y, / X2
33X+ 3y“y' =0, soy =—F.
X2+ xy=y3
Differentiate with respect ta:
2x +y + xy’ = 3y?y’

., 2X+y
- 3y2 —x
x3y +xy®? =2
3x%y + x3y' 4 y° + 5xy?y’ =0
. =3y —y®
Y =73 + 5xy4
x2y3=2x —y
2xy3 + 3x2y2y =2y
L 2—2xy?
Y =3&y711

X2 +4y—-12=4
2x+8(y—1y =0, soy =

X
41-vy)

Xx—y X2 L X2 4y

X+y y y
Thusxy — y2 = x3+ X2y + xy+Yy2, or x3+x2y+2y2 =0
Differentiate with respect ta:
3x% 4+ 2xy + X%y + 4yy’ =0

3x2 + 2xy
x2 4 4y

/
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XJX+Yy=8-xy
A+y)=-y—xy

VIFY X5
2x+y) +x(1+Y) = —-2XF y(y + xy’)
. X+ 2y + 2y X Ty

B X+ 2X/X Ty
2x24+3y2=5
4x +6yy' =0 5

At (L 1): 4+6y =0,y =3

2
Tangent line:y — 1 = _§(X —Dor2x+3y=5

X2y3 _ X3y2 =12

2xy2 4 3x2y2y’ — 3x2y? — 2x3yy' = 0

At (—1,2): —16+ 12y’ — 12+ 4y’ = 0, so the slope is
_12+16 28 7

12+4 16 4

Thus, the equation of the tangent line is

y= 2+4(x+1) or 7x —4y+15=0.

X Y3
vyt (3) =2
x4+ y4 = 2x3y

4x3 + 4y3y’ = 6x2y + 2x3y/
at(—-1,-1): —4—-4y' = -6-2y

2y =2,y =1

Tangent line:y+1=1(x+ 1) ory = X.

!

y2
X+2y+1= 11
(x — 12yy’ — y*(1)

(x—1)2
At (2, -1) we have 12y’ = -2y’ —1soy = —3.
Thus, the equatlon of the tangent is
y_—l——(x 2),orx+2y=0.

1+2y =

2X +y — +/2sinxy) = 7/2

2+y —2cogxy)(y +xy) =0

At (/4,1 24+ Yy — 1+ (z/4y) = 0,s0
y' = —4/(4— ). The tangent has equation

tan(xy?) = (2/z)xy

(sec(xy?))(y? + 2xyy') = (2/m)(y + xy).

At (-, 1/2): 2((1/4) —zy)= (/) — 2y, so

y = (& —2)/(4n(x — 1)). The tangent has equation

74( )(X+7r)
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xsin(xy —y?) =x2 -1

sin(xy — y2) + x(cosxy — yA))(y + Xy’ — 2yy’) = 2x.

At (1,1): 0+(D(QD)(A-Y) =2, soy = —1. The tangent
has equatiory =1— (x — 1), ory =2 — x.

- s.n< : )] D 20
At (3,1): —? w =6-9y,

soy = (108 — +/37)/(162 — 3/3x). The tangent has
equation

108— /3
y=1+_——~-—Kx-3).
162— 331
Xy=X+y
y—1
/ — 1 / / —
y+xy =14y =y =1—
y/ + y/ + xy// — y//
1! 2y/ 2(y_ l)
Therefore,y” = Tox = T-%7?
X2 +4y? = 4,X 2Xx+8yy' =0, 2+8(y)2+8yy’=0
Thus,y’ = — and
us,y 2y an
s, —2-8(y)? 1 x2  —4y?-x2 1
y = 8y T T4y 16y3 T 16y3 | 4y3
x3—y2+y3=x
1—3x?
2 _ 2vy + 3 2y — 1 / _
X yy + 3y°y =Yy = 3y2 2y
6x — 2(y')* — 2yy” + 6y(y)? + 3y?y’ = ps
1-3
"2 (2-6 )%
v _ 2-6y)(y)” —6x _ By- —2y)
3y2 -2y 3y2 -2y
_ (2-6y)(1—3x?)? 6x
o @By2-2y)8 3y2 -2y
—3Xy+y3 =1
3x? —3y —3xy’ +3y%y' =0
6X — 3y/ _ 3y/ _ 3xy” 4 Gy(y/)Z + 3y2y// =0
Thus
’_ y— X2
=%
g = 2 2y’ —2y(y)?
= 7
2
2 y —x2 y —x2
“yrs o () () ]
y2 — X y2 — X y2 — X
2 -2xy |1 My
Sy -xLy2-x2] (x—y)¥
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24 y2—a2 )
2x+2yy' =0sox+yy =0 andy = -y
1+yy +yy’=0so

x2
1 -
y' = 1+y? Ty
y y
y2+ x2 a2
Ax2+By?=C
2AX+2Byy =0= y = ——
+ 2Byy =Yy By
2A+2B(y')? + 2Byy” = 0.
Thus,
AX 2
) -A-B
y//= —A—B(y)2 — (By)
By By
—A(BYy? + Ax?) AC
= B2y3 T T B%y3

Maple gives 0 for the value.
206

Maple gives the slope .
ple g p a%

Maple gives the value-26.

855 000

Maple gives th I .
aple gives evauegm293

Ellipse: x? + 2y? =2
2x +4yy' =0

Sl f ellipse:yr = ——

ope of ellipse:yg 2y
Hyperbola: %% — 2y? =1

4x —4yy' =0

Slope of hyperbolaiyy, = X
x242y2=2
2x2—2y? =1

3x2:350x2:1,y2:E

XX - Xo
2yy 2y?
Therefore the curves intersect at right angles.

At intersection points{

2
Thusygyy = —

28. The slope of the elllpse— + % =1 is found from
2x 2y , ., b2x
b2 y = 0, i.e. y = —aTy.

29.

30.

SECTION 2.9 (PAGE 148)

2 2
Similarly, the slope of the hyperbol%E — é =1at
(X, y) satisfies

2x 2y ] . B%
2 g) = ory = oy

If the point (x, y) is an intersection of the two curves,

then

2 2

x2 vy x2 y
2 e B

(1 1\ /1 1
“\m—z)=V \etie)

2 2 2 2.2
X b B A a
Thus,— = +

82b2 ‘a2 — A2
Sinceéa\2 b2 = 82 thereforeB? + b? = a? — A?,
X A2a?
and V2 = B2 Thus, the product of the slope of the

two curves aft(x, y) is

b’x B’ b?B? A%’
aly A2y a2A? B2
Therefore, the curves intersect at right angles.

If z=tan(x/2), then

X 1+tar12(x/2)dx_1+22dx
2 dz~ 2 dz’

1= seé(x/z) 1 d

Thusdx/dz = 2/(1 + Z3). Also

2
=2co(x/2) —1=—— —
COSX cos (X/2) 5e8(x/2)
2 o 1-7
1422 T 1422

2tanx/2) 2z

sinx = 2sin(x/2) cogx/2) = TraPe2 112

X—y_X 2 _ 2 2
=—-+1& Xy -y =X"+Xy+Xy+
Xty _y y—y yrXy+y

S X242y +xy=0
Differentiate with respect ta:

2X+y

X +4yy'+y+xy =0 = y,:_4y+x'

However, sincex? + 2y2 + xy = 0 can be written

12 702 Y2, 72
Sy oy =0 +2)°+-y°=0
X+xy+ oy + gy =0 or(x+2)7+ 7y

the only solution isx = 0, y = 0, and these values do not

satisfy the original equation. There are no points on the
given curve.
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14.

15.

16.

17.

18.

19.

SECTION 2.9 (PAGE 148)

Section 2.10 Antiderivatives and Initial-Value
Problems (page 154)

dex:5x+C
fxzdx:%xg’—kc
2 3
12 1,13
fx dx:1—3x +C

1

3 4
x°dx = =x C
f 4 *

2
X .
(X 4+ cosx) dx = > +sinx+C

ftanx cosx dx = fsinx dx = —cosx+C

co X

1+ cos
f 20X iy = f(seé X4c0osx) dx = tanx+sinx+C

f(az—xz)dx=a2x—%x3+c

B C
/(A+ Bx+Cx2)dx=Ax+Ex2+§x3+K

4 9
f(2X1/2 +3xY3dx = §X3/2+ ZX4/3+C

6(x — 1) ~1/3 —4/3
/de=f(6x 73 _ 6x~4/3) dx

=ox¥3t1ex 3 4 C
x3 X2 1 1 1
— - x—1)dx==x*-x3+Zx>—x+C
f(s 2 ' ) 12 6¢ 12 +

105[(1+t2+t4+t6)dt

=105t + 33+ it° + 2ty + C
= 105 + 35t% + 21t° + 157 + C

fcos(Zx) dx = % sin(2x) + C
fsin(g) dx = -2 cos(%) +C

f dx 1 LC
14+x2 " 14x

fsec{l—x)tan(l—x)dx: —seql—-x)+C

1
f«/2x +3dx = Z(2x + 3¥24C
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21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.
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d 1
Since —v/X+1= , therefore
dx 2VX +1
4
———dx=8/x+1+C.
[ o=V

/ 2x sin(x?) dx = —cogx?) + C

d X
Since —+v/x2 + 1= ———, therefore
dx /x2 + 1

2
f X dx =2v/x2+14C.

X241

/tanzxdx=f(se@x—1)dx=tanx—x+c

1 1
/sinx cosxdx = / > sin(2x) dx = ~2 cog2x) +C

[ 1+ cog2x) _ X sin(2x)
/co§xdx_/ > dx_2 7 +C
. [ 1-co92x) _ X sin2x)
/smzxdx_f 5 dx_2 7 +C

1
{y/zx—Z :>y=—X2—2X+C
y(0) =3 = 3 =0+ C thereforeC =3
1
Thusy = Ex2—2x+3for all x.

Given that
{ y/ — X—Z _ X—S

theny = /(x‘2 —x¥)dx=-x"t+3x2+C

and 0= y(-1) = —(-) '+ 3(-)2+CsoC=—3.
1 1 3 o .
Hence,y(x) = —Xt32" 3 which is valid on the
interval (—oo, 0).
y=3/Xx = y=2x%4cC
y4=1= 1=16+CsoC=-15
Thusy = 2x32 — 15 for x > 0.

Given that
{ y = x1/3
y(0) =5,

theny = [ x¥3dx = 3x*3 4+ C and 5= y(0) = C.
Hence,y(x) = 2x#3 + 5 which is valid on the whole real
line.

Sincey’ = Ax? 4+ Bx + C we have

A B
y= §x3 + Exz + Cx + D. Sincey(1) = 1, therefore

A B
1=y =5 +5+C+D. ThusD =1- 2 — = — C,
and

A 5 B ,
y=§(x —1)+5(x —1)+C(x—1)+1 for all x

Copyright © 2014 Pearson Canada Inc.



32.

33.

34.

35.

36.

37.

38.

INSTRUCTOR’'S SOLUTIONS MANUAL SECTION 2.10 (PAGE 154)

Given that / o7 theny’ = /x“‘ dx = —ix3+C.
y =x
{ y(1) = —4, Since 2=y'(1) = —% + C, thereforeC = %

andy’ = —3x=3+ L. Thus
theny = fX‘gﬂdx = _Ix?%4cC.

Also, -4 = y(1) = —% + C,soC = —%. Hence, y = / _% dx_% 2,7 x+ D,
y = —4x~2/7 — %, which is valid in the interval0, oo).

y = cosx — _1 _3
For , we have and 1=y(1) = 5+ 3 + D, so thatD = —3. Hence,
y(x/6) =2 y(x) = x72 + Ix — 3, which is valid in the interval
(0, 00).

y:fcosxdx:sinerC

4

1
2:sin%+C:}+C = C:3 39. Sincey” = x3 — 1, thereforey’ = Zx* — x + C.

2 2
) 3 Sincey’(0) = 0, therefore 0= 0 — 0 + C3, and
y =sinXx + = (for all x). , 1,
2 y =-x"—x.
4 1 1
Y = sin(2x) Thusy = —x° — =x? + C».
For , we have . 20 2
y(z/2)=1 Sincey(0) = 8, we have 80— 0+ C».

5

Hencey = —x° — =x? + 8 for all x.
1
y= fsin(Zx) dx = —3 cog2x) +C 20 2
1 1 1 40. Given that

1 = —3 C = = C C = = "

) 5 CosT + > + = > J = 5x2 — 312
y==(1-cog2x) (for all x). y()=2

2 ) y1) =0,

For Iy/ =seCX o have we havey’ = f —3xY2dx = 3x3 —ex¥2 4 C.

yo=1 "~

19
Also, 2= y'(1) = 2 — 6+ C so thatC = 3 Thus,

y=/se(,2xdx =tanx +C
y = 3x3—6x2 + 2, and

l1=tan0+C=C — C=1
y=tanx+1 (for —z/2 < X < 7 /2). /
y:

5x3 —6xV/2 4 1—39) dx = 2x*

ox*—4x32 4 ¥x +D.

/__
For { y _se@x’ we have

y(@)=1 , 19 1
Finally, 0 = y(l) = 12 -4+ 3 + D so thatD = — 3.

_ 5,4 32 u
y = /se(?xdx =tanx +C Hence,y(x) = — 4x%/ 3 a

l=tanr +C=C = C=1
y=tanx +1 (for /2 < x < 3r/2).

y” = cosx

41. For [ y(0) =0 we have
Yy =1

Sincey” = 2, thereforey’ = 2x + Cj.

Sincey’(0) = 5, therefore 5= 0+ C1, andy’ = 2x + 5.

;L o
Thusy = x2 + 5% - Co. y _/cosxdx_5|nx+C1

Sincey(0) = —3, therefore—3 = 0+ 0+ Cp, and 1=sin0+C; = Cp=1
Cyr=-3.
Finally, y = x2 + 5x — 3, for all x. y= /(sinx +1)dx = —cosx+x+ Cp
Given that , . 0=-c0s0+0+C; = Cp=1
y =X — _
V(1) =2 y =1+ X — CcOsX.

y@ =1,

69
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Yy’ = X + sinx
42. For{y(0) =2 we have

y'(©0) =0

2
y/:/(x—ksinx)dx:%—cosx—kcl

0=0—-cos0+C; = Ci1=1

x2 x3
y:/(;—costrl) dx:E—sinererCz
2=0-sin0+0+C;, = Cy=2
3
y:E—sinx+X+2.

B B 2B
43. Lety = Ax+ —. Theny = A— —, andy’ = —..
y + X y x2 y x3

Thus, for allx # 0,

2B B B
2.,/ /

X Xy —y="A4 AX—— —AX—— =0.
Yy +Xy —y X+ ” ”

We will also havey(1) = 2 andy’(1) = 4 provided

A+B=2 and A-B=4

These equations have solutigh= 3, B = —1, so the
initial value problem has solutiog = 3x — (1/x).

44. Letry andrz be distinct rational roots of the equation
arr—1)+br+c=0
Let y = Ax" 4+ Bx" x> 0)
Theny = Aryx"2~1 4 Brox2—1,
andy” = Ar1(r1 — 1)x"1=2 4+ Bra(rp — 1)x"272. Thus
ax2y” + bxy’ +cy
= ax?(Ary(ry — )X 72 + Bra(rz — 1)x272
+ bx(Arix™1 4+ Brox"271) + c(AX + Bx"?)

= A(arl(rl -1 +br;+ c)xrl
+ B(ara(ra — 1) + bro + c)xr2
=0x"+0x2=0 (x>0

4x%y" +4xy' —y=0 () =a=4b=4c=-1

y4)=-2
Auxilary Equation: 4(r —1)+4r —1=0
42-1=0
1
r=+=
By #31,y = AxY/2 + Bx~¥/2 solves(x) for x > 0.
Now y' = Sx-1/2 _ B 32

Substitute the initial conditions:

B B
2_2A4+ > 1A+
5 = +3

A B B

e S Y S

2" 16 7
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1.
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B 7
Hence 9= X soB=18, A= —3

7
Thusy = —Exl/z +18x~12 (for x > 0).
Consider
x2y" —6y =0
ybh =1
y(@ =1

Lety=x", y=rx"1 y"=r(@ —1)x 2. Substituting
these expressions into the differential equation we obtain

X2[r(r —1)x" 2] —6x" =0
[rc -1 —6]x"=0.

Since this equation must hold for all > 0, we must
have

rc—1)-6=0
r2—r—-6=0
r—3)(r+2=0.
There are two rootsr; = —2, andro = 3. Thus the

differential equation has solutions of the form

y = Ax 2+ Bx3. Theny’ = —2Ax~3 + 3Bx2. Since
1=y = A+ B and 1=y’ (1) = —2A + 3B, therefore
A=2ZandB = 3. Hencey=2x2+ 3x°

Section 2.11 Velocity and Acceleration
(page 160)

do

dx
=t? 443, 0=—"=2—-4a=— =2
X + 3,0 at a at

a) particle is moving: to the right far > 2

b) to the left fort < 2

c) particle is always accelerating to the right
d) never accelerating to the left

e) particle is speeding up fdar> 2

f) slowing down fort < 2

g) the acceleration is 2 at all times

h) average velocity over 8t <4 is

X(4) —x(0) 16—16+3—3_0
4-0 4 -

Copyright © 2014 Pearson Canada Inc.
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X=4+5—t2,0p=5-2t,a=—2.

a) The point is moving to the right i > 0, i.e., when

5

b) The point is moving to the left it < 0, i.e., when
t > g
¢) The point is accelerating to the rightaf > 0, but

a = —2 at allt; hence, the point never accelerates to
the right.

d) The point is accelerating to the leftaf < 0, i.e., for
all t.

e) The particle is speeding up if anda have the same
sign, i.e., fort > 3.

f) The particle is slowing down ih anda have oppo-
site sign, i.e., fott < 3.

g) Sincea= -2 at allt, a= -2 att = 3 wheno = 0.

h) The average velocity over [@] is
X4 -x@0 8-4 1

4 4

dx d
X=t3—4t+l,v=a=3t2—4,a=d—lt)=6t

a) particle moving: to the right for < —2/4/3 or
t > 2/4/3,

b) to the left for—2/4/3 <t < 2/4/3
c) particle is accelerating: to the right for- 0
d) to the left fort <0

e) particle is speeding up far > 2/+/3 or for
—2//3<t<0

f) particle is slowing down fot < —2/4/3 or for
0<t<2/V/3

g) velocity is zero at = +2/+4/3. Acceleration at these
times is+12//3.

h) average velocity on [@1] is
£ _4x44+1-1

4-0 =12
ot @+ -m@E) 1-t?
X_t2+1’ - (t2+1)2 - (t2+1)2’
2+ 12(=2t) — A —-tDH(t2+ 1)(2) 2t(t2—13)
a— = .
(t2+1)4 (t2 +1)3

a) The point is moving to the right i > 0, i.e., when
1-t?>0,0or-1<t <1

b) The point is moving to the left it < 0, i.e., when
t<—1lort>1.

¢) The point is accelerating to the rightaf > 0, i.e.,
when 2(t2 — 3) > 0, that is, when

t>+v3or—v/3<t<0.

SECTION 2.11 (PAGE 160)

d) The point is accelerating to the leftdf < 0, i.e., for

t<—+/3o0r0<t <3

e) The particle is speeding upifanda have the same
sign, i.e., fort < —/3, or—1 <t <0 or
1<t <43

f) The particle is slowing down ih anda have oppo-
site sign, i.e., for—v/3 <t < —1,0r0<t < 1 or

t > /3.

2(-2) 1
At=1,a=-22_1
)

h) The average velocity over [@] is
X4 -x(0) -0 1
4 T4 AT

y = 9.8t — 4.9t2 metres { in seconds)
d
velocity v = d—i’ — 98- 98t

acceleratiora = g—lt) =-98

The acceleration is.8 m/& downward at all times.

Ball is at maximum height when =0, i.e., att = 1.

Thus maximum height isl‘t_l =9.8—-4.9 =49 metres.
Ball strikes the ground wheg = 0, (t > 0), i.e.,
0=1t(9.8—4.9) sot = 2.

Velocity att =2 is 98 — 9.8(2) = —9.8 m/s.

Ball strikes the ground travelling at 9.8 m/s (downward).

Given thaty = 100— 2t — 4.9t2, the timet at which
the ball reaches the ground is the positive root of the
equationy = 0, i.e., 100— 2t — 4.9t2 = 0, namely,

‘(— -2+ JAF4(4.9)(100
- 9.8

~ 4318 s

—100
The average velocity of the ball i 318 = —23.16 nmys.
Since —23.159=» = —2 — 9.8t, thent ~ 2.159 s,

D=t% D indrgetres,t in seconds
velocity v = e 2t

Aircraft becomes2 8irk(>)%r61e if500
v = 200 km/h= Q =

3600 9 250
Time for aircraft to become airborne is= o s, that
is, about 27 s.

Distance travelled during takeoff run i ~ 7716 me-
tres.

m/s

Let y(t) be the height of the projectile seconds after it
is fired upward from ground level with initial speeg.
Then

y'(t) = —9.8, ¥'(0) = vo, y(0) =0.

71
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Two antidifferentiations give
y= —4.9t2 4+ vot =t(vp — 4.9t).

Since the projectile returns to the groundtat 10 s,
we havey(10) = 0, sovg = 49 m/s. On Mars, the
acceleration of gravity is 3.72 nf/sather than 9.8 mfs
so the height of the projectile would be

y = —1.86t% + vot = t(49 — 1.86t).

The time taken to fall back to ground level on Mars
would bet = 49/1.86~ 26.3 s.

The height of the ball after seconds is

y(t) = —(g/2)t2 + vot m if its initial speed wasig
m/s. Maximum height occurs wherdy/dt = 0, that is,
att = vp/g. Hence

2 2
g vg 0o Vg

h=-=.—= ==
2 g "y T2y

An initial speed of 29 means the maximum height will

be 4)3/29 = 4h. To get a maximum height oftRan

initial speed ofyv/2vq is required.

To get to 31 metres above Mars, the ball would have to
be thrown upward with speed

om = /6gwh = /6gmv3/(29) = v0\/30m /9.

Sincegm = 3.72 andg = 9.80, we haveny ~ 1.067vg
m/s.

If the cliff is h ft high, then the height of the rocksec-
onds after it falls isy = h — 16t2 ft. The rock hits the

ground { = 0) at timet = \/h/16 s. Its speed at that
time isv = —32t = —8vh = —160 ft/s. Thusvh = 20,
and the cliff ish = 400 ft high.

If the cliff is h ft high, then the height of the rock sec-
onds after it is thrown down iy = h—32t —16t2 ft. The
rock hits the groundy= 0) at time

‘(_ —32+4+4/322 + 64h

16+ h s
32 +

= 1+1
- 4

Its speed at that time is
v =-32—32 = -8V16+ h = —160 ft/s

Solving this equation foh gives the height of the cliff as
384 ft.

72
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Let x(t) be the distance travelled by the train in
thet seconds after the brakes are applied. Since

d2x/dt2 = —1/6 m/€ and since the initial speed is
vp = 60 km/h=100/6 m/s, we have
1, 100

The speed of

the train at timet is v(t) = —(t/6) + (100/6) m/s, so
it takes the train 100 s to come to a stop. In that time it
travelsx(100) = —100°/12 + 100?/6 = 100°/12 ~ 833
metres.

x = At?2 + Bt + C,v» = 2At + B.
The average velocity ovet] to] is
X(t2) — X(t1)
to—11
AtZ+Bt;+C— AtZ — Bty — C
th—11
At -tH) +B(ta—ty)
(t —ta)
Atz +t1)(t2 — t1) + B(t2 — t1)
(to —t1)
At +t1) + B.
The instantaneous velocity at the midpoint of, 2] is

t t t: t
1)(2—; 1>=2A<2—; 1>+B=A(t2+t1)+B.

Hence, the average velocity over the interval is equal to
the instantaneous velocity at the midpoint.

t2 0O<t<?
S=414t-4 2<t<8
—68+20t—t2 8<t<10

Note: s is continuous at 2 and 8 sincé 2 4(2) — 4 and
4(8) — 4= —68+ 160— 64

ds 2t ifo<t<?2
velocityu:d—: 4 if2<t<8
_ t loo-2t ifs<t<10
Since 2 — 4 ast — 2—, therefore,p is continuous at 2

(v(2) =4).

Since 20— 2t — 4 ast — 8+, thereforev is continuous
at 8 (v(8) = 4). Hence the velocity is continuous for
0<t<10

acceleratiora = 2 0 if2<t<8

dt |2 ifg<t<10
is discontinuous at = 2 andt =8

Maximum velocity is 4 and is attained on the interval
2<t<8.

{2 fo<t<?2

This exercise and the next three refer to the following
figure depicting the velocity of a rocket fired from a
tower as a function of time since firing.
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°1 (4, 96)

(14, —224)
Fig. 2.11.16

The rocket’s acceleration while its fuel lasted is the slope
of the first part of the graph, namely 86= 24 ft/s.

The rocket was rising until the velocity became zero, that
is, for the first 7 seconds.

As suggested in Example 1 on page 154 of the text, the
distance travelled by the rocket while it was falling from

its maximum height to the ground is the area between the 3

velocity graph and the part of theaxis wherep < 0.
The area of this triangle i€1/2)(14 — 7)(224) = 784 ft.
This is the maximum height the rocket achieved.

The distance travelled upward by the rocket while it was
rising is the area between the velocity graph and the part
of the t-axis wherev > 0, namely(1/2)(7)(96) = 336 ft.
Thus the height of the tower from which the rocket was
fired is 784— 336 = 448 ft.

Let s(t) be the distance the car travels in theeconds

after the brakes are applied. Thef(t) = —t and the
velocity at timet is given by

t2
st) = /(—t) dt = —3 +Cy,

whereC; = 20 m/s (that is, 72km/h) as determined in
Example 6. Thus

t2 t3
s(t) = 20— — | dt=20t — — +C
(t) /( 2) 6+ 2,

whereCy = 0 becauses(0) = 0. The time taken to come
to a stop is given by/(t) = 0, so it ist = +/40 s. The
distance travelled is

5. The tangent toy = cogz x) at x = 1/6 has slope

1
s = 20/40— 6403/2 ~ 84.3 m.

4,

REVIEW EXERCISES 2 (PAGE 161)

Review Exercises 2 (page 161)

y = (3x + 1)?

dy _ im (3x 4 3h + 1)2 — (8x + 1)?

dx h—0 h

i 9x2 4 18xh + 9h? + 6x + 6h + 1 — (9x? + 6x + 1)
h—0 h

= rI]imo(l8x +9h+6)=18x+6

4 155

dx

V1—(x+h2-y1-x2

= lim
h—0

h

1—(x+h?2—-1-x%

= |
"0 h(/T— (1 2+ VI )

. —2x—nh X
= lim =
=0 /1 — (x + h)2 + VI —x2 1—x2
f(x) = 4/x°
4
(2+h)2_1
f/2) = lim =221
2 hILnO h
. 4—(4+4h+h? - —4—h L
" h>0  h(2+h)? T h>0(2+h)2
-5
t =
g(t) 1Tt
44h 1
/ . 14+.9+h
g(g)zrmqo%

—iim B+h—-v9+h)B+h++/9+h)
h—=0 h(l++/9+h)@+h+v/9+h)
_im 9+6h+h?2—(9+h)

h—0h(1+ 9+ h)B3+h+/9+h)

5+h

=r!i210 1+/9+h)@B+h+V/9+h)
5

T 24
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dy
dX |y=1/6

.
=—7SIN— = —
6

T

>
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Its equation is

=35 00)

At x = x the curvey = tan(x/4) has slope
(se@(x/4))/4 = 1/2. The normal to the curve there
has equatiory = 1— 2(x — x).

d 1 _ 1 — cosx
dx x —sinx (X — sinx)2
d1l+x+x2+x3 d 3. 2 1
A X X
ax v = I ( +X T4+ xT)
= Ax 34 —2x3—x?
4+ 3x +2x2 4+ x3
d 5 2
G4 %2552 — _ 24 _ 2572 ( _Ey-3/5
dx( ) 2( ) 5
= x~¥5(4 — x?/5)~7/2
d \/7 —2C0SXSiNX  — sinX cosx
—V/2+coEx = =
dx 2v/2+cogx 2+ coFx

d
3 tano =0 se€d) =sedd — secd — 20 seé f tand

= —20sedftand
d v1i+t2—
dt V14+t2+1
t t
V1+tZ+1 -(V1+t2-1
! T e
W1+1t2+1)?
2t
VI R(V1+1241)2
lim W — iXZO_ 20)(19
h—0 h dx
. «/4x+ . 9+ 4h —
lim = lim 4
X—2 X — h—0 4h
4 2
- —4 X = —— = =
dx VX w9 29 3
im coq2x) — (1/2) — m 2005((71/3) + 2h) — coqxn/3)
X—7/6 X—1m/6 h—0 2h
= 2i COSX
X=m/3
= —2sin(z/3) = —v/3
1 1
2y _ 2 — 2 T o\2
im WX -@e) L Cath?  (Ca)
X—-a X+a h—0 h
_d1 2
Cdxx?|__, a8
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d e
&f(3—x )= —2xf'(3—x?)
d 2 W)
gl F VP2 = 2F (V) ' (VX) 5= f Y, S
d e f (209 (x/2)
ax f(2x)y/9(x/2) = 2f'(2x)\/9(x/2) + e
d 100 - g0
dx f(xX) +g(x)

1 ) ,
- m[f(x) +9())(f'(x) — g'(x))

(£ 00 = g00) (00 + g/(x)]

_ 27699 = F(99'(x)
(f () + g(x))?

d
g fo+ (9(x))?) = (L+290)g (X)) f'(x + (9(x))?)

gx®)\ _ 2x%g'(x?) —
dx ( X >_ x2

d .
™ f (sinx)g(cosx)

= (cosx) f’(sinx)g(cosx) —

X

g(x?) ” (g(x2)>

(sinx) f (sinx)g’(cosx)

i cosf (x)
dx\ sing(x)

1 [sing(x)
~ 2\ cosf(x)

—f/(x) sin f (x) sing(x) — g'(x) cosf (x) cosg(x)
(sing(x))?

If x3y+42xy® =12, then X2y +x3y’ +2y3 +6xy?y’ =0
At (2,1): 12+ 8y’ + 2+ 12y’ =0, so the slope there is
y' = —7/10. The tangent line has equation

y =1 {5(x —2) or 7x + 10y = 24.

3v2xsin(zy) + 8y cogr x) = 2
3V2sin(zy) + 3 +/2x cogry)y' + 8y’ cosx X)
—8rysin(zx) =0
At (1/3,1/4): 3+ zy + 4y — 7+/3 = 0, so the slope
7/3-3

T+4

4 3
/1” dx:f 1y dx——E+x—+C
x2 3

1
/ﬂdx

f 2+ 3sinx
cog X

there isy’ =

2
/(x—l/2 +xY2)ydx = 2¢/X + éxs/2 +C

= f(z seé x + 3secxtanx) dx

=2tanx + 3sexx +C
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33.

34.

35.

36.
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/(Zx + 1*dx = f(lsx“ + 32x3 4 24x% + 8x + 1) dx

16x°
=T+8x4+8x3+4x2+x+c

or, equivalently,

5
/(2x+1)4dx=w+c

10
If f/(x) = 12x2 + 12x3, then f(x) = 4x3 + 3x* + C.
If f() = 0,then4+ 3+ C = 0,soC = —7 and
f(x) =4x3+3x* - 7.

If g'(x) = sin(x/3) + cogx/6), then
g(x) = —3cogx/3) 4+ 65sin(x/6) + C.

If (z,2) lies ony = g(x), then—(3/2) + 3+ C = 2, so
C =1/2 andg(x) = —3cogx/3) + 6sin(x/6) + (1/2).

dd—x(x SiNX + COSX) = SiNX + X COSX — SiNX = X COSX
;—X(x COSX — SiNX) = COSX — X SiNX — COSX = —X SinX
/ X cosx dx = xsinx + cosx + C

/xsinx dx = —xcosx + sinx + C

If f'(x) = f(x) andg(x) = x f(x), then

gx) = fx)+xf'(x) =1 +x) f(x)
g’ =fX)+A+x)f'(x)=2+x) f(x)
g"x) = fX)+2+x)f'(x)=@+x)f(x)

Conjecture:g™(x) = (n+x)f(x) forn=1, 2, 3,...
Proof: The formula is true fon = 1, 2, and 3 as shown
above. Suppose it is true for = k; that is, suppose
g®(x) = (k+ x) f (x). Then

000 = 2 ((k+3)100)
= F00 + (K4 %) £/ = ((K+ 1) + %) F(X).

Thus the formula is also true far = k+1. It is therefore
true for all positive integers by induction.

The tangent toy = x3 + 2 atx = a has equation

y =a’+ 2+ 3a%(x —a), ory = 3a’x — 2a% + 2. This
line passes through the origin if-8 —2a® + 2, that is, if
a = 1. The line then has equation= 3x.

The tangent toy = +/2+x2 atx = a has slope
a/+/2+ a2 and equation
y = 2+a2+L(x—a).
V2+a?

37.

38.

39.

40.

41.

REVIEW EXERCISES 2 (PAGE 161)

This line passes througt?d, 1) provided

2
1=v2+a%- 2

2+ a?
V2+a2=2+a’-a’°=2

2+a’=4

The possibilities ar@ = ++/2, and the equations of the
corrresponding tangent lines aye= 1 + (X/+/2).

dd_x (sinn X sin(nx))
= nsin"1 x cosx sin(nx) + nsin" x cosnx)
= nsin"! x[cosx sin(nx) + sinx cognx)]
=nsin™ 1 xsin((n + 1)x)
y = sin" x sin(nx) has a horizontal tangent at
x =mz/(n+ 1), for any integem.
dd_x (sinn X cos(nx))
= nsin"™1x cosx cognx) — n sin x sin(nx)
= nsin"! x[cosx cognx) — sinx sin(nx)]
=nsin"!x cog(n + 1)x)
dd_x (coé1 X sin(nx))
= —ncod ! x sinx sin(nx) + n cog' x cosgnx)

= ncod" ! x[cosx cognx) — sinx sin(nx)]
=ncod ! x cog(n + 1)x)

d

ix (coé1 X cos(nx))

= —ncog" ! x sinx cognx) — nco<' x sin(nx)

= —ncod~ ! x[sinx cognx) + cosx sin(nx)]
= —ncod" I xsin((n + 1)x)

Q = (0,1). If P = (a,a®) on the curvey = x2, then
the slope ofy = x2 at P is 2a, and the slope oPQ is
(@ —1)/a. PQ is normal toy = x2if a=0 or

[(@ — 1)/a](2a) = —1, that is, ifa = 0 ora® = 1/2.
The pointsP are (0, 0) and (+1/+/2, 1/2). The distances
from these points t@ are 1 andy/3/2, respectively.

The distance fronQ to the curvey = x2 is the shortest
of these distances, namely3/2 units.

The average profit per tonne xf tonnes are exported is
P(x)/x, that is the slope of the line joiningk, P(x)) to
the origin. This slope is maximum if the line is tangent
to the graph ofP(x). In this case the slope of the line is
P’(x), the marginal profit.

2

ifr>R
fo<r <R

mgR
FO) =12
mkr

a) For continuity ofF(r) atr = R we require
mg = mkR, sok = g/R.

75
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43.

44,

REVIEW EXERCISES 2 (PAGE 161)

b) Asr increases fronR, F changes at rate

d mgR2

_ _2mgR* _ 2mg
dr r2 '

r=R B S R

As r decreases fronR, F changes at rate

=—-mk = —@.

d
_E(mkr) r=R R

Observe that this rate is half the rate at whigh
decreases whenincreases fronR.

PV = kT. Differentiate with respect t& holding T

constant to get

v+PdV—o
dP —

Thus the isothermal compressibility of the gas is
1dv_ 1/ vy 1
vdp v\ P/ P’

Let the building beh m high. The height of the first ball
at timet during its motion is

y1 =h+ 10t — 4.9t°.

It reaches maximum height whety;/dt = 10—9.8t =0,
that is, att = 10/9.8 s. The maximum height of the first
ball is

_,, 100 49x100_ 100
1=N+%98" @82 " 196

The height of the second ball at timeduring its motion
is
y2 = 20t — 4.9t%.

It reaches maximum height
whendy,/dt =20— 9.8t =0, that is, att = 20/9.8 s.
The maximum height of the second ball is

400 4.9x400 400

Y2=98 " "©@8? 196

These two maximum heights are equal, so

100 400
196 196’

which givesh = 300/19.6 ~ 15.3 m as the height of the
building.

The first ball has initial height 60 m and initial velocity
0, so its height at time is

y1 = 60— 4.9t> m.

76
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The second ball has initial height 0 and initial velocity
00, SO its height at time is

Y2 = vot — 4.9t2 m.

The two balls collide at a height of 30 m (at ting
say). Thus
30= 60— 4.9T?

30=voT — 4.9T2.

ThuswveT = 60 andT2 = 30/4.9. The initial upward
speed of the second ball is

v = @ = 60,/ﬁ ~ 24.25 m/s
T 30

At time T, the velocity of the first ball is

dy1

— = —9.8T ~ —24.25 m/s
dt

t=T

At time T, the velocity of the second ball is

dy>

W =vo—9.8T=0m/S

t=T

Let the car’s initial speed beyg. The car decelerates at
20 ft/& starting att = 0, and travels distancgin time t,
whered?s/dt?2 = —20. Thus

ds
Fri vo — 20
X = vot — 1062,

The car stops at timé = v9/20. The stopping distance is
s =160 ft, so

160= 10 % _ %
20 40 40

The car’s initial speed cannot exceed

vo = /160 x 40 = 80 ft/s.

46. P =2rx.L/g=2zLY2g"12

a) If L remains constant, then

dpP
AP = el Ag = —nLY2g732 Ag

AP  —xLY2g=32 1 Ag
P 2zLi2g 12 7T T2 g

If gincreases by 1%, theng/g = 1/100, and
AP/P = —1/200. ThusP decreases by.5%.
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b) If g remains constant, then

dp
AP~ o= AL =rL Y2g Y2 AL

AL

£ N n.L—l/Zg—l/Z AL
L

1
P~ 2rzg 2 Mt T2
If L increases by 2%, thenlL /L =2/100, and
AP/P = 1/100. ThusP increases by 1%.

Challenging Problems 2 (page 162)

The line through(a, a2) with slopem has equation
y =a?+m(x — a). It intersectsy = x? at pointsx
that satisfy

x> =a’+mx—ma, or
x2—mx+ma—a’=0

In order that this quadratic have only one solutioe- a,
the left side must béx — a)2, so thatm = 2a. The
tangent has slopea2

This won’t work for more general curves whose tangents
can intersect them at more than one point.

f/(x) = 1/x, (2) = 0.

f(x2+5)— f(9) f(9+4h+h?) — (9

= lim

a) lim

X—2 X—2 h—0 h
im f(9+4h+h?) — f(9) 4h+h?
= X
h—0 4h+h2 h
:”mwxnm(4+h)
k—0 k h—0
4
=f'9 x4=—
©) x4=3
JIX) -3 Jf2+h) -3
b) |imL=|imL
x=2 X—2 h—0 h
im f2+h)y—9 1
= X
h—0 h JT@2+h)+3
1 1
— / - = —.
=@ xg=1

f/4)=3,9d@) =7,9(4) =4,9(x) £4 if x #£4.

. )= (4
A Jim (100~ f@) = fm, =709
= f'@@4-4=0
b) lim f(x;—f(4):“m f(X)—f(4)>< 1
x—>4 X4—16 X—4 X—4 X+4
1 3
:f/(4)><§:§
- f@ ) —- (4
R v U e A
= f'(4 x4=12

CHALLENGING PROBLEMS 2 (PAGE 162)

R0 @ f—f@)  x—4
DINTT T “WN T x=F CG-wkx
X 4
— f/(4) x (—16) = —48
fx) — f(4)
) -f@ X —4
O g0 4 kg0 — 9@
X—4
_t@ _3
9@ 7

§ lim 1) — &)
x—4 X—4
im fgx)) — f(4) » gx) — g
x>4  g(x)—4 x—4
(@) xgd@ ='W xg@d=3x7=21

_[x ifx=1,1/2, 1/3, ...
Feo = [x2 otherwise
a) f is continuous except at/2, 1/3, 1/4, .... ltis
continuous ax = 1 andx = 0 (and everywhere
else). Note that

lim x? = 1= f(1),

Xx—1

lim x? = lim x = 0= f(0)
x—0

x—0

b) If a=1/2 andb = 1/3, then

f@+fb) 1/1 1\ 5
— 2 —5<5+§)—1—2-

If 1/3 < x < 1/2, thenf(x) = x2 < 1/4 < 5/12.
Thus the statement is FALSE.

c) By (a) f cannot be differentiable at = 1/2, 1/2,
. It is not differentiable ai = O either, since

2

jm o0 =1.% 0= i

f is differentiable elsewhere, including at= 1
where its derivative is 2.

If h #0, then

— o0

‘f(h)— f(O)‘ LW - VIhI
h [hi [hi
ash — 0. Thereforef’(0) does not exist.

Given thatf’(0) =k, f(0) #0, and
f(x+y)= f(x)f(y), we have

f(0)= f(0+0) = f(0O)f(0) = f@O) =0 or f(O) =1

77
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Thus f(0) = 1.
£/(x) = rl]imo—f X+ hr)] ity
M-
= lim ~PED =2 100 £1(0) = kT (),

Given thatg'(0) = k andg(x + y) = g(x) + g(y), then
a) g(0) = g(0+0) = g(0) + g(0). Thusg(0) =0.

b) g'(x) = A@ow

h
_ lim gx) +g(h) — g(x) _ im g(h) — g(0) 10.
h—0 h h—0 h
=g'(0) =k

c) If h(x) = g(x) — kx, thenh’(x) =g'(x) —k=0
for all x. Thush(x) is constant for alx. Since
h(0) = g(0) — 0 = 0, we haveh(x) = 0 for all x,
and g(x) = kx.

f(x+k) — f(x)

a) f'(x) = |limo k (letk = —h)
— lim f(x—h)y— f(x) — im f(x)— f(x—h)'
h—0 —h h—0 h

f/(x) = %(f/(x)Jr f/(x)>
1 (Iim f(x+h) — f(x)

2 \h—0 h
+ lim f(x) — f(x—h))
h—0 h
. f(x+h)— f(x=nh)
= | .
hILnO 2h
b) The change of variables used in the first part of (a)
shows that
im SXEM =00 g gim T == gy
h—0 h h—0 h
are always equal if either exists.
c) If f(x) =|x|, then f’(0) does not exist, but
. fO+h)—-f@O-h . |h[—|h] . 0
r!ano 2h - r!ano h r!ano h— 0. 12

The tangent toy = x3 at x = 3a/2 has equation

_27a3+27 . 32
Y= T \* 72 )

This line passes througta, 0) because

27a3+27 a3\ _,
8  4a? 2) 7

78
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If a # 0, thex-axis is another tangent tp = x2 that
passes througl@a, 0).

The number of tangents tp = x2 that pass through
(X0, Yo) is

three, ifxo £ 0 andyp is between 0 and3;

two, if Xo # 0 and eitheryp = 0 or yo = x3;

one, otherwise.

This is the number of distinct real solutiobsof the cu-
bic equation B3 — 3b2xg + Yo = 0, which states that the
tangent toy = x2 at (b, b%) passes througlixo, yo).

By symmetry, any line tangent to both curves must pass
through the origin.

Fig. C-2.10

The tangent toy = x2 + 4x + 1 atx = a has equation

y=a’+4a+1+ (a+4(x —a)
= (2a+4)x — (@% — 1),

which passes through the originaf = +1. The two
common tangents ang = 6x andy = 2x.

The slope ofy =x% atx = a is 2a.

The slope of the line fron{0, b) to (a, a2) is (@ — b)/a.
This line is normal toy = x2 if eithera =0 or

2a((@? — by/a) = —1, that is, ifa=0 or 222 = 2b — 1.
There are three real solutions farif b > 1/2 and only
one @=0)if b<1/2.

The pointQ = (a,a2) ony = x2 that is closest to
P = (3,0) is such thatPQ is normal toy = x? at Q.
Since PQ has slopea?/(a — 3) andy = x2 has slope &
at Q, we require
a2 1
a-3 2a’

which simplifies to 23 + a — 3 = 0. Observe thaa = 1

is a solution of this cubic equation. Since the slope of

y = 2x3 + x — 3 is 6x2 + 1, which is always positive,

the cubic equation can have only one real solution. Thus
Q = (1,1) is the point ony = x? that is closest tdP.

The distance fronP to the curve is|PQ| = +/5 units.
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The curvey = x2 has slopen = 2a at (a, a%). The
tangent there has equation

2

y=a2+m(x—a)=mx—m7.

The curvey = Ax? 4 Bx + C has slopem = 2Aa + B
at (a, Aa® + Ba+ C). Thusa = (m— B)/(2A), and the
tangent has equation

y=Aa2+Ba+C+m(x—a)

(m—B)2  B(m-B) m(m — B)
= C —
™t A 2A T 2A
(m—B)> (m—B)?
= C _
mx 4+ C + aA oA
=mx+ f(m),

where f(m) = C — (m — B)2/(4A).

Parabolay = x2 has tangeny = 2ax — a2 at (a, a2).
Parabolay = Ax? + Bx + C has tangent

y = (2Ab + B)x — Ab®> 4+ C
at (b, Ab? + Bb+ C). These two tangents coincide if

2Ab+ B =2a ()
Ab? — C = a2

The two curves have one (or more) common tangents if
(*) has real solutions foa andb. Eliminatinga between

the two equations leads to 15.

(2Ab + B)? = 4Ab? — 4C,
or, on simplification,
4A(A — 1)b% + 4ABDb + (B2 + 4C) = 0.
This quadratic equation ib has discriminant
D = 16A%B2—16A(A—1)(B?+4C) = 16A(B>—4(A—1)C).
There are five cases to consider:
CASE I. If A=1, B # 0, then(x) gives

B2+ 4C B2 —4C
b=—-—+——, a=————.
4B 4B
There is a single common tangent in this case.

CASE Il. If A=1, B =0, then(x) forcesC = 0, which
is not allowed. There is no common tangent in this case.

CASE IIl. If A# 1 but B2 = 4(A— 1)C, then

-B

CHALLENGING PROBLEMS 2 (PAGE 162)

There is a single common tangent, and since the points
of tangency on the two curves coincide, the two curves
are tangent to each other.

CASE IV. If A# 1 andB2—4(A—1)C < 0, there are no
real solutions forb, so there can be no common tangents.

CASE V. If A # 1 andB2 — 4(A — 1)C > 0, there are
two distinct real solutions fob, and hence two common
tangent lines.

Y4 : : Y4
X
one common
two common  tangent

tangents

7

tangent cur

ves
Y4 Y4
X X
no common
tangent

Fig. C-2.14

-\

a) The tangent toy = x2 at (a, a%) has equation
y = 3a’x — 2a°.
For intersections of this line witly = x® we solve

x3—3a’x +2a°=0
(X —a)?(x + 2a) = 0.

The tangent also intersecs= x2 at (b, b%), where
b= —-2a.

b) The slope ofy = x3 at x = —2a is 3(—2a)? = 12a2,
which is four times the slope at = a.

c) If the tangent toy = x3 at x = a were also tangent
at x = b, then the slope ab would be four times
that ata and the slope aa would be four times that
atb. This is clearly impossible.

d) No line can be tangent to the graph of a cubic poly-
nomial P(x) at two distinct pointsa andb, because
if there was such a double tangent= L (x), then
(x —a)2(x — b)2 would be a factor of the cubic poly-
nomial P(x) — L(x), and cubic polynomials do not
have factors that are 4th degree polynomials.

79
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a) y = x* — 2x2 has horizontal tangents at points
satisfying 43 — 4x = 0, that is, atx = 0 and
X = #£1. The horizontal tangents age= 0 and
y = —1. Note thaty = —1 is a double tangent; it is
tangent at the two point&t1, —1).

b) The tangent toy = x* — 2x2 at x = a has equation

y = a* — 2a? + (4a® — 4a)(x — a)
= 4a(a® — 1)x — 3a* + 2a°.

Similarly, the tangent ax = b has equation
y = 4b(b? — 1)x — 3b* + 2b%.

These tangents are the same line (and hence a dou-
ble tangent) if

4a(a® — 1) = 4b(b® — 1)
—3a* 4+ 2a% = —3b* + 2%

The second equation says that eitaér= b? or

3(a? 4 b?) = 2; the first equation says that

a® — b3 =a—b, or, equivalentlya + ab + b? = 1.

If a2 = b2, thena = —b (a = b is not allowed).
Thusa? = b2 = 1 and the two points arét1, —1)
as discovered in part (a).

If a2+b% = 2/3, thenab = 1/3. This is not possible
since it implies that

0O=a?+b?—2ab=(a—b?>0.
Thusy = —1 is the only double tangent to
y = x* — 2x°.

c) If y = Ax + B is a double tangent to
y = x*—2x2 +x,theny = (A—1)x+ Bis a
double tangent to
y = x* — 2x2. By (b) we must haveA — 1 = 0
andB = —1. Thus the only double tangent to
y=x*-2x>+xisy=x-1.

a) The tangent to
y=fx)=ax*+bx®+cx’>+dx+ e
at x = p has equation
y = (4ap’+3bp?+ 2cp+d)x —3ap* — 2bp® —cp® +e.

This line meetsy = f(x) at x = p (a double root),
and

= —2ap — b + /b2 — 4ac — 4abp — 8a2p?
- 2a ’
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These two latter roots are equal (and hence corre-
spond to a double tangent) if the expression under
the square root is 0, that is, if

8a?p? + 4abp + 4ac — b% = 0.

This quadratic has two real solutions fprprovided
its discriminant is positive, that is, provided

16a°b? — 4(8a°)(4ac — b?) > 0.
This condition simplifies to
3b? > 8ac.

For example, fory = x*—2x2+x—1, we havea = 1,
b=0,andc= -2,s03?=0> —16 = 8ac, and
the curve has a double tangent.

b) From the discussion above, the second point of tan-
gency is
_ —2ap-b o b
9=—% = 2a’
The slope ofPQ is
f(a)— f(p) b3 —4abc+ 8a’d
q-p 8a? '

Calculating f’((p + q)/2) leads to the same expres-
sion, so the double tange®Q is parallel to the
tangent at the point horizontally midway betweBn
and Q.

¢) The inflection points are the real zeros of
f7(x) = 2(6ax? + 3bx + C).

This equation has distinct real roots provided
9b? > 24ac, that is, % > 8ac. The roots are

. _ 30— J/O? —2dac

12a
< —3b + /92 — 24ac
- 12a '

The slope of the line joining these inflection points

is
f(s)— f(r) b®—4abc+8a%d

S—r 8a? ’
so this line is also parallel to the double tangent.

n

. d n Nz
18. a) Claim: e coqax) = a cos(ax + 7)

S

Proof: Forn =1 we have

d . T
™ cogax) = —asin(ax) = acos(ax + E) R
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so the formula above is true far= 1. Assume it is
true forn = k, wherek is a positive integer. Then

k+1 d ki
- — — |agk il
L coqax) ax [a cos(ax + > )}

— | -asin(ax+ 7 )|

k+ 1)71)
> .

— gktt cos(ax +

Thus the formula holds fon = 1, 2, 3, ... by
induction.
b) Claim: a sin(ax) = a" sin (ax + n—”)
dxn 2

Proof: Forn =1 we have
d . . T
™ sin(ax) = acogax) = asin (ax + E) ,

so the formula above is true for= 1. Assume it is
true forn = k, wherek is a positive integer. Then

gt sin(ax) = d Ksin(ax + kn
dxk+1 T dx 2

Loems(ox )
=a acosax—i—?

k+ 1)7[)

K+l g
= a*Lsin( ax
( T2

Thus the formula holds fon = 1, 2, 3, ... by

induction.
¢) Note that

d . . .
&(coé X 4 sin* x) = —4cos x sinx + 4 Sirt x cosx

= —4sinx cosx(cos — sir’ x)
= —25sin(2x) cog2x)

= —sin4x) = cos(4x + %) .

It now follows from part (a) that

n

d 4 n—1 nz
M(co§x +sin*x) = 4 cos<4x + 7) .

19.
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CHALLENGING PROBLEMS 2 (PAGE 162)

v (m/s)

y 3,39.2
40 | ( )

30 |
20|
101

Fig. C-2.19

a) The fuel lasted for 3 seconds.
b) Maximum height was reached bt 7 s.
¢) The parachute was deployedtat 12 s.

d) The upward acceleration in,[8] was
39.2/3 ~ 1307 m/3.

e) The maximum height achieved by the rocket is the
distance it fell fromt = 7 tot = 15. This is the
area under thé-axis and above the graph ofon
that interval, that is,

12 49+ 1

5—(15-12) = 1975 m

~7
(49 +

f) During the time interval [07], the rocket rose a
distance equal to the area under the velocity graph
and above thé-axis, that is,

%(7 —0)(392) = 1372 m.

Therefore the height of the tower was
1975 - 1372 =603 m.

81
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