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An Introduction to Abstract Algebra
with
Notes to the Future Teacher
Complete Solutions

Chapter 1

Section 1.1

1

i. The answer is yes because any nonempty set of positive integers has a smallest member
by the Well-Ordering Principle. The smallest member is 1 because we can write 1 as 1 =
139 x397 —102 »541.

ii. No. If m isin the set, then Zﬂ is dso in the set. So there is no smallest member. The
n

n
Well-Ordering Principle does not apply because the set in question is not a subset of the
integers.

2. Let P(n) bethe statement that 1 + 3 + ... + (2n — 1) = n”. Then P(1) is the statement that 1 =
12, which istrue. Now suppose that P(n) is true. We prove that P(n + 1) istrue, namely, that
1+3+...+(2n—-1)+ (X +1) =(n+ 1)? By our induction hypothesis, we can substitute n*
for 1+ 3+ ... + (2n—1). So we are l¢ft to prove that n* + (2n + 1) = (n + 1)%, which is clearly
true.
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4. Letn =1 Thenn®+ 2n= 3, whichisamultiple of 3. Assumen® + 2n isamultiple of 3. We
must show that (n + 1)+ 2(n+ 1) isamultiple of 3. Now (n + 1)+ 2(n + 1) =n+ 3n*+3n +
1+ 2n + 2, which equals (n® + 2n) + 3 +3n + 3. Since (n® + 2n) is amultiple of three, and
3n° +3n +3=3(n*+n+1), (n+ 1)+ 2(n+ 1) isamultiple of 3.

5. If there is one person in the room, there are 0 handshakes. Assume that if n people are in the

room, there are n(n_21) handshakes. If an (1 + 1)™ person enters the room then n more

n(n- 1) n(n- 1) +n= n(n- 1)+@_

2 2

handshakes will occur, making the total + n. Now

n2-n+2n_n2+n_n(n+1)

2 2 2 2

Full download all chaptersinstantly please go to Solutions Manual, Test Bank site: TestBankLive.com



https://downloadlink.org/p/solutions-manual-for-an-introduction-to-abstract-algebra-with-notes-to-the-future-teacher-1st-edition-by-nicodemi/

10.

11

Solutions

Proof by induction:
Base Case: A tree consisting of a single node has one node, which is an odd number of
nodes. Assume that a binary tree with fewer then n nodes has an odd number of nodes.
Let T beatree with n nodes where n > 1 so that T has aroot with two offspring. Below
the root node there are two trees, each with fewer than n nodes. By induction, each of
these trees has an odd number of nodes. So the number of nodes in the two sub trees
combined is even. The additional root makes the number of nodes in the entire tree odd.

Reflexivity: For al pairs(x, y), 0=2(x—X) = (y—Y). S0 (X, Y)RX, y).

Symmetry: Assume (X, y) R(s,t).Then 2(x—s) = (y—t). S0 2(s—x) = (t—y) and
(s, ORX, y).

Trangitivity: Let (X,y) R(s,t) and (s, t) R(u, V). Then2(x —s) = (y—t) and 2(s—u) = (t— V).
Adding left and right sides, we get 2(x—u) = (y—V). Thus (X, y) R (u, v).

The equivaence class [(1, 1)] consists of al points on theline (y — 1) = 2(x—1).

Suppose that (X, Y)R(s, t) and that (u, v)R(w, 2).To show that [(X, y)] +[(u, V)] = [(s, V)] + [(W,
2)], we must show that (xv + yu, yv) R(sz + tw, tz) . So we need to show that (xv + yu)tz=
yv(sz + tw) or, equivaently, that xvtz + yutz = szyv + twyv. From our assumptions, we can
subgtitute ysfor xt and vw for uzin left side of latter equation to obtain equality.

Reflexivity: x Rx because x isin the same member of C asitsalf. Symmetry: If xRy, then yRx
since y and x are in the same member of C. Trangtivity: If xRy and yRz, then xand y arein
thesamesetin Candaso y and zareinthesame setin C. Sincey isin exactly one subset of
C, x and zmust bein the same subset. Therefore, xRz

Let S be the set of integers greater than ng Let T be the subset S of numbers not included in
S. Assume that T is not the empty set. The Well-Ordering Principle tells us that if T is not
empty, then T has asmallest member, say x. Notethatx® n, by the definition of T. Now if x
is the smallest natural number in T, then x — 1isin S. But if (x—1) T S, then assumption i
insures that (x — 1) + 1 = x isamember of S, contradicting our assumptionthat x I S ThusT
must be empty and the set of integers greater than n, istherefore contained in S.

Let P(n) be the statement, "If S| N contains any integer that is less than or equal to n, then
S has a smallest member.” By proving that P(n) is true for al n, we prove that every non-
empty set of natural numbers has a least ement, which is the Well-Ordering Principle.
Here's the proof by induction: P(1) is true because if a set contains the natural number 1, its
smallest member is 1. Assume that P(n) is true for the integer n. Let S be a set that contains
theinteger n + 1. If Scontains no integer lessthan n + 1, then n + 1 isits smallest member. If
S does contain an integer less than n + 1, then it certainly contains an integer that is less than
or equd to n. By the induction hypothesis, S has aleast member.
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. : : 1 .
12.i. Let e > 0. By our assumption there is a natural number n such that n > —. Taking
e
. 1
reciprocas, wehave 0< —<e.
n

il. Lete = y—x. From part i we can find n such that 1< e . By the premise of the
n

problem, there is an integer m, > 0 such that m, > ny or, equivaently, M y.

n
Let S be the set of integers{m: m>y}. Sincemy I S, Sisnot empty. Sincey > 0,
n

every m| Sispostive. Thuswell ordering appliesto S, and thereisasmallest g in

S such that g>y. So q;1islessthan y. We now show that x < g-1 <y. Since
n n n

1< e, wehave x<y 1 < CI;1< y. Thus g-1 is arational number between x

n n n n

andy.

iii. If x <0, let q be any rationa number greater than k|. Let r be a rationa number
between the positive numbers x + gand y + q. Then r — g is a rationa humber
betweenxand y.

1.1 Tothe Teacher Tasks:

1. Theresult of computing 5, P must beanumber T suchthat <P =% 1f welet m= Xq
y q n nqy
and n = yp, we get the correct result: M P-X o course, now we should back up and
yoq 'y

explan why the process of multiplying fractions by multiplying numerators and
denominators is reasonable. The job of the teacher is to make this process both
comprehensible and routine.

2.
1 1+3 1+3+5 1+3+5+7
* * * * % % * * % %
* * * % * * % * *
* * * * * * *
* * * *
Section 1.2

1. Adding —a to both sides, we obtain —a + (a + b) = —-a +(a + c). By the associative law, this
isequivaentto (—a+ a)+ b=(—a+ a) + c. Since—a and a are additive inverses we have 0

+ b = 0+ c. Since 0 is the additive identity, we obtain b = c.

2. Firgt notethat 0 =1+ (-1). Thus, by Proposition 1, we have 0= a (1 + (-1)). Distributing,
weobtain 0 = a + (—1)a. By adding —a to both sides we obtain —a= 0+ (-1)aand so —-a=

(-Da.
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First note that -(—a) +(—a) = 0. Adding a to both sdes we have
(-a)+(a)+a=0+a=a.
By associativity, we have—(—a) + ((a)+ a) =aandso —(-a)+0=a. Thus—(-a)=a

From Proposition 1, we know @ + (—a))b = 0. Distributing, we have ab + (-a)b = 0.
Adding —ab to both sides, we have (—ab + ab) + ((a)b= -ab + 0. Thus0 + (-a)b = —ab or
(-a)b=-ab

Assumethat ab = ac andthat a! 0. By subtracting ac from both sides, we obtain
ab—ac=0. By distribution, we havea(b—c) =0. Sncea! 0, b—c =0. Adding cto
both sides, we have b = c. Here we need the fact that for integers, if ab = 0, either aor b (or
both) must be O.

Since adividesb and a dividesc we can find integers g and p suchthatb = agandc =
ap. So (mb + nc) = (maqg + nap) =a(mg + np). Thusa | (mb + nc).

. 335= 1917 + 12

i.  —335=(20)x17+5
ii.  21=1x13+8

iv. 13=1x8+5

Let a | b and c| d. Then there exist integers p and g such that b = pa and d = cq. Wecan
multiply to get acpg = bd. So bd isamultiple of ac. Thus ac divides bd.

Ifa=gb+r,thena=(-q-1b+({b-r). (Notethaa0 £(b-r)<b.)

Theintegersn, n +1, and n +2 are three consecutive integers. So one of them is a multiple of
three. So the product is a multiple of 3. Note, this can aso be proved by induction.

Proof by Induction:

Base Case: Letn= 0. Thenwehave 2" ' + 3" "' =2+ 3=5and 5 certainly divides5.
Assume that 5 divides 2"+ 3o that there is an integer g such that 5y = 2"+ 3™
Now consider 2%+ 3™, Note that 2"+ 3™ =2 x 2™ 4+ 27 >3 =2 52" + 2 x 3™
+25 x3 This equals 2(2"" + ") + 25 x 3" = 2(5q) + 5 5 x3" = 520+ 5
x3™1). Thus 5 divides 2™+ 3™, which provesthat 5 divides2'** + 3*** fordl n 3 0.

1.2 Tothe Teacher Tasks:

1

42321=104 x341+202 in base five. Inbase 12, weletten =T, and eleven = E. Then 42321 =
130341 + 1E1.

Section 1.3

1

2.

(2 T A T T M A VAR

i. Any integer x that dividesboth mand n divides both —-mand —n and conversely. Thus
the set of common divisors of mand n isidentica to the set of common divisors of —
mand —n.

il Since |n|isadivisor of n, and it is the gcd(n, n) since no number larger than |n| can
dividen.

iii. Since 1 divides any integer n, and no number greater than 1 divides 1, ged(n, 1) = 1.
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3. By Theorem 1 we know that am + bn = gcd( a, b). If x divides both a and b, it divides both
summands on the left side and thus it divides their sum.

4. Sincegcd(a, ¢) = 1, we can find integer mand n such that 1 = ma + nc. Multplying through
by b, we have b = mab + ncb. Now ac divides mab because c divides b. Also ac divides ncb
because a divides b. Thusac divides the sum b = mab + nch.

5. By Theorem 1, we can find integers s, t,pand q such that 1 =sx+tmandand 1= py + gm
Then 1 = spxy + (pyt + tgm+ sxg)m Again by Theorem 1, ged(xy, m) = 1.

6. Since a divides a and since a divides b, we know that a is a common divisor of aand b. Itis
the greatest common divisor since no number larger than a divides a.

7. i. 23=1x13+10
13=1x10+3
10=3x3+1

il. 1234 =10>123 + 4
123=30*4 +3
4=1x3+1

iii. 442 = 1>289 + 153
289 = 1x153 + 136
153=1x136+ 17
136 =8>17+0

8. i. 102102
ii. 3525
iii. 39617

9. Fird note that if n is odd, both 3 and 3 + 2 are odd numbers. The first step of Euclid's
Algorithm, applied to 3n + 2 and 3n isasfollows.
3N+2=1x3n+2.
Thus gcd(3n + 2, 3n) iseither 2 or 1. But it cannot be 2 since both 3n + 2 and 3n are odd.

10. i. No solutions

ii. X=—6+5x
y=9-7x

iii. X=—8+19t

y = 20— 47t

11 x = 5xt for any positive integer t
y=18%-3

12.

Let x denote the number of cocks, y the number of hens and z the number of groups of 3 chicks.
Thenx +y + 3z =100 and 5x + 3y + z=100. Substitute 100 — 5x— 3y for z in the first expression
to obtain the Diophantine equation 7x + 4y = 100. Its solutions are x=—100 + 4t and y = 200 — 7t.
Substitute the solutions for x and y intol00 — 5x — 3y = ztofind that z=t. Itsonly positive
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solutionsarefor 25 £ t £ 28. So (x,y, 3) can equa (0, 25, 75) or (4, 78, 26) or (8, 11, 81) or
(12, 4, 84).

13.

i. =1, g=1landqg, =3. Thuss;=4and t,=-7. Thesum 4x23 - 7x13 = 1.
ii.92=10,03=30and g, = 1. Thuss, = 31 and t, = -311. The sum 31 x1234 - 311 x123 =
1

iil. gp=1qgz=1andqg, =1 Thuss,=2and t; =-3. The sum 2x442 - 3x289 = 17.

1.3 Tothe Teacher
1. it L
6 24

Answer for 2.and 3.:

Suppose that a = s/t and b = ulv are positive rational numbers expressed in lowest terms
and that ¢ = lem(t, v). Then we can find integers mand n such that a = n/cand b = n/c.
As in the Divison Algorithm, we can express a uniquely as m/c = gn/c + r/c where q is
an integer, m=gn+r,and O £ r < n. Thus the number steps needed to carry out
Euclid's Algorithm on a and b are exactly as many as needed for mand n. Thus the
Algorithm halts. Iterating, we see that the agorithm halts when r = ged(m, n) and the
remainder is gcd(m n)/r. Geometrically, we can think of lengths a and b as being
multiples of a unit length 1/c. Euclid's Algorithm finds the largest integer multiple of 1
that divides both mand m So Euclid's Algorithm applied a and b finds the largest integer
multiple of /c of which both nYc and n/c are integer multiples.

Section 1.4
1. 12347983 = 281 43943 and both factors are prime numbers.

2.

Let n; be the minimum of m and k. Then gcd(a, b) = ppg x..xp>
23T

Let n; be the maximum of m and k;. Then lem(a, b) = ppp x..xp™

235'7711°13

Every prime above 2 is odd. So if a prime is of the form 3m + 1 then m must be an even
number. If mis odd, then 3mis odd so 3m+ 1 is even and hence not prime. If mis even,

m= 2> for someinteger n. Thus 3m+1=3> > +1 whichisintheform én+ 1.

i. Let n be acomposite number and let p be aprime that divides n and let g be another prime

that divides n. Suppose that p>+/n and g>+/n. Then pxq>v/nxh =n o pxq>n
which is a contradiction.

ii. 541 isindeed prime.

The first multipleof n/ 2isn . So for p>n/2 the multiples of p will be outside of the range
of numbers that we are searching.

2>8% X 1134749232981+ 1=200560490131
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Proof of Corallary 5. Suppose that x is arational number and that x=m/n. Let d = gcd(m, n)
and m= ds and n = dt for someintegers sand t. By Proposition 3 of Section 1.3, gcd(s,t) =
1. Notethat m/n = s/t becausemt = dst = dts= ns.

2=1+1 14=13+1
4=3+1 16=13+3
6=3+3 18=17+1
8=5+3 20=19+1
10=7+3 22=19+3
12=11+1 24=19+5

Let p(i) denote the ith prime. Since p(1) =2and2 £ 2°, the statement is true for n= 1.
Suppose that p(k) < 22 for 1 £ k £ n. Then 1+ p() p(2)--- p(n) £1+2227..27"

Summing the exponents with the geometric formula, we have 1+ p(1) p(2)--- p(n) £1+ 2%

and we know that 1+22"-* £ 22 . By the argument of Theorem 1, there must a prime between
1+ p() p(2)--- p(n) and p(n). Thus p(n+ 1) £27'.

Let p be any prime number. Since p is prime the only factors of p are 1 and itself. Suppose
thatJE isrational. Then \/E =% where aand b are relatively prime non-zero integers, and

2 s
f}%?: p s0 a2 = pb?. Since p divides the right side of the equation it must also divide the
el g
left-hand side of the equation, and since p is a prime it must divide a (Euclid's Lemma) so we
can rewrite a as p>n which gives us the equation p®>xn? = p *b?. Dividing both sides by p
we get pxn?=b?and so, by the same argument, p must divide b. Thus a and b are not
relatively prime, which is a contradiction.

1.4 Tothe Teacher Tasks
Challenge 1: 419,431,461
Chalenge 2:[3, 197],[7, 193],[19, 181], [37, 163], [43, 157], [61, 139], [73, 127], [97, 103]

Section 1.5
Task 1.

a

(In this problem, our indexing will be shifted.) Let S be the number of ways to express i as
thesumof 1'sand 2's. If i = 1, thereisoneway and so S, = 0O and if i = 2, there are2 ways,
namely 2 =1+1 and 2 = 2, so that S, = 2. Now if i > 1, any expression of i as such a sum
either terminates in 1 or 2 and the preceding summands sum to i — 1 and i — 2 respectively.
The number of ways for the preceding summands to be expressed is S; and S»
respectively. ThusS =S_;+ S_».

(In this problem, our indexing will be shifted.) Let E; be the number of ways the elf can
jumpi steps. Then E, = 1 since there is exactly one way to jump no steps:. Don't jump. There
is exactly one way to jump to step 1 and so E; = 1. Now if the éf in on step n, he was
previoudy either onstep n —2 oronstep n— 1. Thereare E;_, and E; _; ways respectively to
gettostepsn—2orn—1. Thuskg =E_, + E_;.

(In this problem, our indexing will be shifted.) In the diagram below D stands for drone (or
Dad) and M stands for mother.  When n = 0, the number of grandmothersis 1. (Sheisseen
two levels up from the root.) The mothers at any level i are either mother to afemale (M) at
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level i —1oramae (D) at level i — 1 because every bee hasamother. The malesat level i —1
are, in turn, in one-to-one correspondence with the mothers at level i — 2 because every
female has a father. Thus the number of mothers & level i is the sum of the number of
mothers at level i — 1 and the number of mothersat level i — 2.

M DMMD up M

Lemma 1.
Proof. Suppose that b =nc. If dla and d| ¢, thend|@@ + nc). Conversdly, if d|(a + nc) and d| c, then
d|((@ + nc) — nc).

Proposition 3.

Proof. Since F, = 0, the proposition istrue for n = 0. Assumethat foral 0 £ i <n, that F.; =
I:m—lFi + le:l +1: Then I:m+(n—1)= I:m—an—l + Fan md I:m+(r1— 2)= Fm—an 2%t Fan—l- Addlng,
I:m+n = I:m—l( I:n—l + Fn—Z) + I:m( I:n"' Fn—l)-

Proposition 4.
Proof. Itisclearly truefor n = 1. Assume that F. isdivisible by F,. By Proposition 2, Fry+ m =
ka—lFm + kaFm+l-

Proposition 5.

Proof. By proposition 2, Fqn + + = Fgn - 1F; + FonFr + 1. By proposition 3, F, divides Fq,. By
proposition 1, Fy, -1 and Fy, are relatively prime. Thus any common divisor of F, and F, isa
divisor of Fgn _1F + FqFy + 1. Any common divisor of Fq, _1F: + FqoF + 1 and F, must divide Fq, -
1Fr since F, divides F,q. Since Fq, -1 and Fq, are relatively prime, F, and Fq, -1 are relatively
prime. Thus any common divisor of Fq,_1F, and F, must divide F,.

Theorem 6.

Proof. We can iterate proposition 4, carrying out the division theorem on the subscripts on the F;.
Aswith Euclid's agorithm, we will terminate with gcd(F.,, F,) = gcd(F4, Fo) where d = ged(m, n).
Since Fo =0, ng(Fd, Fo) =F,. Thus ng(Fm, Fn) =k = Fgcd(m, n)-

Additional |dentities:

1. Useinduction on n and note:
(Fn)z_ I:n+1Fn—l = (Fn)2 - (Fn+ Fn—l) Fn—l =
I:n(Fn - I:n—l) - (Fn—l)2 = I:nFn—Z_ (Fn—l)2-

2. If there are k 2s, then the number of addends of n is n —k. So the problem can be rephrased
as, "How many ways can we place k 2sin a string of n — k 2s and 1's?" The answer is
?‘ k kS. The sum results when we add all possible counts of 2s.
@
In Pascal's Triangle we find the identity in adding the numbers in the ascending diagonas. One
such diagond is highlighted. Another is underlined. A third is italicized.
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1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

Section 1.6
- , : 1 3 1_ 2

1. i. First express the numbers with a common denominator: > = gan §= 5 Then
3 1 1 1 1

:1><g+— and E:2><—+0. So the common measure of —and =is l.This means that
6 6 6 6 6 2 3 6

both % and %are integer multiples of %and that %isthelargest such rational number.

i3 2 ad 2= D Now P=2x2 v 2 ad 224l L Thus Listhe
8 2% 2 2% 24 2424 V24 24

largest common measure.

2. For two fractions p/n and g/n expressed over a common denominator n, the agorithm takes
exactly as many steps aswhen it isapplied to p and qg.

3 {0123 = L ad{31,212172 =3
10 2

4. We get% : then% : theng . Continuing, we get the ratios of consecutive Fibonacci numbers.

5 i.{0;2 1,52}, ii.{2 11},iii. { 1,4, 1, 1, 1, 2}
6. i. {37 7,ii.{3,7 1611}
7. {1111, ..}

8. The continued fraction approximation for e with 10 terms is {2; 1,2,1,1,4,1,1,6,1}. This
evaluatesto 2.718283582. With the same number of places, the calculator's approximation to
€is2.718281828.

1

—-
(a, - l)+1

9. For both i and ii, notice that an_1+i = an_l+;=an_l+
3, (a,- D+1

Section 1.7
1. Nosince15isdivisble by 5.

2. The sequence of remaindersis{0, 4, 8,1,5, 9, 2, 6, 10, 3, 7}.

3 a" = @)° and by Fermat's Theorem , @°)° — 1 is divisible by 7. Similarly, @)* — 1 is
divisbleby 5. Since 5 and 7 are relatively prime, a'* — 1 isdivisible by 35.
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4. 3% = (3" which has a remainder 1 after division by 5 by Fermat. Thus the final digit of
3% isdther 1 or 6. Since 3 is odd, the final digit is 1.

5. Since 91 = 137 and 91 divides 3° — 1, we cannot use Fermat's Theorem to test for primes
because there are non-prime values of p for which the conclusion holds for some values of a.
But if thereisany a for which the result does not hold, we are guaranteed that p is not prime.

6. (@"-1) @ +1) =& '—1whichisdivisibleby p. By Euclid's Lemma, one of the factors
must be divisible by p. By the Division Theorem, (8 + 1) = 1x(@" — 1) + 2. So the ged of (a°
—1)and (@” + 1) can only be 1 or 2. Since p is and odd prime greater than 2, it cannot divide
both factors.

7. 63504
8 In é_ c(d), each integer x between 1 and n is counted exactly once by c(d) whered = ged(x,
d

n). Thus é_ c(d)=n. Let d be apostive divisor of n. To see that c(d) =f (n/d), first note that
the multi pijeﬁ of d that divide n are of the form i xd for a subset of the values of i such that 1
£i£ % Of these values of i, gcd( ixd , n) =d if and only if ged(i, n) = 1. Thus there are
exactly f (n/d) such values of 1.

9. i.t(2=2ands(2) =3;t(10) =4 and s(10) = 18; t (28) = 6 and s(28) = 56.
il The positive divisors of n are al of the form p* p,*. .pth where O£ x £n. Thus

there aren; + 1 possibilities for the exponent of p;.
iii. Proof by induction on the number q of distinct prime factors of n. If q =1, then n=

p™ for some prime p and positive n;. Its divisorsare 1, p, ..., p". Ther sum is
1-p
1-p

n,+1

. Now suppose the assertion holds for numbers that factor into powers of

g — 1 distinct primes and assume that n factors as p,* p2“2...pq”" . By the induction

. i 84 1- ptt
hypothesis, the sum of the factors of theform p,°p,=... pq"‘ =0 1 p

i=2 - pi

. Let She

aanpa =

a s

QJ%

the st of al factors of the form p1°p2‘2...pqi“. Then s(n) =

(-j a plnﬂo%l plr\+1 9 _ n‘+1
ploq a-= .
a lgalas 5 &1-p p&% 1P g Ol - P

iv.  t(n)= 72, s(n) = 191319912000

o
o

10. If mand n are relatively prime, then the prime factors of mn are the digoint union of the
factors of mand the factors of n.

11. Notethat (2"— 1) and (2") are relatively prime. Since (2'— 1) isprime, s((2"— 1)) = 2. Also
s(2"') = 2—1.S0s((2- 1)(2') = (2'- 1)(2). The sum of the divisors strictly less than
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2-D2His@-DA)-2-1DE2 N =@-1DE@ ). Thusif (2'—1) isprime, (2'—
(2 ') is a perfect number. The first four perfect numbers are 6, 28, 496, and 8128.
Looking further:

191561942608236107294793378084303638130997321548169216

is a perfect number! (Let n=89.)

12. Notethat 1729 = 7x13x19. Then a*' — a=a((a%)° - 1) = a((@®)* - 1) = a(@)* - 1)

Section 1.8
In The Classroom: Problem Solving
Socia Security Number: 381654729

Section 1.9

1

o

2P _1=02V-1=@2 -1+ 2"+ 2* + 2 + 1). Z — 1 = 127 is a factor. Similarly we
find that 2 — 1 = 31 isafactor.

We need to find four primes of the form 2x17k + 1 that are less than the square root of 2" —
1. The required square root is less than 363. Starting with k = 1 we have the following
numbers to check: 35, 69, 103, 137, 171, 205, 239, 273, 307, and 341. Checking for small
factors we can remove 35, 69, 171, 205, 273, and 341 from the list. Thus the four primes are
103, 137, 239, and 307.

The first prime to check is 2x2) + 1 = 47. (2 — 1)/47 = 17848L.

For n= 13, thesmallest r is 12.
For n=17, the smallest r is8 and 8 divides 17 — 1 = 16.
For n= 19, the smallest r is 18.

For n=5, thesmdlest r is4.
Forn=7, thesmdlestr is6.
For n=11, thesmdlestr is5and 5 divides 11 — 1.

Suppose that p isodd. Then 2™ +1=(29)P +1= (29 +1)(29P Y - 292 4 . 29 +1), Thus 2
+ lisafactor. For example 2 + 1 = 5isafactor of 2 + 1= 65,

Chapter 1 Highlights: Chapter Questions
3i.g=0,r=2; ii.q=26,r=21iii. q=-27,r =36

4.

I.456 = 1x234 + 222; 234 = 1>222 + 12; 222 =18x12+6; 12=2*6+0.

ii. 589403 = 6 »93840 + 26363; 93840 = 3x 26363 + 14751; 26363 =1x14751+11612;
14751 = 1>11612 + 3139; 11612 = 3x3139 + 2195;

3139 = 1x2195 + 944; 2195 = 2> 944 + 307; 944 = 3x307 + 23; 307 = 13x23 + §;
8=1x7+1;7=1>7+0

iii. The gcd of any two consecutive Fibonacci numbersis 1.
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5. i. no solutions since ged(30, 12) does not divide 27
il.12=12(—6+t>17)31 + 12(11 — tx31)17 for any integer t 1 Z.

6. With p = 7, we have 127! = 12° ™275 * 1 By Fermat's Little Theorem, the remainder 127
after division by 7 is equal to the remainder of 12" after division by 7. Thus the answer is 5.

7. 1123668000
8. i.5952; ii. 130628; iii. 144,
10. Proof. Since x divides xs and xs = yt, x dividesyt. Since gcd(x, y) = 1, x dividest. (Euclid's

Lemma). Similarly, y dividess.

Chapter 2

Section 2.1

1. [13]¢={..—14,-5, 4, 13,22,31,40, ...}, [3]10 ={..-17,-7,3,13,23,33,43, ...}, [4]1, =
{..—18,-7, 4, 15,26,37,48, ...}

2. Sincem (a—Db), it followsthat m|k(a—b) for dl k in Z.

3. Sincem| (a—Db) and m(c —d), it followsthat m| ((a + c) — (b + d)).

4. If a® bmod mand then the statement is true forn = 1. Assumethat & *© b’ *modm We
can apply part iii of Theorem2to a" ' © b""*mod mand a® bmod mto conclude that a" ©
b" mod m

5. Since103 * 3 mod 5, we can determine 103* © 3* mod 5. Since ¥mod 5=1, we have
3* mod 5 = (3)*3'mod 5= 3.

6. Wecan seethat 58 mod 11 = 3 and abit of experimenting reveals that 3 mod 11 = 1. Thus
58° mod 11 = 3° mod 11 = (3)°3* mod 11 = 3 mod 11. Now 3* = 81 and 81 mod 11 = 4.

7. Thetermina digit of a must be 1, 2, 3 or 4. Thus the terminal digit of a’mustbel, 4,9, or 6.
So a* mod 5 must be 1 or 4. With the same reasoning, a* mod 5 = 1.

8. We can state Euler's Theorem as follows. "If a and mare relatively prime, then a (™ © 1
mod m" We can state Fermat's Little Theorem as, "If p is prime, then for any integer a,

a’°%amodp."

9. The solution sets are:
i. empty
i. [0 E[3:E [SeE [T
iii. empty
iv. [3] 5
V. [6]12
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10.

11

13.

14.

15.

16.

17.

18.

19.

20.

Solutions

The integer X, isasolutionto ax © b mod mif and only if there exists aq, such that x, and gy
satisfy the Diophantine equation ax —gm=b. In that case, al other values of x are of the

formx=x, + % by Proposition 8 of Section 1.3.

The solution sets are;

i [4]15 E [91s E [14]15

ii. [6]3s E [13]3s E [20]35 E [27]35 E [34] 35
iii. [15] 10

Sincerx © rb mod m, we can find an integer q such that rx—rb = gm Now divide both sides

by d = ged(r, m). Then %(x b) :gq : Since% and ? are relatively prime and since?

divides %(x b), % must divide (x- b).

i. 7X°5mod1l; Aninverseof 7is8snce56 © 1 mod 11. Thus 85 © 40 mod 11 and
40 ° 7mod1l. Sox = [7]11

ii. 8X° 2mod6; noinverse x =[1]¢s and x =[ 4]¢

iii. 5x° 3mod 12; Theinverseof 5is5snce25 ©® 1 mod 12. Thus 25 x ° 15 mod 12 and
15 ° 3mod 12. Thus x =[3] 12

Theinverse of 31 is 12 mod 53 and the solution set is [11] 53
Theinverse of 23is27 mod 31 and the solution set is [2]s;

4l 1, i 2.

Proof. a2° 1 mod p iff p| (@2—1). Now p| (@ 1) iff p | (@a— 1)(a + 1). By Eudlid's
lemmap|@-1@+L)iffp|@-1)orp|(@+1).

Proof. The number of eementsintheset {p—1,p-2, ...., 1} iseven. Of these
numbers, only p — 1 and 1 are their own inverses. So every other number has a distinct
inverse in the list. So when we write out the product (p— 1)(p—2) ...1 mod p, we can
replace each pair of inverseswith 1 mod p. We are left with (p —1)! © (p— 1) mod p or
equivaently, (p —1)! ° —1 mod p.

[206] 210

[535] 1001

The number of coinsis 3930.

Let d=gcd(m n). We know that X isacommon solutionto x © b mod mand x © a mod n if

and only if a—b =gm-pn for someintegersqand p. The Diophantine equation a —b=gm
—pn hasasolutionif and only if a—bisdivisbleby d. Now suppose that x and y are both
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simultaneous solutionsto x © b mod mand x © a mod n. Then we can find integerst and s
such that x—y = tm= 1. Since m/d and n arerelatively prime, m/d divides s by Euclid's
Lemma. So s=vm/d for someinteger v. Thusx—y =vnmr/d. Since lcm(m, n) = mn/d, we
have that x and y are congruent modulo Icm(m, n).

2.1 Tothe Teacher Tasks
1 d12 =7
2. If an odd digit is changed by +3 and an even digit is changed by +1, the error will not be
detected.

Section 2.2
Proposition A and Corollary 1:
Proof. 10" =999...9 + 1, which is congruent to 1 mod 9. Thus a10" ©® a mod 9.

Trick 1: X,10"+ X,010" "+, + Xo © Xn + Xy _1 + ...+ Xo mod 9 by Corollary B.

Trick 2. The argument is the same as for Trick 1 because 10" = 999...9 + 1 is congruent to 1
mod 3.

Trick 3: Apply hint.

Trick 4. Firg note that a number x that endsin a zero isdivisible by 7 if and only if the integer
% isdivisible by 7 because the smalest multiple of 7 that endsin 0 is 70. (In "short" division,
we would haveto carry a7 or a0 to the last digit. The former is impossible and the later implies
that 1—); isdivisbleby 7.) Now supposethat d isthe last digit.

Trick 5. Thistrick isaso based on Proposition A and Corollary B:

(Xn+ Yn) 10"+ (X1 + Yoa) 10" .+ (Ko + Vo) © (Xn+ Vo) + (Xnr + Yit) +.... + (Xo +Yo) mod 9.
The case for multiplication is similar.

Additional tasks:

1. Theanaogy to Proposition A in base 5isthat 5' = 4..44 + 1. The anaogous test for division
of x by 4 isto test that the sum of its digitsis divisible by 4. (All computations are carried out
base 5.) We can generalize the test for divisibility by m—1inbasem

2. Just like 11 base 10, 6 has aremainder of 1 mod 5. So the trick isto test the alternating sum
of digits.

3. Thistest will NOT detect al errors. For instance, it will not detect transposed digitsin the
answer

4. Interpret the hint with Proposition A and its corollary.

Section 2.3
Task 1. 214 mod221=20 T
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70" mod 221 =8 H
100" mod 221 =9 |

92" mod 221 = 14 N
1582 mod221=11 K

Task 2. SEND HELP (There'san extrasymbol that we can interpret as a space.)
Task 3.208 1 214 70 100 59 46 200 92

Task 4.
Encode: 7335 4585 6397 6741 2984 1 3197

Decoded: 7 15 27 8 15 135 or GO HOME

Task 5. j = 903595073 Decoded: 7 1520 38 1 or GOTCHA

Task 6. M% =M trse-D@-Dd = ng (g1 ysa=D By Fermat's Little Theorem, MP*© 1 mod p
andso MY © M (MP*)Xa=D4 0 M mod p. Similarly, M¥ © M mod g. Since ged(p, @) = 1,
MY © M mod pg. (Note: This assumes that the primes chosen are larger than the digits to be
encoded. Otherwise, it works when M and n are relatively prime. )

Section 2.4

1.
Zs, + 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1
Zs, 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1
Zs, + 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2




Solutions

Zy* 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

Suppose that x | [a], and ylI [b],. Thena © xmod mand b © y mod m By Theorem 2 of
Section 2.1, ab® xy mod m Therefore [ab] i, = [XY]m.

i. O i 3N, 2;iv. 2
[a]m([b]m + [C]m) = [a]m*([b + C]m) = [a(b + €)]m = [ab + aC]n = [ab]m + [aC]m = [a]m X [D]m +
[a]mX[C]m
i.4;ii. 3. 4, iv. 10; v. 8, vi{2,5, 8, 11}
m=12: Theunitsare 1, 5, 7, 11. Their inversesare 1, 5, 7, 11 respectively.
m= 9: Theunitsarel, 2, 4,5, 7, 8. Their inversesare 1, 5, 7, 2, 4, and 8 respectively.
m=10: Theunitsare 1, 3, 7, 9. Their inversesare 1, 7, 3, and 9 respectively.
m= 11: The units are 1 through 10. The inverses are (in order) {1, 6, 4, 3,9, 2, 8, 7, 5, 10}.

Let p be prime. Then for al x suchthat 0 < x< p, ged(x, p) =1and ax ©® 1mod p has a
solution.

The congruenceax © 1 mod mhas a solution if and only if ged(a, m) = 1.
Suppose that a be anonzero dementin Z,. Let d=gcd(a, M and y=mv/d. If d> 1, then aisa

zero divisor becauseay =0in Z,buty ! 0. Conversdly, if d =1, and ay © 0 mod m, then m|
y.Soy=0inZ, and aisnot azero divisor.

10. Thereare] (M) unitsin U,

Up | 1 5 7 11
*

1 1 5 7 11
5 5 1 11 7
7 7 11 1 5
11 (11 7 5 1
Ug, | 1 3 5 7
*

1 1 3 5 7
3 3 1 7 5
5 5 7 1 3
7 7 5 3 1
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11.

13.

14.

Solutions

No. For instance, in Zg, 2 x4 =2x1but, cancdingthe2, 4 1 1.

Letm=6.Then 4+4=1+1but4 ? 1.

Letm=9.Then 4+4+4=1+1+1but4 * 1

InZ;, 3issuch an element because 3' =3,F =2,3=6,3=4,3 =5 3 = 1. Thiscan not

be done for Zg because each nonzero element squared is equal to 1. It cannot be donein Zio.
InZ;, 2 works.

2.4 Tothe Teacher Tasks

1
2.

Forinstance, 1<4but is1+1<1+4?
The symbol 1 is used to denote a value of x such that x = 1. Just writing the symbol 1
P

p
does not imply that you can find such avalue of x. It is not immediately obvious that among
al the numbers that you can express as non-repeating, non-terminating decimals, there is a
number that satisfies the equation x3 = 1. (A proof of existenceis an exercise in analysis.)

Section 2.5

L iii. (-a)¢ b) + (-a)(b) = (- @)(- b+b) = (- @)0=0. Since by partii, (- a)b=- (ab)
we aso have that - (ab) isthe additive inverse of both (ab) and (-a)(-b). Thus these two
are equal since their additive inverses are unique.

iv. (-)a=-(1a)=-a again applying part ii.
Suppose that 1 and x are unitiesin the samering. Then1=1 » =x.

Suppose that a and b are multiplicative inverses of x inaring R. Then (ax)b =a(xb) by
associativity. So (ax)b=1% =b =a(xb) = ax = a. Thusthe two inverses are equal.

Letd=ged(x,m). Lety=m/d.Ifd ? 1, thenxy=0inZ,buty * 0. Thusxisazero divisor
inZ,. Conversdly, if d =1and xy =0in Z,, then mdividesy sothat y=0in Z,,and x is not
azero divisor.

The symbol 2 has amultiplicative inversein Zs andin Z;5 but not in Z, or Z,,. Thus 2 can be
cancelled in 2x = 2y in Zs and in Z35 but not in the others.

él 2y & 1 é13 18
INM; 5, lex=a pandy=ga g Then(x+y) =X+ xy+yx+y’= a - but
8 40 & 1 g4 374

) él2 17y . . n
X+ 2y +y = ;&4 38u' (In anon-commutative ring, the expansion of (x + y)" would have
u
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10.

11
. ad—cbtO.

13.

14.

15.
16.

17.
18.

Solutions

?lgmonomialsthat contained exactly i copies of x and n—i of y. However, each
l g

arrangement of a monomia would need to be counted individually because, for instance, we
could not assume that xxyxyxy = x'y?. Thus (x + y)" would have 2" distinct monomialsin its
expansion.

The units of Z,, are the elements that are relatively primeto m If gcd(x, m) = 1 then there are
integersu and v such that ux + vm=1. Thusux =1—-vm and ux=1in Z,. So x isaunit. If

ged(x,m) t 1, then x isazero divisor and hence not a unit. (See Exercise 4.)

The unitsin Q[X] are the non-zero rational numbers. Each non-zero rational number has a
multiplicative inverse. Since the symbol x does not have a multiplicative inverse, no non
constant polynomia is a unit.

Let p(x) = a.x" + .....+ap and q(X) = bx* + ...+ by be two non-zero polynomials with
coefficientsin aring R . Suppose that neither a, nor by = 0. Their product is abx™ + .+
agh,. If Risanintegral domain, a,by ! 0and sothe p(x)q(X) * 0. Thus R[X] isan integra
domain. Conversely, suppose Ris not an integral domain, and let a and b be zero divisorsin
R. Let p(x) =aand q(x) =b. Then p(x)q(x) = 0 and R[X] is not an integral domain.

If Risaring without unity, then clearly R[X] is not afield because it has no unity element. |If
Risaring (or field) with unity, the polynomia p(x) = x has no inverse.

InZs, X = 2. In Z;, there is no solution.

a-b«/g

2 %2

The multiplicative inverse of anon-zero element a + b\/g is
To show that Z;[i] is afield we need to show that every non-zero element has a multiplicative
inverse. Consider a + bi where aand b are elements of Z; and are not both zero. Then (a +
bi)(a — bi) = a® + b%. The square d an dement in Z; is either 0 or 1. It can not be 2. The
possible values of a® + b* are 1 or 2. If it is 1, then a — bi is the multiplicative inverse. If the
value of a> + b’ is 2 then 2a -2bi is the multiplicative inverse of a + bi. The multiplicative
inverseof 2+ i1s2(2—-i)=1-2i. Tosolve (2 + i)x =1 + 2, multiply both sdesby 1 — 2i so
that (1- 2i)(2+i)x=x=(1- 2i))(1+2i)=1+1= 2.

No, because (2+i)(2—i)=4+1=0mod 5.

If X*=x, then XX —x = 0 or x(x—1) = 0. In an integral domain, it must be the case that x = 0 or
X—1=0. Thustheonly solutionsarex=0and x = 1.

The sum of any polynomial with itself p times results in the zero polynomial.

As per the hint, T, isinjective since if xy =xz, wehave x(y—2 =0. Sincex * 0,y—z=00r
y = z. Since an injective map on afinite set must be surjective, we can find zin R such that xz
= 1. Thus every nonzero element in Risaunit and R must be afield.

2.5 Tothe Teacher Tasks

2.

3.
4.

If the mouse usesn or more doors, then it must visit one of the n stations more than once. It
could find atrip with no repeated stations that uses fewer doors.

No! Infigure 1, a mouse cannot get back to station 6 or to station 1.

Yes, if thereisaloop like2 ® 3® 4® 2 which can be traversed any number of times.
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Solutions

Yes, if thereareno such loopsas 2 ® 3® 4® 2, amouse could never get back to where it
started.

E.g. Power transmlsson lines.

The matrix A* would contain a1 in position i-j if there is at least one path between stationsi
and j using exactly 2 doors 0 otherwise. The matrix would summarize the existence of paths,
but not count the number of paths.

Section 2.6

1

2.
3.

0.

z+w=3-2i; ,zw= 5-5i;zZw= (-15-7i/5);

W =3+4i; Z2=-26+18i.

z=1+i/3.

Both are sides are equd to (ac + ae —bd—bf) + (ad + af + bc + be) i

>—— | . The product of — and w

i c d . 1 _ac+bd  bc- ad.
z c*+d® c’+d z S 2+d? F+d?

i°=1,it=i, i?=-1,i®=-i. Thus i" =i "™,

Z=3-4; |z|:\/9+16=5;

do_ 3,4 dg{_g.
zl 5
25

—+—an
Z°=-7-24i and |Z| =

€75 25 25

If z=a+bi, thenboth|zf and Z zareequal to a* + b,

Letz=a+ biandw=x+yi. Then

Both Z+ W and (z+w)areequal to (a+x)— (b + y)i.
Both Z W and (zw) are equal to (ax— by) — (ay + xb)i.

aeloand— areequal to X y

Both
8Wﬂ w X +y?

Since+/3+i=2 gcosgg?3 ;+|S|n§¢é;;2j (3 +i)° _258(:05?2 g+|sm§é—po =

-16+/3+16i. Since(1+i)= \/_cos8 +|s|n?19, @+i)y'=
4g

(\/5) & _ apn apn oo

gCOSg 4 +|S|n8 45 L for n=12,..
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10.

11

13.

14.

15.

Solutions
. . 2 = 1+|'\/§

Applying the quadratic formulato x +x + 1, the cuberootsof 1 are 1, > ,and
-1-i\3 . . . o

B This agreeswith de Moivre's formulas sincecos(0) +sin(0)i =1,

-1+ -1-i4/3

Cosae?p o+gnae?p oI -1+i4/3 and cos +Smae4p oI I\/—_

&35 &35 2 §35 &35 2

The sixth roots of unity are asfollows:
cog(0) +€n(0)i =0

o, . o _1_ i3

=+
00586g+5|n86g| 5T

COS@p O+S|n@p ol +@
6y 865 2 2

6 g 2 2
003@94'5”1@&3 = l_ ﬁ
E6p &6g 2 2

 1+4/3i = 2 Ros. o+lsna¢) o and its square roots are ++/2 Tos® O+ISIH@9
§ &35 &3 $ &6y &6pp

where «/5 denotes the real, positive square root of 2.

1+i= 2 o 0+|s|naep 0_ and its cube roots are 2Y° cosaal +|s,|n&p 9_,

§ 84 dpm § ey | €127

216 cosaé)—p +|sma@IO 00 and 21,68%()8@0“9”@0 where 2" denotes the
S €12y | &125, STE12p 812 5y

real sixth root of 2.

Theroots of x*+ x + 1 are cube roots of unity, which are also sixth roots of unity. So each
root of x>+ x + lisaroot of x°+x'+x+ X+ x+ 1.

k -2

We can check that for any k >0, X— 1= (x — )(x " + x
pathen X9 —1=(")"—1=(x" = 1)(°)" " + (") %+ ...+ 1).

+ ...+ 1) by multiplying. If n=
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16. Note that x* — 1 = % — 1)(x* + 1) and that x* + 1 = &' + )¢ — x* +1). Since

cosZ2 04 sin® 0 is not a root of X2 -1, it mugt be a root of X + 1. Since
&12 812ﬂ

BosZ 0y gn 2P _|_ 1, cosaeﬂg+sinaai2i cannot be aroot of x* + 1. Thus it
§ 82y &l2p S5 125
must be aroot of X*—x* + 1.

-3i  +/-9-8i

17. z= —+
2 2

2.6 Tothe Teacher Tasks

1 3 +i=2%0s +|S|naElEio gln@rin /e
8 8 6 g
i2n
2 e’% ,n=01234
3 0 In(13) +i arctangezg, i1+ pi; Pl
4. A smilarity: Arctan and the complex logarithm functions are both partial inverses of many to
one functions. Thus we need to restrict our answersto values of q that liein an interva on
which the tangent function and the complex exponentia functions are one-to-one.
A difference: the domain of the arctan function includes O whereas the domain of the
complex logarithm function does not.
Section 2.7

In the Classroom: Why isthe Product of Two Negatives Positive?
2. InaringR, thereisan dement Ol R suchthat 0+x=x+0=x fordl X inR. Prove
that this O is unique.

Suppose 0, and O, aretwo such elements. Then 0, =0, +0, =0, .

3. Eachelement X inaring R hasanelement y (ds0in R),suchthat x+y=y+x=0.
Prove that each element X has a unique such elementy .
Supposey, and Y, are both additive inverses of X inR. Then(y, +X) +y, =
Yo+ (X+Y,), by associativity. So(y, + X) +y, =0+Yy, =y, = y; +(X+Y,) =
y, + 0=y,. Thusthe two inverses areequal.

Section 2.8
1. The numbers are 5++/- 5 and 5- /- 5.

2. If x =0 then the right hand side is 0. By making x large enough we can make the left hand
side greater than g. By continuity of polynomials, there must be an x such that x* + px exactly

equals q.
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Solutions

If x* = px + q has a as a positive root then substitute —a into the equation X* + px = g. This
yields (- a)® + g =p(-a) . This becomes —a® +q = -pa. Rearrange to a° = pa + ¢. Thisisthe
origina condition.

Since /- 200 =10~ 2 we can rewrite the original number as
- 4+-200 +3-4- J-200 =3 4+10y-2 +3- 4- 10J-2 . Now assume that

J- 4110\/3 =azxb+- 2. Keegping the positive sign and cubing both sides yields
-4+10J-2=2a%- 6af +(3a’b - 2b°)/-2 . By inspection a = 2 and b = 1 gives equality.

Thus §- 4+10J-2 +3- 4- 10J-2 = (2+/-2) +(2- V2) =4.
1 _ 1 N1 41 V-4 _

= = =- \/- 1. With thisin hand we have 2+/- 1 whilethe
J1 J1d1 - J1
N/
other form —==——=- 2\/- 1.
\/- 1 -1

Chapter 2 Highlights: Chapter Questions

2.

Reflexivity: x has the same remainder asitself.
Symmetry: If x has the same remainder as 'y, then y has the same remainder asx.

Trangtivity: If x has the same remainder asy and y has the same remainder as z, then z has
the same remainder as x.

[_y]m = [m_x]m-
42%* mod13=9

. [415 E [915 E [14]15
i, [212

iii. no solution

iv. [156]211

Leta=15and b=19and m=10. Thenamod 10=5and bmod 10=9andsoc amod 10+ b
mod 10 = 14. However, (@ +b ) mod 10 = 34 mod 10 = 4.

[12]616

Let d = gcd(m n). Then m=md and n = n,d for someintegersmy and n;. Sincea—b =qgm
and a—b = in for some integers g and t, we have gm = tn and hence gmy, = tn,. Since ged(m,
my) = 1, we know that my, divides t so that for some integer s, t = smy. Subgtituting in the
expression a —b = tn, we find that a— b = smyn. Notice that myn = mn/d = Icm(n, m).

i. O;ii. 8;1ii. 9;iv. 10
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10.

11

13.
14.

15.

16.

17.

18.

19.

20.

21

Solutions
137" =4in Z,,.
i. 16; ii. 7;iii. {2,5, 8}
The unitsof Z;s are {1, 2, 4,7, 8, 11, 13, 14}. Their inverses are, respectively,{ 1, 8, 4, 13, 2,

11, 7, 14}

INZpy, (M=1)" = (m—1) because (m—1° =n? — 2m+ 1 and (" — 2m+ 1) mod m=1.
An ement x of Z,is zero divisor if and only if x 1 Oand gcd(x, m) 1 1.In Zy;, thereare no
zero divisors because 17 isprime. In Zy, the set of zero divisorsis{2, 4, 5, 6, 8, 10, 12, 14,
15, 16, 18}.

An eement x of Zyisaunitif and only if ged(x, m) = 1. In Z;7, every non-zero element is a
unit because 17 is prime. In Zy, the unitsare {1, 3, 7, 9, 11, 13, 17, 19}.

The multiplicative inverse of 1 + 3«/5 is 1—71+1£«/§ The solution to (1 + 3\/§)x =1-

542 |sg—1+_\/_°>(1 5\/_)_ﬂ+§\/—

é5 -14u
670 i Note: the answer isX + xy + yx+ y>and xy 1 yx.
- u

If pisnot prime, then we can factor p as st, where sand t are not equal to either 0 or 1 mod p.
Thusthe elements s+ O and t+0 areazerodivisors. Now supposep isprimeand let a +
ib be an element of Z,,. If a®+b* = Omod p then (a+ bi)(a— b|) Omod p and (a + bi)
cannot be a unit. On the other hand, if a® +b? 1 0 mod p, then a° + b° has amultiplicative
inverse zin Z,. The multiplicative inverse of (a + bi) isthen za— bz because (a + bi)(za—
zbi) = z(a® + b2) 1.

Z=2+5;z+w=3-7i; 2w=-8-9i: Zw=12/5 — i/5; W= —3—4i ; 72 =— 142 + 65i.

z:j &i__ﬁg andz_-_l_&i+£9|
2 § 25 2 § 25

XB—1=X-D(x+1O¢+ D¢ +1) = (x— (X + D(x—i )X+ )=+ 1)

@2 206, &2 2o @2 20

=(x- 1)(X+1)(X—l)(X+l)(X—g— —:)( g— — )(( —g—-—:)((

LA 2i0

89\/— \/_I; 2 2i

g_- __) So the eight roots are +1, +i, * g_ 257 g__T%

22.

4]

i =cos(p /2) +i 9n(p /2). Thus the cube roots of i are asfollows:

J3 i

cos(p /6) +iSn(p /6) = -+

cos(p /6 +2p /3) +i sin(p /6 + 2p /3) = #AZ
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Chapter 3

Solutions

cos(p /6 +4p /3) +isSn(p /6 +4p /3)=-1i.

Section 3.1

1
2.

10.

11.

x> +3x+1 and x* +1
In Z,, there are 4 polynomials of degree 2, 4 monic. In Zs, there are 100 polynomials of
degree 2, 25 monic; in Z,, there are (n — 1)n * polynomials of degree 2, n* monic.

a sum: 2¢ + 6x + 3; product: 6 + 13x° + X + 2

b. sum: 2¢ + x + 3; product: X° + 3 + 4x + 2

C. sum: 2¢ + X; product: X* + 2¢ + 2

d. sum: (2 + 3)x* + 6x + 3 product: (6 + 9)x® + (3 + 4)X2 + Oix— 2

The results follow from Chapter 2.1, Theorem 2. For the i coefficient of the sum, we know

that (a; + b)) mod n = (& mod n + b; mod n) mod n. For thei™ coefficient of the product we

& 0 & o]
know that ¢ é a,b, +modn= ¢ é (aj modn)(bq mod n)+mod n.
€i+asi a €j+a=i a

i. quotient: X* + X + 1; remainder: O
ii. quotient: X" '+ X "2+ ..+ X+ 1 remainder: O
iii. quotient: 2¢ + 4x + 4; remainder: 2
iv. quotient: x>+ x* + 1; remainder: O
V. quotient: X° + X + 2+ 2 remainder: 3+ 2

Let p(x)=a.X'+ .+ a and g(x) = b X" +...+ by with a,1 Oand b,,1 0. Ifa b, 1 0O, then
p(X)q(X) = abn X" "+ ...+ ahy T 0in R[X]. Conversdly, if a,b,, = 0, then the product of the
non- zero polynomials p(x) = axx" and q(x) = b,x" is zero: (@.X")( byx™) = @bn)x" ™ = 0.

i. yes, ii. no; iii. no
Each iteration of division by p(x) = b.X" + ...+ by requiresthat we obtain g(x) = g(x) —

ix"‘ "p(x) where a, istheleading coefficient of g;.1(x). Only the leading coefficient of

p%(), namely by,,, must be a unit for thisto be carried out.

0 (Use the remainder theorem and simply evaluate the polynomial at x = 1.)
4

3¢ + 3. Itsrootsare 0, 1, 2, 3, 4, and 5.

All polynomids p(x) = X"+ ....+ a, for which a, = 0 have root O; otherwise, al polynomials
with an even number of non-zero coefficients have root 1.
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25 Solutions

13. Monic; x>+ 1, X2+ x+ 2, and X* + 2 + 2: Not monic; 2¢ +2,2¢ + 2x+ 1, and 2¢ + x + 1.

14. f(x) =q(X)(x —a) + 1, andf(a) = ro. Sof(@) = 0if and only if ro = 0. Thusf(a) = 0 if and only
if f(x) =qX)(x —a).

15. Let n = 1. A polynomial of the form x — a has exactly one root, namely a. Assume that the
theorem is true for polynomials of degree less than n and suppose that p(x) is a polynomial of
degreen > 1. If p(x) has no roots, then we are done since 0 < n. If p(x) has aroot at x,, then
p(X) = g(X)(X —X%o) and deg (g(x)) = n— 1. By the induction hypothesis, g(x) has at most n — 1
roots. Any root of p(X) is either equal to X, or it isaroot of g(x). Thus p(x) has a most n roots.

16. Supposethat p—1=ndandlety = x". Thenx’ '—1=y"—1=(y-Dy" "  +y""2+ ... +1)
=) (X PV +x=3 4 +1). Conversdly,ifp—1=nd+rand O<r <d, then the
remainder of x° ~*— 1 after division by x® — 1isx"— 1. (At each stage in long division, another
copy d is subtracted from the exponent p— 1 until r isleft.)

3.1 Tothe Teacher Tasks
1. Yes Letp(x)=x*+x+ 1 Then p(1) =3, p(2) = 7; p(3) = 13 but p(4) = 21.

2 (CHx+1)K+2) +(x+3)=x*+x + 3¢+ 3+ 5Inbase 10, we have 11335 = 111 >102 +
13.

The base 13 expression 11335 = 111 >102 + 13 means (13" + 13° + 3>13* + 3>13+ 5) = (13
+13+ 1)(13*+2) +13+3o0r, in base ten, 31309 = 183 *171 + 16.

In base 7, the expression11335 = 111 102 + 13 means (7' + 7 + 37 + 3»7+5) = (P + 7+
1)(7 +2) +7+ 3 or 2917=57 »51+10.

3. Suppose that p(x) = g(X)f(x) and let mbe an integer. For p(m) to be prime, either f(m) or g(m)
must equal 1 or — 1. But this can happen for at most a finite number of values of m For
instance, f(x) = 1, or equivalently, f(x) — 1 = 0 has only afinite number of solutions.

Section 3.2
1 C+HX+x-2—X%-2) =x(X' + X} =x*—-2x-2) + (&°-2)
O+ xC=x2=2x-2) =2+ U2(2°P-2) + (¢ —x-1)
(-2 =(-2%+2)(-X-x—1)+0
Thus (=*—x— 1) = ged(f, g) and thereforex® + x + 1 is"the" god(f, g).

2. () =g(x)q(x) + r(x) and f(x) —g(x)q(x) = r(x). Thusd(x) divides both f(x) and g(x) if and
only if d(x) divides both r(x) and g(x).

3 i.x=2
i.x+4
i, 1
4. s(x)f(x) + t(x)g(x) = ged(f, 9)
=2 1, 1 =2, U
[ s(x)—gx 10x 10andt() 5x 5

Full download all chaptersinstantly please go to Solutions Manual, Test Bank site: TestBankLive.com
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