
Chapter 2

Second-Order Differential
Equations

2.1 The Linear Second-Order Equation

1. It is a routine exercise in differentiation to show that y1(x) and y2(x) are
solutions of the homogeneous equation, while yp(x) is a solution of the
nonhomogeneous equation. The Wronskian of y1(x) and y2(x) is

W (x) =

∣∣∣∣ sin(6x) cos(6x)
6 cos(6x) −6 sin(6x)

∣∣∣∣ = −6 sin2(x)− 6 sin2(x) = −6,

and this is nonzero for all x, so these solutions are linearly independent
on the real line. The general solution of the nonhomogeneous differential
equation is

y = c1 sin(6x) + c2 cos(6x) +
1

36
(x− 1).

For the initial value problem, we need

y(0) = c2 −
1

36
= −5

so c2 = −179/36. And

y′(0) = 2 = 6c1 +
1

36

so c1 = 71/216. The unique solution of the initial value problem is

y(x) =
71

216
sin(6x)− 179

36
cos(6x) +

1

36
(x− 1).

2. The Wronskian of e4x and e−4x is

W (x) =

∣∣∣∣ e4x e−4x

4e4x −4e−4x

∣∣∣∣ = −8 6= 0

37
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38 CHAPTER 2. SECOND-ORDER DIFFERENTIAL EQUATIONS

so these solutions of the associated homogeneous equation are indepen-
dent. With the particular solution yp(x) of the nonhomogeneous equation,
this equation has general solution

y(x) = c1e
4x + c2e

−4x − 1

4
x2 − 1

32
.

From the initial conditions we obtain

y(0) = c1 + c2 −
1

32
= 12

and
y′(0) = 4c1 − 4c2 = 3.

Solve these to obtain c1 = 409/64 and c2 = 361/64 to obtain the solution

y(x) =
409

64
e4x +

361

64
e−4x − 1

4
x2 − 1

32
.

3. The associated homogeneous equation has solutions e−2x and e−x. Their
Wronskian is

W (x) =

∣∣∣∣ e−2x e−x

−2e−2x −e−x
∣∣∣∣ = e−3x

and this is nonzero for all x. The general solution of the nonhomogeneous
differential equation is

y(x) = c1e
−2x + c2e

−x +
15

2
.

For the initial value problem, solve

y(0) = −3 = c1 + c2 +
15

2

and
y′(0) = −1 = −2c1 − c2

to get c1 = 23/2, c2 = −22. The initial value problem has solution

y(x) =
23

2
e−2x − 22e−x +

15

2
.

4. The associated homogeneous equation has solutions

y1(x) = e3x cos(2x), y2(x) = e3x sin(2x).

The Wronskian of these solutions is

W (x) =

∣∣∣∣ e3x cos(2x) e3x sin(2x)
3e3x cos(2x)− 2e3x sin(2x) 3e3x sin(2x) + 2e3x cos(2x)

∣∣∣∣ = e6x 6= 0
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2.1. THE LINEAR SECOND-ORDER EQUATION 39

for all x. The general solution of the nonhomogeneous equation is

y(x) = c1e
3x cos(2x) + c2e

3x sin(2x)− 1

8
ex.

To satisfy the initial conditions, it is required that

y(0) = −1 = c1 −
1

8

and

3c1 + 2c2 −
1

8
= 1.

Solve these to obtain c1 = −7/8 and c2 = 15/8. The solution of the initial
value problem is

y(x) = −7

8
e3x cos(2x) +

15

8
e3x sin(2x)− 1

8
ex.

5. The associated homogeneous equation has solutions

y1(x) = ex cos(x), y2(x) = ex sin(x).

These have Wronskian

W (x) =

∣∣∣∣ ex cos(x) ex sin(x)
ex cos(x)− ex sin(x) ex sin(x) + ex cos(x)

∣∣∣∣ = e2x 6= 0

so these solutions are independent. The general solution of the nonhomo-
geneous differential equation is

y(x) = c1e
x cos(x) + c2e

x sin(x)− 5

2
c2 − 5x− 5

2
.

We need

y(0) = c1 −
5

2
= 6

and
y′(0) = 1 = c1 + c2 − 5.

Solve these to get c1 = 17/2 and c2 = −5/2 to get the solution

y(x) =
17

2
ex cos(x)− 5

2
ex sin(x)− 5

2
x2 − 5x− 5

2
.

6. Suppose y1 and y2 are solutions of the homogeneous equation (2.2). Then

y′′1 + py′1 + qy1 = 0

and
y′′2 + py′2 + qy2 = 0.
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40 CHAPTER 2. SECOND-ORDER DIFFERENTIAL EQUATIONS

Multiply the first equation by y2 and the second by −y1 and add the
resulting equations to obtain

y′′1 y2 − y′′2 y1 + p(y′1y2 − y′2y1) = 0.

We want to relate this equation to the Wronskian of these solutions, which
is

W = y1y
′
2 − y2y

′
1.

Now

W ′ = y1y
′′
2 − y2y

′′
1 .

Then

W ′ + pW = 0.

This is a linear first-order differential equation for W . Multiply this equa-
tion by the integrating factor

e
∫
p(x) dx

to obtain

We
∫
p(x) dx + pWe

∫
p(x) dx = 0,

which we can write as (
We

∫
p(x) dx

)′
= 0.

Integrate this to obtain

We
∫
p(x) dx = k,

with k constant. Then

W (x) = ke−
∫
p(x) dx.

This shows that W (x) = 0 for all x (if k = 0), and W (x) 6= 0 for all x (if
k 6= 0).

Now suppose that y1 and y2 are independent and observe that

d

dx

(
y2

y1

)
=
y1y
′
2 − y2y

′
1

y2
1

=
1

y2
1

W (x).

If k = 0, then W (x) = 0 for all x and the quotient y2/y1 has zero derivative
and so is constant:

y2

y1
= c

for some constant c. But then y2(x) = cy1(x), contradicting the assump-
tion that these solutions are linearly independent. Therefore k 6= 0 and
W (x) 6= − for all x, as was to be shown.
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2.2. THE CONSTANT COEFFICIENT HOMOGENEOUS EQUATION 41

7. The Wronskian of x2 and x3 is

W (x) =

∣∣∣∣x2 x3

2x 3x2

∣∣∣∣ = x4.

Then W (0) = 0, while W (x) 6= 0 if x 6= 0. This is impossible if x2 and
x3 are solutions of equation (2.2) for some functions p(x) and q(x). We
conclude that these functions are not solutions of equation (2.2).

8. It is routine to verify that y1(x) and y2(x) are solutions of the differential
equation. Compute

W (x) =

∣∣∣∣x x2

1 2x

∣∣∣∣ = x2.

Then W (0) = 0 but W (x) > 0 if x 6= 0. However, to write the differential
equation in the standard form of equation (2.2), we must divide by x2 to
obtain

y′′ − 2

x
y′ +

2

x2
y = 0.

This is undefined at x = 0, which is in the interval −1 << 1, so the
theorem does not apply.

9. If y2(x) and y2(x) both have a relative extremum (max or min) at some
x0 within (a, b), then

y′(x0) = y′2(x0) = 0.

But then the Wronskian of these functions vanishes at 0, and these solu-
tions must be independent.

10. By assumption, ϕ(x) is the unique solution of the initial value problem

y′′ + py′ + qy = 0; y(x0) = 0.

But the function that is identically zero on I is also a solution of this initial
value problem. Therefore these solutions are the same, and ϕ(x) = 0 for
all x in I.

11. If y1(x0) = y2(x0) = 0, then the Wronskian of y1(x) and y2(x) is zero at
x0, and these two functions must be linearly dependent.

2.2 The Constant Coefficient Homogeneous Equa-
tion

1. From the differential equation we read the characteristic equation

λ2 − λ− 6 = 0,

which has roots −2 and 3. The general solution is

y(x) = c1e
−2x + c2e

3x.
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42 CHAPTER 2. SECOND-ORDER DIFFERENTIAL EQUATIONS

2. The characteristic equation is

λ2 − 2λ+ 10 = 0

with roots 1± 3i. We can write a general solution

y(x) = c1e
x cos(3x) + c2e

x sin(3x).

3. The characteristic equation is

λ2 + 6λ+ 9 = 0

with repeated roots −3,−3. Then

y(x) = c1e
−3x + c2xe

−3x

is a general solution.

4. The characteristic equation is

λ2 − 3λ = 0

with roots 0, 3, and
y(x) = c1 + c2e

3x

is a general solution.

5. characteristic equation λ2 + 10λ + 26 = 0, with roots −5 ± i; general
solution

y(x) = c1e
−5x cos(x) + c2e

−5x sin(x).

6. characteristic equation λ2+6λ−40 = 0, with roots 4,−10; general solution

y(x) = c1e
4x + c2e

−10x.

7. characteristic equation λ2+3λ+18 = 0, with roots −3/2±3
√

7i/2; general
solution

y(x) = c2e
−3x/2 cos

(
3
√

7x

2

)
+ c2e

−3x/2 sin

(
3
√

7x

2

)
.

8. characteristic equation λ2 + 16λ + 64 = 0, with repeated roots −8,−8;
general solution

y(x) = e−8x(c1 + c2x).

9. characteristic equation λ2−14λ+49 = 0, with repeated roots 7, 7; general
solution

y(x) = e7x(c1 + c2x).
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2.2. THE CONSTANT COEFFICIENT HOMOGENEOUS EQUATION 43

10. characteristic equation λ2−6λ+7 = 0, with roots 3±
√

2i; general solution

y(x) = c1e
3x cos(

√
2x) + c2e

3x sin(
√

2x).

In each of Problems 11–20 the solution is found by finding a general solution
of the differential equation and then using the initial conditions to find the
particular solution of the initial value problem.

11. The differential equation has characteristic equation λ2 + 3λ = 0, with
roots 0,−3. The general solution is

y(x) = c1 + c2e
−3x.

Choose c1 and c2 to satisfy:

y(0) = c1 + c2 = 3,

y′(0) = −3c2 = 6.

Then c2 = −2 and c1 = 5, so the unique solution of the initial value
problem is

y(x) = 5− 2e−3x.

12. characteristic equation λ2 + 2λ− 3 = 0, with roots 1,−3; general solution

y(x) = c1e
x + c2e

−3x.

Solve
y(0) = c1 + c2 = 6, y′(0) = c1 − 3c2 = −2

to get c1 = 4 and c2 = 2. The solution is

y(x) = 4ex + 2e−3x.

13. The initial value problem has the solution y(x) = 0 for all x. This can
be seen by inspection or by finding the general solution of the differential
equation and then solving for the constants to satisfy the initial conditions.

14. y(x) = e2x(3− x)

15. characteristic equation λ2 + λ − 12 = 0, with roots 3,−4. The general
solution is

y(x) = c1e
3x + c2e

−4x.

We need
y(2) = c1e

6 + c2e
−8 = 2

and
y′(2) = 3c1e

6 − 4c2e
−8 = −1.

Solve these to obtain
c1 = e−6, c2 = e8.
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44 CHAPTER 2. SECOND-ORDER DIFFERENTIAL EQUATIONS

The solution of the initial value problem is

y(x) = e−6e3x + e8e−4x.

This can also be written

y(x) = e3(x−2) + e−4(x−2).

16.

y(x) =

√
6

4
ex
(
e
√

6x − e−
√

6x
)

17. y(x) = ex−1(29− 17x)

18.

y(x) =
8

e5
√

23
sin(
√

23)e5x/2 cos(
√

23x/2)

− 8

e5
√

23
cos(
√

23)e5x/2 sin(
√

23x/2)

19.

y(x) = e(x+2)/2
[
cos(
√

15(x+ 2)/2)

+
5√
15

sin(
√

15(x+ 2)/2)

]
20.

y(x) = ae(−1 +
√

5)x/2 + be(−1−
√

5)x/2,

where

a =

(
9 + 7

√
5

2
√

5

)
e−2+

√
5 and b =

(
7
√

5− 9

2
√

5

)
e−2−

√
5

21. (a) The characteristic equation is λ2−2αλ+α2 = 0, with α as a repeated
root. The general solution is

y(x) = (c1 + c2x)eαx.

(b) The characteristic equation is λ2 − 2αλ + (α2 − ε2) = 0, with roots
α+ ε, α− ε. The general solution is

yε(x) = c1e
(α+ε)x + c2e

(α−ε)x.

We can also write

yε(x) =
(
c1e

εx + c2e
−εx) eαx.

In general,
lim
ε→0

yε(x) = (c1 + c2)eαx 6= y(x).

Note, however, that the coefficients in the differential equations in (a) and
(b) can be made arbitrarily close by choosing ε sufficiently small.
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2.2. THE CONSTANT COEFFICIENT HOMOGENEOUS EQUATION 45

22. With a2 = 4b, one solution is y1(x) = e−ax/2. Attempt a second solution
y2(x) = u(x)e−ax/2. Substitute this into the differential equation to get[

u′′ − au′ + a2

4
u+ a

(
u′ − a

2
u
)

+ bu

]
e−ax/2 = 0.

Because a2 − 4b = 0, this reduces to

u′′(x) = 0.

Then u(x) = cx + d, with c and d arbitrary constants, and the functions
(cx+ d)e−ax/2 are also solutions of the differential equation. If we choose
c = 1 and d = 0, we obtain y2(x) = xe−ax/2 as a second solution. Further,
this solution is independent from y1(x), because the Wronskian of these
solutions is

W (x) =

∣∣∣∣ e−ax/2 xe−ax/2

−(a/2)e−ax/2 e−ax/2 − (a/2)xe−ax/2

∣∣∣∣ = e−ax,

and this is nonzero.

23. The roots of the characteristic equation are

λ1 =
−a+

√
a2 − 4b

2
and λ2 =

−a−
√
a2 − 4b

2
.

Because a2 − 4b < a2 by assumption, λ1 and λ2 are both negative (if
a2 − 4b ≥ 0), or complex conjugates (if a2 − 4b < 0). There are three
cases.

Case 1 - Suppose λ1 and λ2 are real and unequal. Then the general
solution is

y(x) = c1e
λ1x + c2e

λ2x

and this has limit zero as x→∞ because λ1 and λ2 are negative.

Case 2 - Suppose λ1 = λ2. Now the general solution is

y(x) = (c1 + c2x)eλ1x,

and this also has limit zero as x→∞.

Case 3 - Suppose λ1 and λ2 are complex. Now the general solution is

y(x) =
[
c1 cos(

√
4b− a2x/2) + c2 sin(

√
4b− a2x/2)

]
e−ax/2,

and this has limit zero as x→∞ because a > 0.

If, for example, a = 1 and b = −1, then one solution is e(−1+
√

5)x/2, and
this tends to ∞ as x→∞.
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46 CHAPTER 2. SECOND-ORDER DIFFERENTIAL EQUATIONS

2.3 Particular Solutions of the Nonhomogeneous
Equation

1. Two independent solutions of y′′ + y = 0 are y1(x) = cos(x) and y2(x) =
sin(x), with Wronskian

W (x) =

∣∣∣∣ cos(x) sin(x)
− sin(x) cos(x)

∣∣∣∣ = 1.

Let f(x) = tan(x) and use equations (2.7) and (2.8). First,

u1(x) = −
∫
y2(x)f(x)

W (x)
= −

∫
tan(x) sin(x) dx

= −
∫

sin2(x)

cos(x)
dx

= −
∫

1− cos2(x)

cos(x)
dx

=

∫
cos(x) dx−

∫
sec(x) dx

= sin(x)− ln | sec(x) + tan(x)|.

Next,

u2(x) =

∫
y1(x)f(x)

W (x)
dx =

∫
cos(x) tan(x) dx

=

∫
sin(x) dx = − cos(x).

The general solution is

y(x) = c1 cos(x) + c2 sin(x) + u1(x)y1(x) + u2(x)y2(x)

= c1 cos(x) + c2 sin(x)− cos(x) ln | sec(x) + tan(x)|.

2. Two independent solutions of the associated homogeneous equation are
y1(x) = e3x and y2(x) = ex. Their Wronskian is W (x) = −2e4x. Compute

u1(x) = −
∫

2ex cos(x+ 3)

−2e4x
dx

=

∫
e−3x cos(x+ 3) dx

= − 3

10
e−3x cos(x+ 3) +

1

10
e−3x sin(x+ 3)
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2.3. PARTICULAR SOLUTIONS OF THE NONHOMOGENEOUS EQUATION47

and

u2(x) =

∫
2e3x cos(x+ 3)

−2e4x
dx

=

∫
e−x cos(x+ 3) dx

=
1

2
e−x cos(x+ 3)− 1

2
e−x cos(x+ 3).

The general solution is

y(x) = c1e
3x + c2e

x

− 3

10
cos(x+ 3) +

1

10
sin(x+ 3)

+
1

2
cos(x+ 3)− 1

2
sin(x+ 3).

More compactly, the general solution is

y(x) = c1e
3x + c2e

x +
1

5
cos(x+ 3)− 2

5
sin(x+ 3).

For Problems 3–6, some details of the calculations are omitted.

3. The associated homogeneous equation has independent solutions y1(x) =
cos(3x) and y2(x) = sin(3x), with Wronskian 3. The general solution is

y(x) = c1 cos(3x) + c2 sin(3x) + 4x sin(3x) +
4

3
cos(3x) ln | cos(3x)|.

4. y1(x) = e3x and y2(x) = e−x, with W (x) = −4e−2x. With

f(x) = 2 sin2(x) = 1− cos(2x)

we find the general solution

y(x) = c1e
3x + c2e

−x − 1

3
+

7

65
cos(2x) +

4

65
sin(2x).

5. y1(x) = ex and y2(x) = e2x, with Wronskian W (x) = e3x. With f(x) =
cos(e−x), we find the general solution

y(x) = c1e
x + c2e

2x − e2x cos(e−x).

6. y1(x) = e3x and y2(x) = e2x, with Wronskian W (x) = e−5x. Use the
identity

8 sin2(4x) = 4 cos(8x)− 1

in determining u1(x) and u2(x) to write the general solution

y(x) = c1e
3x + c2e

2x +
2

3
+

58

1241
cos(8x) +

40

1241
sin(8x).
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48 CHAPTER 2. SECOND-ORDER DIFFERENTIAL EQUATIONS

In Problems 7–16 the method of undetermined coefficients is used to find
a particular solution of the nonhomogeneous equation. Details are included
for Problems 7 and 8, and solutions are outlined for the remainder of these
problems.

7. The associated homogeneous equation has independent solutions y1(x) =
e2x and e−x. Because 2x2+5 is a polynomial of degree 2, attempt a second
degree polynomial

yp(x) = Ax2 +Bx+ C

for the nonhomogeneous equation. Substitute yp(x) into this nonhomoge-
neous equation to obtain

2A− (2Ax+B)− 2(Ax2 +Bx+ C) = 2x2 + 5.

Equating coefficients of like powers of x on the left and right, we have the
equations

−2A = 2( coefficients of x2)

−2A− 2B − 0( coefficients of x

2A− 2B − 2C = 5( constant term.)

Then A = −1, B = 1 and C = −4. Then

yp(x) = −x2 + x− 4

and a general solution of the (nonhomogeneous) equation is

y = c1e
2x + c2e

−x − x2 + x− 4.

8. y1(x) = e3x and y2(x) = e−2x are independent solutions of the associated
homogeneous equation. Because e2x is not a solution of the homogeneous
equation, attempt a particular solution yp(x) = Ae2x of the nonhomoge-
neous equation. Substitute this into the differential equation to get

4A− 2A− 6A = 8,

so A = −2 and a general solution is

y(x) = c1e
3x + c2e

−2x − 2e2x.

9. y1(x) = ex cos(3x) and y2(x) = ex sin(3x) are independent solutions of
the associated homogeneous equation. Try a particular solution yp(x) =
Ax2 +Bx+ C to obtain the general solution

y(x) = c1e
x cos(3x) + c2e

x sin(3x) + 2x2 + x− 1.
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2.3. PARTICULAR SOLUTIONS OF THE NONHOMOGENEOUS EQUATION49

10. For the associated homogeneous equation, y1(x) = e2x cos(x) and y2(x) =
e2x sin(x). Try yp(x) = Ae2x to get A = 21 and obtain the general solution

y(x) = c1e
2x cos(x) + c2e

2x sin(x) + 21e2x.

11. For the associated homogeneous equation, y1(x) = e2x and y2(x) = e4x.
Because ex is not a solution of the homogeneous equation, attempt a
particular solution of the nonhomogeneous equation of the form yp(x) =
Aex. We get A = 1, so a general solution is

y(x) = c1e
2x + c2e

4x + ex.

12. y1(x) = e−3x and y2(x) = e−3x. Because f(x) = 9 cos(3x) (which is not
a solution of the associated homogeneous equation), attempt a particular
solution

yp(x) = A cos(3x) +B sin(3x).

This attempt includes both a sine and cosine term even though f(x) has
only a cosine term, because both terms may be needed to find a particular
solution. Substitute this into the nonhomogeneous equation to obtain
A = 0 and B = 1/2, so a general solution is

y(x) = (c1 + c2x)e−3x +
1

2
sin(3x).

In this case yp(x) contains only a sine term, although f(x) has only the
cosine term.

13. y1(x) = ex and y2(x) = e2x. Because f(x) = 10 sin(x), attempt

yp(x) = A cos(x) +B sin(x).

Substitute this into the (nonhomogeneous) equation to find that A = 3
and B = 1. A general solution is

y(x) = c1e
x + c2e

2x + 3 cos(x) + sin(x).

14. y1(x) = 1 and y2(x) = e−4x. Finding a particular solution yp(x) for this
problem requires some care. First, f(x) contains a polynomial term and
an exponential term, so we are tempted to try yp(x) as a second degree
polynomial Ax2 + Bx + C plus an exponential term De3x to account for
the exponential term in the equation. However, note that y1(x) = 1, a
constant solution, is one term of the proposed polynomial part, so multiply
this part by x to try

yp(x) = Ax3 +Bx2 + Cx+De3x.

Substitute this into the nonhomogeneous differential equation to get

6Ax+ 2B + 9De3x − 4(3Ax2 + 2Bx+ C + 3De3x) = 8x2 + 2e3x.
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Matching coefficients of like terms, we conclude that

2B − 4C = 0( from the constant terms)

6A− 8B = 0( from the x terms),

−12A = 8( from the x2 terms)

−3D = 2.

Then D = − 2
3 , A = − 2

3 , B = − 1
2 and C = − 1

4 . Then

yp(x) = −2

3
x3 − 1

2
x2 − 1

4
x− 2

3
e3x

and a general solution of the nonhomogeneous equation is

y(x) = c1 + c2e
−4x − 2

3
x3 − 1

2
x2 − 1

4
x− 2

3
e3x.

15. y1(x) = e2x cos(3x) and y2(x) = e2x sin(3x). Try

ypx = Ae2x +Be3x.

This will work because neither e2x nor e3x is a solution of the associated
homogeneous equation. Substitute yp(x) into the differential equation and
obtain A = 1/3, B = −1/2. The differential equation has general solution

y(x) = [c1 cos(3x) + c2 sin(3x)]e2x +
1

3
e2x − 1

2
e3x.

16. y1(x) = ex and y2(x) = xex. Try

yp(x) = Ax+B + C cos(3x) +D sin(3x).

This leads to the general solution

y(x) = (c1 + c2x)ex + 3x+ 6 +
3

2
cos(3x)− 2 sin(3x).

In Problems 17–24 the strategy is to first find a general solution of the dif-
ferential equation, then solve for the constants to find a solution satisfying the
initial conditions. Problems 17–22 are well suited to the use of undetermined co-
efficients, while Problems 23 and 24 can be solved fairly directly using variation
of parameters.

17. y1(x) = e2x and y2(x) = e−2x. Because e2x is a solution of the asso-
ciated homogeneous equation, use xe2x in the method of undetermined
coefficients, attempting

yp(x) = Axe2x +Bx+ C.
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Substitute this into the nonhomogeneous differential equation to obtain

4Axe2x + 4Axe2x − 4Axe2x − 4Bx− 4C = −7e2x + x.

Then A = −7/4, B = −1/4 and C = 0, so the differential equation has
the general solution

y(x) = c1e
2x + c2e

−2x − 7

4
xe2x − 1

4
x.

We need

y(0) = c1 + c2 = 1

and

y′(0) = 2c1 − 2c2 −
7

4
− 1

4
= 3.

Then c1 = 7/4 and c2 = −3/4. The initial value problem has the unique
solution

y(x) =
7

4
e2x − 3

4
e−2x − 7

4
xe2x − 1

4
x.

18. y1 = 1 and y2(x) = e−4x are independent solutions of the associated
homogeneous equation. For yp(x), try

yp(x) = Ax+B cos(x) + C sin(x),

with the term Ax because 1 is a solution of the homogeneous equation.
This leads to the general solution

y(x) = c1 + c2e
−4x + 2x− 2 cos(x) + 8 sin(x).

Now we need

y(0) = c1 + c2 − 2 = 3

and

y′(0) = −4c2 + 2 + 8 = 2.

Then c1 = 3 and c2 = 2, so the initial value problem has the solution

y(x) = 3 + 2e−4x + 2x− 2 cos(x) + 8 sin(x).

19. We find the general solution

y(x) = c1e
−2x + c2e

−6x +
1

5
e−x +

7

12
.

The solution of the initial value problem is

y(x) =
3

8
e−2x − 19

120
e−6x +

1

5
e−x +

7

12
.
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20. 1 and e3x are independent solutions of the associated homogeneous equa-
tion. Attempt a particular solution

yp(x) = Ae2x cos(x) +Be2x sin(x)

of the nonhomogeneous equation to find the general solution

y(x) = c1 + c2e
3x − 1

5
e2x(cos(x) + 3 sin(x)).

The solution of the initial value problem is

y(x) =
1

5
+ e3x − 1

5
(cos(x) + 3 sin(x)).

21. e4x and e−2x are independent solutions of the associated homogeneous
equation. The nonhomogeneous equation has general solution

y(x) = c1e
4x + c2e

−2x − 2e−x − e2x.

The solution of the initial value problem is

y(x) = 2e4x + 2e−2x − 2e−x − e2x.

22. The general solution of the differential equation is

y(x) = ex/2

[
c1 cos

(√
3

2
x

)
+ c2 sin

(√
3

2
x

)]
+ 1.

It is easier to fit the initial conditions specified at x = 1 if we write this
general solution as

y(x) = ex/2

[
d1 cos

(√
3

2
(x− 1)

)
+ d2 sin

(√
3

2
(x− 1)

)]
+ 1.

Now

y(1) = e1/2d1 + 1 = 4 and y′(1) =
1

2
e1/2d1 +

√
3

2
e1/2d2 = −2.

Solve these to obtain d1 = 3e−1/2 and d2 = −7e−1/2/
√

3. The solution of
the initial value problem is

y(x) = e(x−1)/2

[
3 cos

(√
3

2
(x− 1)

)
− 7√

3
sin

(√
3

2
(x− 1)

)]
+ 1.

23. The differential equation has general solution

y(x) = c1e
x + c2e

−x − sin2(x)− 2.

The solution of the initial value problem is

y(x) = 4e−x − sin2(x)− 2.
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24. The general solution is

y(x) = c1 cos(x) + c2 sin(x)− cos(x) ln | sec(x) + tan(x)|,

and the solution of the initial value problem is

y(x) = 4 cos(x) + 4 sin(x)− cos(x) ln | sec(x) + tan(x)|.

2.4 The Euler Differential Equation

Details are included with solutions for Problems 1–2, while just the solutions
are given for Problems 3–10. These solutions are for x > 0.

1. Read from the differential equation that the characteristic equation is

r2 + r − 6 = 0

with roots 2,−3. The general solution is

y(x) = c1x
2 + c2x

−3.

2. The characteristic equation is

r2 + 2r + 1 = 0

with repeated root −1,−1. The general solution is

y(x) = c1x
−1 + c2x

−1 ln(x).

We can also write

y(x) =
1

x
(c1 + c2 ln(x))

for x > 0.

3.
y(x) = c1 cos(2 ln(x)) + c2 sin(2 ln(x))

4.

y(x) = c1x
2 + c1

1

x2

5.

y(x) = c1x
2 + c1

1

x4

6.

y(x) =
1

x2
(c2 cos(3 ln(x)) + c2 sin(3 ln(x)))

7.

y(x) = c1
1

x2
+ c2

1

x3
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8.
y(x) = x2(c1 cos(7 ln(x)) + c2 sin(7 ln(x)))

9.

y(x) =
1

x12
(c1 + c2 ln(x))

10.
y(x) = c1x

7 + c2x
5

11. The general solution of the differential equation is

y(x) = c1x
3 + c2x

−7.

From the initial conditions, we need

y(2) = 8c1 + 2−7c2 = 1 and y′(2) = 3c122 − 7c22−8 = 0.

Solve for c1 and c2 to obtain the solution of the initial value problem

y(x) =
7

10

(x
2

)3

+
3

10

(x
2

)−7

.

12. The initial value problem has the solution

y(x) = −3 + 2x2.

13. y(x) = x2(4− 3 ln(x))

14. y(x) = −4x−12(1 + 12 ln(x))

15. y(x) = 3x6 − 2x4

16.

y(x) =
11

4
x2 +

17

4
x−2

17. With Y (t) = y(et), use the chain rule to get

y′(x) =
dY

dt

dt

dx
=

1

x
Y ′(t)

and then

y′′(x) =
d

dx

(
1

x
Y ′(t)

)
= − 1

x2
Y ′(t) +

1

x

d

dx
(Y ′(t))

= − 1

x2
Y ′(t) +

1

x

dY ′

dt

dt

dx

= − 1

x2
Y ′(t) +

1

x

1

x
Y ′′(t)

=
1

x2
(Y ′′(t)− Y ′(t)).
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Then
x2y′′(x) = Y ′′(t)− Y ′(t).

Substitute these into Euler’s equation to get

Y ′′(t) + (A− 1)Y ′(t) +BY (t) = 0.

This is a constant coefficient second-order homogeneous differential equa-
tion for Y (t), which we know how to solve.

18. If x < 0, let t = ln(−x) = ln |x|. We can also write x = −et. Note that

dt

dx
=

1

−x
(−1) =

1

x

just as in the case x > 0. Now let y(x) = y(−et) = Y (t) and proceed with
chain rule differentiations as in the solution of Problem 17. First,

y′(x) =
dY

dt

dt

dx
=

1

x
Y ′(t)

and

y′′(x) =
d

dx

(
1

x
Y ′(t)

)
= − 1

x2
Y ′(t) +

1

x

dt

dx
Y ′′(t)

= − 1

x2
Y ′(t) +

1

x2
Y ′′(t).

Then
x2y′′(x) = Y ′′(t)− Y ′(t)

just as we saw with x > 0. Now Euler’s equation transforms to

Y ′′ + (A− 1)Y ′ +BY = 0.

We obtain the solution in all cases by solving this linear constant coefficient
second-order equation. Omitting all the details, we obtain the solution of
Euler’s equation for negative x by replacing x with |x| in the solution for
positive x. For example, suppose we want to solve

x2y′′ + xy′ + y = 0

for x < 0. Solve this for x > 0 to get

y(x) = c1 cos(ln(x)) + c2 sin(ln(x)).

The solution for x < 0 is

y(x) = c1 cos(ln |x|) + c2 sin(ln |x|).
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19. The problem to solve is

x2y′′ − 5dxy′ + 10y = 0; y(1) = 4, y′(1) = −6.

We know how to solve this problem. Here is an alternative method, us-
ing the transformation x = et, or t = ln(x) for x > 0 (since the initial
conditions are specified at x = 1). Euler’s equation transforms to

Y ′′ − 6Y ′ + 10Y = 0.

However, also transform the initial conditions:

Y (0) = y(1) = 4, Y ′(0) = (1)y′(1) = −6.

This differential equation for Y (t) has general solution

Y (t) = c1e
3t cos(t) + c2e

3t sin(t).

Now
Y (0) = c2 = 4

and
Y ′(0) = 3c1 + c2 = −6,

so c2 = −18. The solution of the transformed initial value problem is

Y (t) = 4e3t cos(t)− 18e3t sin(t).

The original initial value problem therefore has the solution

y(x) = 4x3 cos(ln(x))− 19x3 sin(ln(x))

for x > 0. The new twist here is that the entire initial value problem
(including initial conditions) was transformed in terms of t and solved for
Y (t), then this solution Y (t) in terms of t was transformed back to the
solution y(x) in terms of x.

20. Suppose
x2y′′ +Axy′ +By = 0

has repeated roots. Then the characteristic equation

r2 + (A− 1)r +B = 0

has (1− A)/2 as a repeated root, and we have only one solution y1(x) =
x(1−A)/2 so far. For another solution, independent from y1, look for a
solution of the form y2(x) = u(x)y1(x). Then

y′2 = u′y1 + uy′1

and
y′′2 = u′′y1 + 2u′y′1 + uy′′1 .
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Substitute y2 into the differential equation to get

x2(u′′y1 + 2u′y′1 + uy′′1 ) +Ax(u′y1 + uy′1) +Buy1 = 0.

Three terms in this equation cancel, because

u(x2y′′1 +Axy′1 +By1) = 0

by virtue of y1 being a solution. This leaves

x2u′′y1 + 2x2u′y′1 +Axu′y1 = 0.

Assuming that x > 0, divide by x to get

xu′′y1 + 2xu′y′1 +Au′y1 = 0.

Substitute y1(x) = x(1−A)/2 into this to obtain

xu′′x(1−A)/2 + 2xu′
(

1−A
2

)
x(−1−A)/2 +Au′x(1−A)/2 = 0.

Divide this by x(1−A)/2 to get

xu′′ + (1−A)u′ +Au′ = 0,

and this reduces to

xu′′ + u′ = 0.

Let z = u′ to obtain

xz′ + z = 0,

or

(xz)′ = 0.

Then xz = c, constant, so

z = u′ =
c

x
.

Then u(x) = c ln(x) + d. We only need one second solution, so let c = 1
and d = 0 to get u(x) = ln(x). A second solution, independent from y1(x),
is

y2(x) = y1(x) ln(x),

as given without derivation in the chapter.
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2.5 Series Solutions

2.5.1 Power Series Solutions

1. Put y(x) =
∑∞
n=0 anx

n into the differential equation to obtain

y′ − xy =
∞∑
n=1

nanx
n−1 −

∞∑
n=0

anx
n+1

=
∞∑
n=1

nanx
n−1 −

∞∑
n=2

an−2x
n−1

= a1 + (2a2 − a0)x+
∞∑
n=3

(nan − an−2)xn−1

= 1− x.

Then a0 is arbitrary, a1 = 1, 2a2 − a0 = −1, and

an =
1

n
an−2 for n = 3, 4, · · · .

This is the recurrence relation. If we set a0 = c0 + 1, we obtain the
coefficients

a2 =
1

2
c0, a4 =

1

2 · 4
c0, a6 =

1

2 · 4 · 6
c0,

and so on. Further,

a1 = 1, a3 =
1

3
, a5 =

1

3 · 5
, a7 =

1

3 · 5 · 7

and so on. The solution can be written

y(x) = 1 +
∞∑
n=0

1

3 · 5 · · · 2n+ 1
x2n+1

+ c0

(
1 +

∞∑
n=1

1

2 · 4 · · · 2n
x2n

)
.

2. Write

y′ − x3y =
∞∑
n=1

nanx
n−1 −

∞∑
n=0

anx
n+3

= a1 + 2a2x+ 3a3x
2 +

∞∑
n=4

(nan − an−4)xn−1 = 4.

The recurrence relation is

an =
1

n
an−4 for n = 4, 5, · · · ,
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with a0 arbitrary, a1 = 4 and a2 = a3 = 0. This yields the solution

y(x) = 4
∞∑
n=0

1

1 · 5 · 9 · · · (4n+ 1)
x4n+1

+ a0

(
1 +

∞∑
n=1

1

4 · 8 · 12 · · · 4n
x4n

)
.

3. Write

y′ + (1− x2)y =
∞∑
n=1

nanx
n−1 +

∞∑
n=0

anx
n −

∞∑
n=0

anx
n+2

= (a1 + a0) + (2a2 + a1)x+
∞∑
n=3

(nan + an−1 − an−3)xn−1

= x.

The recurrence relation is

nan + an−1 − an−3 = 0 for n = 3, 4, · · · .

Here a0 is arbitrary, a1 + a0 = 0 and 2a2 + a1 = 1. This gives us the
solution

y(x) = a0

(
1− x+

1

2!
x2 +

1

3!
x3 − 7

4!
x4 +

19

5!
x5 + · · ·

)
+

1

2!
x2 − 1

3!
x3 +

1

4!
x4 +

11

5!
x5 − 31

6!
x6 + · · · .

4. Begin with

y′′ + 2y′ − xy =
∞∑
n=2

n(n− 1)anx
n−2 +

∞∑
n=1

2nanx
n−1 +

∞∑
n=0

anx
n+1

= (2a2 + 2a1) + (3 · 2a3 + 2 · 2a2 + a0)x

+
∞∑
n=1

(n(n− 1)an + 2(n− 1)an−1 + an−2)xn−2 = 0.

The recurrence relation is

n(n− 1)an + 2(n− 1)an−1 + an−2 = 0 for n = 4, 5, · · · .

Further, a0 and a1 are arbitrary, a2 = −A1 and

6a3 + 4a2 + a0 = 0.

Taking a0 = 1, a1 = 0, we obtain the solution

y1(x) = 1− 1

6
x3 +

1

12
x4 − 1

30
x5 +

1

60
x6 + · · · .
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With a0 = 0, a1 = 1 we get a second, linearly independent solution

y2(x) = x− x2 +
2

3
x3 − 5

12
x4 +

7

60
x5 + · · · .

5. Write

y′′ − xy′ + y =
∞∑
n=2

n(n− 1)nx
n−2 −

∞∑
n=1

nanx
n +

∞∑
n=0

anx
n

= 2a2 + a0 +
∞∑
n=0

(n+ 2)(n+ 1)an+2x
n −

∞∑
n=1

nanx
n +

∞∑
n=0

anx
n = 3.

Here a0 and a1 are arbitrary and a2 = (3−a0)/2. The recurrence relation
is

an+2 =
n− 1

(n+ 2)(n+ 1)
for n = 1, 2, · · · .

This yields the general solution

y(x) = a0 + a1x+
3− a0

2
x2 +

3− a0

4!
x4

+
3(3− a0)

6!
x6 +

3 · 5(3− a0)

8!
x8 + · · · .

6. Begin with

y′′ + xy′ + xy =
∞∑
n=2

n(n− 1)axnx
n−2 +

∞∑
n=1

nanx
n +

∞∑
n=0

anx
n+1

= 2a2 +

∞∑
n=3

(n(n− 1)an + (n− 2)an−2 + an−3)xn−2 = 0.

Here a0 and a1 are arbitrary and a2 = 0. The recurrence relation is

an = − (n− 2)an−2 − an−3

n(n− 1)
for n = 3, 4, · · · .

With a0 = 1 and a1 = 0, we obtain one solution

y1(x) = 1− 2

3
x3 +

3

2 · 3 · 4 · 5
x5

+
1

2 · 3 · 5 · 6
x6 − 3 · 5

2 · 3 · 4 · 5 · 6 · 7
x7 + · · · .

With a0 = 0 and a1 = 1, we obtain a second, linearly independent solution

y2(x) = x− 1

2 · 3
x3 − 1

3 · 4
x4

+
3

2 · 3 · 4 · 5
x5 +

3 · 5
2 · 3 · 5 · 6

x6 + · · · .
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7. We have

y′′ − x2y′ + 2y =
∞∑
n=2

n(n− 1)anx
n−2

−
∞∑
n=1

nanx
n+1 +

∞∑
n=0

2anx
n

= 2a2 + 2a0 + (6a3 + 2a1)x

+
∞∑
n=1

(n(n− 1)an − (n− 3)an−3 + 2an−2)xn−2 = x.

Then a0 and a1 are arbitrary, a2 = −a0, and 6a3+2a1 = 1. The recurrence
relation is

an =
(n− 3)an−3 − 2an−2

n(n− 1)

for n = 4, 5, · · · . The general solution has the form

y(x) = a0

[
1− x2 +

1

6
x4 − 1

10
x5 − 1

90
x6 + · · ·

]
+ a1

[
x− 1

3
x3 +

1

12
x4 +

1

30
z5 − 7

180
x6 + · · ·

]
+

1

6
x3 − 1

6
x5 +

1

60
x6 +

1

1260
x7 − 1

480
x8 + · · · .

Note that a0 = y(0) and a1 = y′(0). The third series represents the
solution obtained subject to y(0) = y′(0) = 0.

8. Using the Maclaurin expansion for cos(x), we have

y′ + xy =
∞∑
n=1

nanxn− 1 +
∞∑
n=0

anx
n+1

= a1 +
∞∑
n=0

(2na2n + a2n−2)x2n−1

+
∞∑
n=1

((2n+ 1)a2n+1 + a2n−1)x2n

= cos(x) =
∞∑
n=0

(−1)n

(2n)!
x2n.

a0 is arbitrary and a1 = 1. The recurrence relation is

a2n = − 1

2n
a2n−2 and a2n+1 =

−a2n−1 + (−1)n/((2n)!)

2n+ 1
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for n = 1, 2, · · · . This yields the solution

y(x) = a0

[
1− 1

2
x2 +

1

2 · 4
x4 − 2 · 4 · 6

x

6

+ · · ·
]

+

[
x− 3

3!
x3 +

13

5!
x5 − 79

7!
x7 +

633

9!
x9 + · · ·

]
.

9. We have

y′′ + (1− x)y′ + 2y =
∞∑
n=2

n(n− 1)anx
n−2

+
∞∑
n=1

nanx
n−1 −

∞∑
n=1

nanx
n + 2

∞∑
n=0

anx
n

= (2a2 + a1 + 2a0) +
∞∑
n=3

(n(n− 1)an + (n− 1)an−1 − (n− 4)a2n−2)xn−2

= 1− x2.

Then a0 and a1 are arbitrary, 2a2 + a1 + 2a0 = 1, 6a3 + 2a2 + a1 = 0, and
12a4 + 3a3 = −1. The recurrence relation is

an =
−(n− 1)an−1 + an−4an−2

n(n− 1)

for n = 5, 6, · · · . The general solution is

y(x) = a0

[
1− x2 +

1

3
x3 − 1

12
x4 +

1

30
x5 − · · ·

]
+ a1

(
x− 1

2
x2

)
+

1

2
x2 − 1

6
x3 − 1

24
x4 − 1

360
x6 +

1

2520
x7 + · · · .

Here a0 = y(0) and a1 = y′(0).

10. Using the Maclaurin expansion of ex, we have

y′′ + xy′ =

∞∑
n=2

n(n− 1)anx
n−2 +

∞∑
n=1

nanx
n

= 2a2 +
∞∑
n=3

(n(n− 1)an + (n− 2)an−2)xn−2

= −
∞∑
n=3

1

(n− 2)!
xn−2.

Then a0 and a1 are arbitrary, a2 = 0 and

an =
−(n− 2)an−2 − 1/(n− 2)!

n(n− 1)
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for n = 3, 4, · · · . This leads to the solution

y(x) = a0 + a1

[
x− 1

3!
x3 +

3

5!
x5 − 15

7!
x7 +

105

9!
x9 + · · ·

]
+

[
− 1

3!
x3 − 1

4!
x4 +

2

5!
x5 +

3

6!
x6 − 11

7!
x7 +

19

8!
x8 + · · ·

]
.

Note that a0 = y(0) and a1 = y′(0).

2.5.2 Frobenius Solutions

1. Substitute y(x) =
∑∞
n=0 cnx

n+r into the differential equation to get

xy′′ + (1− x)y′ + y =
∞∑
n=0

(n+ r)(n+ r − 1)cnx
n+r−2

+
∞∑
n=0

(n+ r)cnx
n+r−1 −

∞∑
n=0

(n+ r)cnx
n+r +

∞∑
n=0

cnx
n+r

= r2c0x
r−1 +

∞∑
n=1

((n+ r)2cn − (n+ r − 2)cn−1)xn+r−1

= 0.

Because c0 is assumed to be nonzero, r must satisfy the indicial equation
r2 = 0, so r1 = r2 = 0. One solution has the form

y1(x) =
∞∑
n=0

cnx
n,

while a second solution has the form

y2(x) = y1(x) ln(x) +
∞∑
n=0

c∗nx
n.

For the first solution, choose the coefficients to satisfy c0 = 1 and

cn =
n− 2

n2
cn−1 for n = 1, 2, · · · .

This yields the solution y1(x) = 1− x. The second solution is therefore

y2(x) = (1− x) ln(x) +
∞∑
n=0

c∗nx
n.
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Substitute this into the differential equation to obtain

x

[
− 2

x
− 1− x

x2

]
+ (1− x)

[
− ln(x) +

1− x
x

]
+ (1− x) ln(x) +

∞∑
n=2

n(n− 1)c∗nx
n−1 + (1− x)

∞∑
n=1

c∗nx
n−1

+
∞∑
n=1

c∗nx
n

= (−3 + c∗1) + (1 + 4c∗2)x+
∞∑
n=3

(n2c∗n − (n− 2)c∗n−1)xn−2

= 0.

The coefficients are determined by c∗1 = 3, c∗2 = −1/4, and

c∗n =
n− 2

n2
for n = 3, 4, · · · .

A second solution is

y2(x) = (1− x) ln(x) + 3x−
∞∑
n=2

1

n(n− 1)
xn.

2. Omitting some routine details, the indicial equation is r(r − 1) = 0, so
r1 = 1 and r2 = 0. There are solutions

y1(x) =
∞∑
n=0

cnx
n+1 and y2(x) = ky1(x) ln(x)

∞∑
n=0

c∗nx
n.

For y1, the recurrence relation is

cn =
2(n+ r − 2)

(n+ r)(n+ r − 1)
cn−1

for n = 1, 2, · · · . With r = 1 and c0 = 1, this yields

y1(x) = x,

a solution that can be seen by inspection from the differential equation.
For the second solution, substitute y2(x) into the differential equation to
get

(2c∗0 + k) + 2(c∗2 − k)x

+
∞∑
n=1

(n(n− 1)c∗n − 2(n− 2)c∗n−1)xn−1 = 0.
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Choose c∗0 = 1 to obtain k = −2. c∗1 is arbitrary, and we will take c∗1 = 0.
Finally, c∗2 = −2 and

c∗n =
2(n− 2)

n(n− 1)
c∗n−1 for n = 3, 4, · · · .

This yields the second solution

y2(x) = −2x ln(x) + 1−
∞∑
n=2

2n

n!(n− 1)
xn.

3. The indicial equation is r2 − 4r = 0, so r1 = 4 and r2 = 0. There are
solutions of the form

y1(x) =

∞∑
n=0

cnx
n+4 and y2(x) = ky1(x) ln(x) +

∞∑
n=0

c∗nx
n.

With r = 4 the recurrence relation is

cn =
n+ 1

n
cn−1 for n = 1, 2, · · · .

Then
y1(x) = x4(1 + 2x+ 3x2 + 4x3 + · · · ).

Using the geometric series, we can observe that

y1(x) = x4 d

dx
(1 + x+ x2 + x3 + · · · )

= x4 d

dx

(
1

1− x

)
=

x4

(1− x)2
.

This gives us the second solution

y2(x) =
3− 4x

(1− x)2
.

4. The indicial equation is 4r2 − 9 = 0, with roots r1 = 3/2 and r2 = −3/2.
There are solutions

y1(x) =
∞∑
n=0

cnx
n+3/2 and y2(x) = ky1(x) ln(x) +

∞∑
n=0

c∗nx
n−3/2.

Upon substituting these into the differential equation, we obtain

y1(x) = x3/2

[
1 +

∞∑
n=1

(−1)n

2nn!(5 · 7 · 9 · · · (2n+ 3))
x2n

]
and

y2(x) = x−3/2

[
1 +

∞∑
n=1

(−1)n+1

2n+1n!(3) · · · (2n− 3)
x2n

]
.
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5. The indicial equation is 4r2 − 2r = 0, with roots r1 = 1/2 and r2 = 0.
There are solutions of the form

y1(x) =
∞∑
n=0

cnx
n+1/2 and y2(x) =

∞∑
n=0

c∗nx
n.

Substitute these into the differential equation to get

y1(x) = x1/2

[
1 +

∞∑
n=1

(−1)n

2nn!(3 · 5 · 7 · · · (2n+ 1))
xn

]

= x1/2

[
1− 1

6
x+

1

120
x2 − 1

5040
x3 +

1

362880
x4 + · · ·

]
and

y2(x) = 1 +
∞∑
n=1

(−1)n

2nn!(1 · 3 · 5 · · · (2n− 1))
xn

= 1− 1

2
x+

1

24
x2 − 1

720
x3 +

1

40320
x4 + · · · .

6. The indicial equation is 4r2 − 1 = 0, with roots r1 = 1/2 and r2 = −1/2.
There are solutions

y1(x) =

∞∑
n=0

cnx
n+1/2 and y2(x) = ky1(x) ln(x) +

∞∑
n=0

c∗nx
n−1/2.

After substituting these into the differential equation, we obtain the simple
solutions

y1(x) = x1/2 and y2(x) = x−1/2.

These solutions are consistent with the observation that, upon division by
4, the differential equation is an Euler equation.

7. The indicial equation is r2 − 3r + 2 = 0, with roots r1 = 2 and r2 = 1.
There are solutions

y(x) =
∞∑
n=0

cnx
n+2 and

∞∑
n=0

c∗nx
n−2.

Substitute these in turn into the differential equation to obtain the solu-
tions

y1(x) = x2 +
1

3!
x4 +

1

5!
x6 +

1

7!
x8 + · · ·

and

y2(x) = x− x2 +
1

2!
x3 − 1

3!
x4 +

1

4!
x5 − · · · .

We can recognize these series as

y1(x) = x sinh(x) and y2(x) = xe−x.
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8. The indicial equation is r2 − 2r = 0, with roots r1 = 2, r2 = 0. There are
solutions

y1(x) =
∞∑
n=0

cnx
n+2 and y2(x) = ky1(x) ln(x) +

∞∑
n=0

c∗nx
n.

The recurrence relation for the c′ns is

cn =
−2

n(n− 2)
for n = 3, 4, · · ·

and we obtain, with c0 = 1,

y1(x) =
∞∑
n=0

(−1)n2n+1

n(n+ 2)
xn+2

= x2 − 2

3
x3 +

1

6
x4 − 1

45
x5 +

1

540
x6 + · · · .

For the second solution, substitute y2(x) into the differential equation to
get

2c∗0 − c∗1 +

∞∑
n=1

[
n(n− 2)c∗n + c∗n−1 +

(−1)n2nk

n((n− 2)!)2

]
xn−1 = 0.

Setting c∗0 = 1 for simplicity, we obtain c∗1 = 2, k = −2, c∗2 arbitrary (we
take this to be zero), and the recurrence relation

c∗n = − 1

n(n− 2)

[
2c∗n−1 +

(−1)n2n+1

n((n− 2)!)2

]
for n = 3, 4, · · · . We obtain the second solution

y2(x) = −2y1 ln(x) + 1 + 2x+
16

9
x3 − 25

36
x4 +

157

1350
x6 − · · · .

9. The indicial equation is 2r2 = 0, with roots r1 = r2 = 0. There are
solutions

y1(x) =

∞∑
n=0

cnx
n and y2(x) = y1(x) ln(x) +

∞∑
n=1

c∗nx
n.

Upon substituting these into the differential equation, we obtain the in-
dependent solutions

y1(x) = 1− x

and

y2(x) = (1− x) ln

(
x

x− 2

)
− 2.
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10. The indicial equation is r2− 1 = 0, with roots r1 = 1 and r2 = −1. There
are solutions

y1(x) =
∞∑
n=0

cnx
n+1 and y2(x) = ky1(x) ln(x) +

∞∑
n=0

c∗nx
n−1.

Substitute each of these into the differential equation to get

y1(x) = x

[
1 +

∞∑
n=1

(−1)n(1 · 4 · 7 · · · (3n− 2))

3nn!(5 · 8 · 11 · · · (3n+ 2))

]
x3n

and

y2(x) =
1

x

[
1 +

∞∑
n=1

(−1)n+1(1 · 2 · 5 · · · (3n− 1))

3nn!(4 · 7 · · · (3n− 2))

]
x3n.
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2 3 4 5 6 7
3 4 5 6 7 8
4 5 6 7 8 9
5 6 7 8 9 10
6 7 8 9 10 11
7 8 9 10 11 12

Table 1: Sums of pairs of dice, Problem 1, Section 2.

3. The mean is

x =
4(−3) + 2(−1) + 6(0) + 4(1) + 12(3) + 3(4)

31
= 1.2258.

The median is the sixteenth number from the left, or 1 (the last 1 to the
right in the ordered list).

The standard deviation is

s =

√
151.42

30
= 2.2466.

Section 2 Random Variables and Probability Distributions

1. If we roll two dice, there are thirty-six possible outcomes. The sums of
the numbers that can come up on the two dice are listed in Table 1.

For example, if o is the outcome that one die comes up 2 and the other 3,
then the sum of the dice is 5, so X(o) = 5.

The table gives all of the values that X(o) can take on, over all outcomes
o of the experiment. Each value is listed as often as it occurs as a value of
X. For example, 4 occurs three times, because X(o) = 4 for three different
outcomes (namely (2, 2), (1, 3) and (3, 1)).

Define a probability distribution P on X by by letting P (x) be the prob-
ability of x, for each value x that X can assume.

For example, since 2 occurs once out of 36 entries in this table, assign to
this value of X the probability

P (2) =
1
36

.

Similarly, 11 occurs twice, so give the value 11 of X the probability

P (11) =
2
36

.

3



Since 3 occurs twice in the table, P (3) = 2/36, and so on.

Calculating P (n) for each n in the table, we obtain

P (2) = P (12) =
1
36

, P (3) = P (11) =
2
36

,

P (4) = P (10) =
3
36

, P (5) = P (9) =
4
36

,

P (6) = P (8) =
5
36

, P (7) =
6
36

.

Notice that
∑

x P (x) = 1, as required for a probability function.

The mean of X is

μ =
∑

x

xP (x)

= 2
(

1
36

)
+ 3

(
2
36

)
+ 4

(
3
36

)
+ 5

(
4
36

)
+ 6

(
5
36

)
+ 7

(
6
36

)

+ 8
(

5
36

)
+ 9

(
4
36

)
+ 10

(
3
36

)
+ 11

(
2
36

)
+ 12

(
1
36

)
= 7.

This is interpreted to mean that, on average, we expect to come up with
a seven if we roll two dice. This is a reasonable expectation in view of the
fact that there are more ways to roll 7 than any other sum with two dice.

The standard deviation is

σ =
√∑

x

(x − 7)2P (x).

To compute this, first compute∑
x

(x − 7)2P (x)

= (2 − 7)2
(

1
36

)
+ (3 − 7)2

(
2
36

)
+ (4 − 7)2

(
3
36

)

+ (5 − 7)2
(

4
36

)
+ (6 − 7)2

(
5
36

)
+ (7 − 7)2

(
6
36

)

+ (8 − 7)2
(

5
36

)
+ (9 − 7)2

(
4
36

)
+ (10 − 7)2

(
3
36

)

+ (11 − 7)2
(

2
36

)
+ (12 − 7)2

(
1
36

)
= 5.8333.

Then
σ =

√
5.8333 = 2.4152.
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2. Flip four coins, with sixteen possible outcomes. If o is an outcome, X(o)
can have only two values, namely 1 if two, three, or four tails are in o, or
3 otherwise (one tail or no tails in o). There are five outcomes with one
tail or no tail, and eleven with two or more tails, so

P (1) =
11
16

and P (3) =
5
16

.

The mean is

μ =
∑

x

xP (x) = 1
(

11
16

)
+ 3

(
5
16

)
=

26
16

= 1.625.

For the standard deviation of X, compute∑
x

(x − μ)2P (x)

= (1 − 1.625)2
(

11
16

)
+ (3 − 1.625)2

(
5
16

)
= 0.85938.

Then
σ =

√
0.85938 = 0.92703.

3. We have

X(1) = 0,

X(2) = X(3) = X(5) = X(7) = X(11) = X(13) = X(17) = X(19) = 1,

X(4) = X(6) = X(9) = X(10) = X(14) = X(15) = 2,

X(8) = X(12) = X(18) = X(20) = 3,

X(16) = 4.

The values assumed by X are 0, 1, 2, 3, 4. From the list of values, we get

P (0) =
1
20

, P (1) =
8
20

, P (2) =
6
20

, P (3) =
4
20

, P (4) =
1
20

.

These are the probabilities of the values of the random variable X.

The mean of X is

μ =
∑

x

xP (x)

= 0
(

1
20

)
+ 1

(
8
20

)
+ 2

(
6
20

)

+ 3
(

4
20

)
+ 4

(
1
20

)
= 1.8.

5



(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

Table 2: Outcomes of rolling two dice, Problem 4, Section 2.

For the standard deviation of X, first compute∑
x

(x − μ)2P (x)

= (0 − 1.8)2
(

1
20

)
+ (1 − 1.8)2

(
8
20

)

+ (2 − 1.8)2
(

6
20

)
+ (3 − 1.8)2

(
4
20

)

+ (4 − 1.8)2
(

1
20

)
= 0.9600.

Then
σ =

√
(0.9600) = 0.9798.

4. The outcomes of two rolls of the dice are displayed in Table 2.

Then

X(n, n) = n for n = 1, 2, 3, 4, 5, 6,

X(1, 2) = X(2, 1) = X(2, 4) = X(4, 2) = X(3, 6) = X(6, 3) = 2,

X(1, 3) = X(3, 1) = X(2, 6) = X(6, 2) = 3,

X(1, 4) = X(4, 1) = 4, X(1, 5) = X(5, 1) = 5, X(1, 6) = X(6, 1) = 6,

X(2, 3) = X(3, 2) = X(4, 6) = X(6, 4) = 3/2,

X(2, 5) = X(5, 2) = 5/2, X(3, 4) = X(4, 3) = 4/3,

X(5, 3) = X(3, 5) = 5/3, X(4, 5) = X(5, 4) = 5/4,

X(5, 6) = X(6, 5) = 6/5.

Using this list to compute probabilities, we find that

P (1) =
1
36

, P (2) =
7
36

, P (3) =
5
36

,

P (4) =
3
36

, P (5) =
3
36

, P (6) =
3
36

.
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The mean of X is

μ =
∑

x

P (x)

= 1
(

1
36

)
+ 2

(
7
36

)
+ 3

(
5
36

)
+ 4

(
3
36

)
+ 5

(
3
36

)
+ 6

(
3
36

)

+
3
2

(
4
36

)
+

5
2

(
2
36

)
+

4
3

(
2
36

)
+

5
3

(
2
36

)
+

5
4

(
2
36

)
+

6
5

(
2
36

)
= 2.6916.

Using μ, we can compute the standard deviation of X:∑
x

(x − μ)2P (x)

= (1 − 2.6916)2
(

1
36

)
+ (2 − 2.6916)2

(
7
36

)
+ (3 − 2.6916)2

(
5
36

)

+ (4 − 2.6916)2
(

3
36

)
+ (5 − 2.6916)2

(
3
36

)
+ (6 − 2.6916)2

(
3
36

)

+ (3/2 − 2.6916)2
(

4
36

)
+ (5/2 − 2.6916)2

(
2
36

)
+ (4/3 − 2.6916)2

(
2
36

)

+ (5/3 − 2.6916)2
(

2
36

)
+ (5/4 − 2.6916)2

(
2
36

)
+ (6/5 − 2.6916)2

(
21
36

)
= 2.2442.

Then
σ =

√
2.2442 = 1.4981.

5. Draw cards from a (fifty-two card) deck. There are 52C2 ways to do this,
disregarding order. If o is an outcome in which both cards are numbered,
then X(o) equals the sum of the numbers on the cards. If exactly one
of the cards is a face card or ace, then X(o) = 11, and if both cards
are chosen from the face cards or aces, then X(o) = 12. Therefore the
values of X(o) for all possible outcomes are 4, 5, · · · , 20. By a routine
but tedious counting of the ways the numbered cards can take on various
possible totals, we obtain

P (4) =
6

1326
, P (5) =

16
1326

, P (6) =
22

1326
, P (7) =

32
1326

,

P (8) =
38

1326
, P (9) =

48
1326

, P (10) =
54

1326
, P (11) =

640
1326

,

P (12) =
190
1326

, P (13) =
64

1326
, P (14) =

54
1326

, P (15) =
48

1326
,

P (16) =
38

1326
, P (17) =

32
1326

, P (18) =
22

1326
, P (19) =

16
1326

,

P (20) =
6

1326
.
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Using these, compute the mean of X:

μ =
∑

x

xP (x) = 11.566

and the standard deviation of X:

σ =
√∑

x

(x − μ)2P (x) =
√

5.4289 = 2.33.

6. X takes on values 1, 2, π. In particular,

X(1) = X(5) = X(7) = X(11) = X(13) = X(17)
= X(19) = X(23) = X(25) = X(29) = π,

X(2) = X(4) = · · · = X(even integer) = 1,

X(3) = X(9) = X(15) = X(21) = X(27) = 2.

These enable us to write the probability distribution

P (1) =
15
30

=
1
2
, P (2) =

5
30

=
1
6
, P (π) =

10
30

=
1
3
.

The mean of X is

μ = 1
(

1
2

)
+ 2

(
1
6

)
+ π

(
1
3

)
=

5
6

+
π

3
,

and this is approximately 1.8805.

The standard deviation of X is the square root of∑
x

(x − μ)2P (x)

= (1 − 1.8805)2
(

1
2

)
+ (2 − 1.8805)2

(
1
6

)
+ (π − 1.8805)2

(
1
3

)
,

which is approximately 0.92014. Then

σ =
√

92014 = 0.95924.

Section 3 The Binomial and Poisson Distributions

1. (a)

P (2) =
(

8
2

)
(0.43)2(1 − 0.43)6 = 0.17756.
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Since x is H or T in each, there are 8 + 6 + 4 + 2 = 20 outcomes of this
experiment. Then

Pr(dice total at least 9) =
20
72

=
5
18

.

(b) Suppose the dice total at least 9 and the coin comes up heads. Now
(from (a)) there are 10 outcomes, so

Pr(dice total at least 9, coin is H) =
10
72

=
5
36

.

(c) Now suppose the coin is a tail and both dice come up the same. Now
there are six outcomes, namely

(1, 1, T ), (2, 2, T ), · · · , (6, 6, T )

so
Pr(tail, both dice the same) =

6
72

=
1
12

.

(d) Suppose the dice both come up even and the coin is a tail. Now the
outcomes have the appearance (x, y, T ), where x and y can independently
be 2, 4 or 6. There are 9 outcomes of this form, so

Pr(tail, both dice even) =
9
72

=
1
8
.

Section 2 Four Counting Principles

1. The fact that these are letters of the alphabet that we are arranging in
order is irrelevant. The issue is that there are nine distinct objects. The
number of arrangements is 9!, which is 362, 880.

2. There are 26 letters in the English slphabet. The problem is one of deter-
mining the number of ways of choosing 17 objects from 26 objects, with
order taken into account. This is

26P17 =
26!

(26 − 17)!
=

26!
9!

= (10)(11)(12) · · · (23)(24)(25) = 156, 000.

3. Since any of the nine integers can be used in any of the nine places of
the ID number, there are 9 ways the first digit can be chosen, 9 ways the
second digit can be chosen, and so on. The total number of codes is 99,
or

3.87420489(10)8.
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4. The first plan (all different symbols in the different places) allows for
5! = 120 passwords. The second plan (choosing with replacement) allows
for 55 = 3, 125 passwords.

5. These 7 symbols have 7! = 5, 040 permutations or arrangements.

If a is fixed as the first symbol, then there are six symbols to choose in
any order for the other six places, and the number of choices is 6! = 720.

If a is fixed as the first symbol, and g as the fifth, then we have five symbols
left to choose in any order for the remaining five places. The number of
ways of doing this is 5! = 120.

6. We want to find n so that n! ≥ 20, 000. Clearly there are infinitely many
such integers n, but we would like the smallest possible n. With a little
experimentation, we find that 8! = 40, 320, more than enough, while 7! =
5040 is too small, so choose n = 8.

For n! ≥ 100, 000, try some values of n. We find that 10! = 3, 628, 800,
more than enough, while 9! = 362, 880 is too small. The most efficient
choice in this case is n = 10.

7. There are 12! = 479, 001, 600 outcomes.

8. There are 10 letters from a through l, inclusive. If three of the places are
fixed (it does not matter which three), there are seven letters available to
put in any order into the remaining seven places. There are 7! = 5, 040
ways to do this.

9. We want to pick 7 objects from 25, taking order into account. The number
of ways to do this is

25P7 =
25!
18!

= (19)(20)(21)(22)(23)(24)(25) = 2, 422, 728, 000.

10. The number of ballots is

16P5 =
16!
11!

= 12(13)(14)(15)(16) = 524, 160.

11. Because order is important, the number of possibilities is

22P6 =
22!
16!

= 53, 721, 360.

12. (a) The number of choices is

20P3 =
20!
17!

= 6, 840.

(b) If the list begins with 4, there are only two numbers to choose from
the remaining nineteen numbers. There are

19P 2 =
19!
17!

= (18)(19) = 342

6



ways to do this. This result does not depend on which number is fixed in
the first position. The percentage of choices beginning with 4 is 100(342/6, 840),
or 5 percent. This is reasonable from a common sense point of view, since,
with 20 number to choose from, we would expect 5 percent to begin with
any particular one of the numbers.

(c) This question is really the same as the question in (b), since it does
not matter which number is fixed. The answer is that 5 percent of the
choices ends in 9.

(d) If two places are fixed at 3 and 15, then there are eighteen numbers
left, from which we want to choose one. There are 18 such choices.

13. Without order (and, we assume, without replacement), the number of ten
card hands is

52C10 =
52!

10!42!
= 15, 820, 024, 220.

14. Disregarding order, the number of nine man lineups that can be formed
from a seventeen person roster is

17C9 =
17!
8!9!

= 24, 310.

If the order makes a difference, then the number is

17P9 =
17!
9!

= 8!17C9 = 8, 821, 612, 800.

15. The number of combinations is

20C4 =
20!

4!16!
= 4, 845.

16. The number is

40C12 =
40!

12!28!
= 5, 586, 853, 480.

17. The number of outcomes of flipping five coins is 25 = 32.

(a) The number of ways of getting exactly two heads from the five flips
is 5C2 = 5!/(2!3!) = 10. The probability of getting exactly two heads (or
exactly two tails) is

Pr(exactly two heads) =
10
32

=
5
16

.

(b) We get at least two heads if we get exactly two, or exactly three, or
exactly four, or exactly five heads. The sum of the number of ways of
doing each of these is

5C2 +5 C3 +5 C4 +5 C5 = 10 + 10 + 5 + 1 = 26.

Therefore
Pr(at least two heads) =

26
32

=
13
16

.
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18. If four dice are rolled, the number of outcomes is 64 = 1, 296.

(a) We need the number of ways the four dice can come up with exactly
two of the dice showing 4. We get exactly two dice showing 4 by choosing
any two of the four dice to come up 4, and allowing the other two dice to
come up any of 1, 2, 3, 5, 6, five possibilities for the other two. The number
of ways this can happen, by the multiplication principle, is

(5)(5)4C2 = 25
4!

2!2!
= 25

4!
2!2!

= 150.

The probability of getting exactly two four’s is

Pr(exactly two four’s) =
150
1296

=
23
216

.

(b) The number of ways of getting exactly three four’s is 5(4C1) = 20, so

Pr(exactly three four’s) =
20

1296
=

5
324

.

(c) We get at least two four’s if we get exactly two four’s, exactly three
four’s, or all four tosses coming up 4. There are 150 ways of getting
exactly two, and 20 ways of getting exactly three four’s. Clearly in four
tosses there is one way of getting four four’s. Therefore

Pr(at least two four’s) =
150 + 20 + 1

1296
=

19
144

.

(d) To total 22, the dice could come up 6, 6, 6, 4, in any order (four ways),
or 6, 6, 5, 5 in any order (six ways). Therefore

Pr(dice total 22) =
10

1296
=

5
648

.

19. The number of ways of drawing two cards out of 52 cards, without regard
to order, is 52C2 = 1, 326.

(a) We get two kings if we happen to get two of the four kings, and there
are 4C2 = 6 ways of doing this. Then

Pr(two kings are drawn) =
6

1326
=

1
221

.

(b) The aces and face cards constitute 16 of the 52 cards. If none of the
two cards is drawn from these sixteen cards, then the two cards are drawn
from the remaining 36 cards. Disregarding order, there are 36C2 = 630
ways to do this. Therefore

Pr(no ace or face card) =
630
1326

=
105
221

.
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20. The number of ways of choosing four letters from 26 letters, with order, is

26P4 =
26!

(26 − 4)!
=

26!
22!

= (23)(24)(25)(26) = 14, 950.

(a) If the first letter is set at q, then we are left to choose, with order,
three letters from the remaining 25 letters. There are 25P3 = 2, 300 ways
to do this, so

Pr(first letter is q) =
2300
14950

=
2
13

.

(b) Suppose a and b are two of the letters. How many ways can this occur?
Imagine a string of four boxes. Pick any two, and put a and b in these
boxes. There are 4P2 = 12 ways to do this. For the other two boxes, put
(keeping track of the order) any two of the remaining 24 letters. There
are 24P2 ways to do this. The number of ordered strings of four letters
with a and b two of the letters, is

(4P2)(24P2) =
4!
2!

24!
22!

= 564.

Then
Pr(a and b were chosen) =

560
14950

=
7

187
.

(c) The probability of abdz occurring is 1/14950, since this string can
occur in exactly one way.

21. The number of ways of choosing, without order, three of the eight bowling
balls is 8C3 = 56.

(a) For none of the balls to be defective, they had to come from the six
nondefective ones. There are 6C3 = 20 ways to do this. Then

Pr(none defective) =
20
56

=
5
14

.

(b) There are two ways to take one defective ball. The other two would
have to be taken from the six nondefective ones, which can be done in
6C2 = 15 ways. Then

Pr(exactly one defective ball) =
30
56

=
15
28

.

(c) In choosing three bowling balls, there are 3 ways of picking the two
defective ones. Then there are six ways of choosing the third ball as
nondefective. Therefore

Pr(both defective balls are chosen) =
6(3)
56

=
9
28

.
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22. This problem involves tossing dice, except now each die has only four
faces, numbered 1, 2, 3, 4. The number of outcomes is 47 = 16, 384, since
each of the seven tosses has four possibilities.

(a) There is one way all seven dice can come up 3, so

Pr(all come up 3) =
1

16384
.

(b) There are 7C5 = 21 ways of picking five of the dice and imagining they
come up 1, and imagining the other two come up 4. Therefore

Pr(five ones, two fours) =
21

16384
.

(c) The only ways to roll a total of 26 are to roll (in any order),

4, 4, 4, 4, 4, 4, 2

and there are seven ways to do this (seven possible locations for the 2), or
to roll

4, 4, 4, 4, 4, 3, 3

and there are 7C2 = 21 ways to do this. Therefore

Pr(total 26) =
7 + 21
16384

=
7

4096
.

(d) The sum is at least 26 if the sum is 26, 27, or, the largest possible, 28.
We already know from (c) that there are 28 ways to total exactly 26. To
roll a 27, we must get (in any order),

4, 4, 4, 4, 4, 4, 3

and there are 7 ways to do this. To roll 28, we must get all four’s, and
there is one way to do this. Therefore

Pr(total at least 26) =
28 + 7 + 1

16384
=

9
4096

.

23. Taking order into account, there are

20P5 =
20!
15!

= (16)(17)(18)(19)(20) = 1, 860, 480

ways to choose 5 of the balls.

(a) There is only one way to choose the balls numbered 1, 2, 3, 4, 5 in this
order. the probability is

Pr(select 1, 2, 3, 4, 5 in this order) =
1

1860480
.
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(b) We want the probability that ball number 3 was drawn (somewhere in
the five drawings). We therefore need the number of ordered choices of five
of the twenty numbers, that include the number 3. We can think of this
as choosing, in order, four of the nineteen numbers 1, 2, 4, 5, · · · , 18, 19, 20,
and then inserting 3 in any of the positions from the first through fifth
numbers of the drawing. This will result in all ordered sequences of length
five from the twenty numbers, and containing the number 3 in some posi-
tion. There are therefore 5(19P4) = 465, 120 such sequences. Therefore

Pr(selecting a 3) =
465120
1860480

=
1
4
.

(c) We must count all the drawings (sequences) that contain at least one
even number. This could mean the sequence contains one, two, three,
four or five even numbers. This is a complicated counting problem if
approached directly. It is easier to count the sequences that have no even
number, hence are formed just from the ten even integers from 1 through
20. If this number is N0, then the number X of sequences having an even
number is

X = 1, 860, 480 − N0.

Now N0 is easy to compute, since this is the number of ordered five-term
sequences of the ten odd numbers. Thus

N0 =10 P5 = 30, 240.

Then X = 1860480 - 30240 = 1830240.

Then
Pr(an even number was drawn) =

1830240
1860480

.

This is approximately 0.984, so it is very likely that an even numbered
ball was drawn.

24. We need to be clear what an outcome of this experiment looks like. An
outcome can be written as a string abc, with each letter representing (in
some way) a chosen drawer out of the nine available drawers. The number
of outcomes, without regard to order, is 9C3 = 84.

(a) A person gets at least 1,000 dollars by picking exactly one drawer with
the thousand dollar bill and two without. There are 2(7C2) ways to do
this. Or, we could pick both drawers with the thousand dollar bill and
one of the others. There are 7 ways to do this. The number of ways of
getting at least a thousand dollars is therefore 42 + 7, and

Pr(getting at least one thousand dollars) =
49
84

=
7
12

.

(b) A person cannot end up with less than one dollar. This is not an
outcome in the sample space. We may also assign a probability of zero to
this proposed outcome.
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(c) The payoff is 1.50 exactly when the person chooses three drawers, each
containing fifty cents. The number of ways this can happen is 7C3 = 35,
so

Pr(1.50 payoff) =
35
84

=
5
12

.

Notice that the sum of the probabilities of (a) and (c) is 1. This is because,
in choosing three drawers, the person must either choose all drawers having
fifty cents, or must choose at least one of the drawers having a thousand
dollar bill.

25. The number of five-card hands (disregarding the order of the deal) is
52C5 = 2, 598, 960.

(a) The number of hands containing exactly one jack and exactly one king
is

4(4)(44C3) = 211, 904.

This is because there are four ways of getting one jack, four ways of get-
ting one king, and then we choose (without order) three cards from the
remaining 44 cards. Thus

Pr(exactly one jack and exactly one king) =
211904
2598960

.

This is approximately 0.082, so this event is quite likely.

(b) The hand will contain at least two aces if it has exactly two aces,
exactly three aces, or exactly four aces. The number of such hands is

(4C2)(48C3) + (4C3)(48C2) + (4C4)(48C1) = 108, 336.

For the first term, choose two aces out of four, then three cards from
the remaining forty-eight cards, and similarly for the other two terms for
drawing three aces or drawing four aces. Then

Pr(draw at least two aces) =
108336
2598960

.

This is approximately 0.042. As we might expect, a hand with at least
two aces is not very likely.

26. There are 101 numbers to choose from, and

101C2 = 668, 324, 943, 343, 021, 950, 370

ways to do this (without regard to order).

(a) There are twenty-one numbers in the 80 to 100 range, inclusive. The
number of ways of choosing twenty of these (without order) is 21C20 = 21.
Therefore

Pr(all numbers are larger than 79) =
21

668324943343021950370
.

12



This is very close to zero. In the real world no sane person would bet on
drawing all the twenty numbers from the eighty to one hundred range.

(b) There are

100C19 = 132, 341, 52, 939, 212, 267, 400

ways to choose a five: choose one five, then nineteen numbers from the
remaining one hundred numbers. Therefore

Pr(choose a five) =
132341572939212267400
668324943343021950370

.

This is approximately 0.190. Since twenty numbers is nearly 1/5 the 101
numbers, it is not surprising that the probability of getting any particular
number is close to 1/5.

Section 3 Complementary Events

1. There are many ways seven dice can come up with at least two fours (call
this event E). We can count these, but it may be easier to look at the
complementary event EC , which is that fewer than two dice come up 4.
This is the event that exactly one die comes up 4, or none of them do.
If no 4 comes up, then each of the seven dice has five possible numbers
showing, for 57 possibilities. If exactly one die comes up with a four, then
the other dice have five possible numbers showing, and this can occur in
7(56) ways. This means that EC has

57 + 7(56) = 187, 500

outcomes. Then, since the total number of outcomes of seven rolls is
67 = 279, 939, we have

Pr(EC) =
187500
279936

.

The probability we are interested in is

Pr(E) = Pr(at least one 4) = 1 − 187500
279936

.

This is approximately 0.330.

2. In fourteen coin tosses, there are 214 = 16, 384 outcomes.

Now let E be the event that at least three of the fourteen coins come up
heads. E has many outcomes in it. It may be easier to deal with EC ,
which is the event that fewer than three of the fourteen coins come up
heads. EC consists of the events: no head comes up, one head comes up,
or two heads come up.
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